用户名: 密码: 验证码:
独立车轮导向技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术和城市化的发展,城市轨道交通已经成为大中城市公共交通的重要组成部分。在各种轨道交通工具中,低地板轻轨车辆由于造价低、上下车方便等因素而被欧洲和我国一些城市所接受,成为城市轨道交通的一种模式。
     实现轻轨车辆低地板化的关键是降低车轴的高度,以保证车内通道的贯通,解决该问题的主要措施是采用独立车轮。独立车轮是“独立旋转车轮”的简称,最简单的独立旋转车轮就是将传统的刚性轮对的左右车轮解耦,使它们各自独立地绕车轴旋转。由于车轴不再需要旋转,因而独立车轮轮对的车轴可以做成曲轴形状,甚至取消车轴,以满足低地板车辆的需要。
     与传统的刚性轮对相比,独立车轮理论上不存在纵向蠕滑力产生的回转力矩,因而不会产生蛇行运动,对提高稳定性有好处。但是这一优点也同时是它的缺点,因为独立车轮缺少了纵向蠕滑力矩的导向作用,因而降低了轮对的导向能力,大大限制了独立车轮的使用。如何提高独立车轮的导向能力,一直是本领域研究的热点问题之一。本文的目的对独立车轮的各种导向技术进行综合分析,并从以下三个方面来提高独立车轮导向能力。
     对于采用被动悬挂的独立车轮转向架,独立车轮的导向能力最终都依赖于重力复原力,而重力复原力取决于左右车轮的接触角差,因此设计具有较大接触角差的踏面是提高独立车轮的导向能力的基本措施之一。论文研究了采用接触角反推法设计独立车轮踏面的技术,介绍了接触角踏面反推法的原理及其实现,并针对不同的独立车轮走行部,提出了独立车轮踏面设计的原则,给出了设计实例。研究表明,接触角曲线踏面反推法对独立车轮的设计非常有效,并且能够实现踏面外形的计算机设计。
     对于采用被动悬挂的独立车轮转向架,在使用较大接触角差的踏面基础上,还应该采用具有径向功能的转向架。从原理上讲,具有径向功能的独立车轮转向架可分为两类:迫导向转向架和自调节转向架。迫导向转向架是通过迫导向机构,利用车体与转向架之间的相对转角或者是相邻车体之间的转角,迫使轮对趋向径向位置。论文研究了独立车轮耦合转向架—一种新型的迫导向转向架的导向原理,给出了其实现径向导向的条件,仿真分析了装用独立车轮耦合转向架的低地板轻轨车辆的曲线通过性能和直线复位特性,并设计了其关键部件
With the development of urbanization and the population increasing in city, the mass transit has become the mainly public traffic mode in metropolitan. Because having the advantage of getting on and off easily and lower cost of infrastructure, the Low-floor LRT has been accepted in many Europe cities.
    The key to realize the low floor in LRT vehicle is to decrease the height of wheelset axle and guarantee the gateway continuously. The way to solve this problem is to use the independently rotating wheels (IRWs). Because of no need to rotate, the axle of IRW can make to crank shape and even cancel it.
    Comparing with the conventional fixed wheelset, the IRW don't engender longitudinal creep force, so hunting won't occur and the stability of vehicle system is very good. But IRW loses self-steering capability of longitudinal creep moment, so its restoration capability and curving performance becomes worse. This shortage limits the use of IRW. How to improve the guidance and steering capability of IRW is a focused problem for a long time. The paper studies this problem and gives some efficient measures to enhance usability of IRW.
    For any running gear with IRW and passive suspension, the guidance capability of IRW originally comes from the gravity restoring force. The gravity restoring force lies on the contact angle of tread and wheel load. So the primary measure to improve the guidance capability of IRW is to use the special tread with high contact angle. The paper gives a new method to design the wheel profile of IRW. This method can automatically create the wheel profile in computer according the designed contact angel and given rail profile. The theory of this method and development process of the program in detail is introduces in paper and some examples are also given.
    Besides using the tread with high contact angel, the running gear with IRW and passive suspension is also needed to employ a specific radial mechanism. A novel force radial bogie - Coupled Single-axle Running Gear (CSRG) with IRW is introduced in paper. The CSRG is composed of two single-axle bogies setting on two
引文
[1] 孙章,何宗华,徐金祥.城市轨道交通概论[M].北京:中国铁道出版社,2000.
    [2] Dekker N. M. J.. Low Floor-Present Status and Future Developments [J]. Design, Reliability, and Maintenance for Railways, Bury St Edmuds: ImechE Seminar Publication. 1996: 11~19.
    [3] Roger Ford. Light Rail Vehicle Technology[J]. Modern Railway, 1993 (8): 494~496.
    [4] Matthew Pollack, James Zebarth. The applicability of low-floor light rail vehicles in North America[J]. Rail Engng. Intern. 1995(2): 21~24.
    [5] 蔡君时.城市轨道交通[M].上海:同济大学出版社,2000.
    [6] 鲍维千.独立车轮在低地板轻轨车辆上的应用[J].内燃机车,2001,Vol.28(1):12~17.
    [7] 沈钢.低地板面轻轨车辆调研报告[R].上海:同济大学,2004.
    [8] Aonymous. Free Revolving Wheelsets[J]. The Railway Gazette, 1964: 454~456.
    [9] 陈泽深.独立车轮转向架的导向原理(1)[J].铁道机车车辆[J],1998(4):1~6.
    [10] 陈泽深.独立车轮转向架的导向原理(2)[J].铁道机车车辆[J],1999(1):16~23.
    [11] G. Shen, J. Zhou, L. Ren. Enhancing the resistance to derailment and side-wear for a tramway vehicle with independently rotating wheels[C]. Proc. of 19th IAVSD Symp, Milan, Italy, 2005.
    [12] 陈泽深,王成国.铁道车辆动力学与控制[M].北京:中国铁道出版社,2004.
    [13] R. V. Dukkipati, S. Narayana Swamy, M.O.M. Osman. Independently rotating wheel systems for railway vehicles-A state of the art review[J]. Vehicle System Dynamics, 1992, Vol. 21(2): 297~330.
    [14] Anonymous. Talgo target is 250km/h. Railway Gazette International[J]. 1989, 799~800.
    [15] Panagin, R. The use of independent wheels for the elimination of lateral instability of railway vehicles[J]. Ingegneria Ferroviaria. 1978, Vol.33(2): 143~150.
    [16] B. M. Eickhoff and R. F. Harvey. Theoretical and Experimental Evaluation of Independently Rotating Wheels for Railway Vehicles[J]. The Dynamics of Vehicles on Roads and on Tracks, 1989: 190~201
    [17] Koyangi, Shiro. The stability of motion of the independently rotating wheel-axle [R]. Japanese National Research, Quarterly Reports, 1971, Vol. 12(1): 29~33.
    [18] Koyangi, Shiro. The dynamics of guided independently rotating wheel trucks[R]. Japanese National Research, Quarterly Reports, 1981, Vol.22(1): 19~25.
    [19] H. Chollet, J. B. Ayasse, J. P. Pascal. Measurement of transversal creep force in a wheel-rail contact area[C]. Proc. of the 11th IAVSD Symp., 1989: 97~107.
    [20] R. M. Goodall, T. X. Mei. Mechatronic strategies for controlling railway wheelsets with independently rotating wheels[C]. IEEE/ASME International Conference on advanced Intelligent Mechatronics Proceedings, 8~12 July, 2001, Como, Italy.
    [21] T. X. Mei, R. M. Goodall. Dynamics and control assessment of rail vehicle using permanent magnet wheel motors[J]. Vehicle System Dynamics, 2002, Vol. 37: 326~337.
    [22] Javier. Perez, Lutz Mauer, Jesus M. Busturia. Design of active steering system for bogie-based railway vehicles with independently rotating wheels[J]. Vehicle System Dynamics, 2002, Vol. 37: 209~220.
    [23] V. K. Garg, R. V. Dukkipati. Dynamics of Railway Vehicle Systems[M]. Toronto: Academic Press Canada. 1984.
    [24] J. J. Kalker. Survey of Wheel-Rail Rolling Contact Theory[J]. Vehicle System Dynamics. 1979, 5: 317~358.
    [25] F. Frederich. Possibility as yet unknown or unused regarding the wheel/rail tracking mechanism[J], Rail International, 1985, 33~40.
    [26] F. Frederich. A Bogie concept for the 1990s[J]. Railway Gazette International, 1988: 583~585.
    [27] 黄运华.基于独立旋转车轮的变轨距转向架研究:[学位论文],成都:西南交通大学,2003.
    [28] R. Panagin. The use of independent wheels for the elimination of lateral instability of railway vehicles[J]. Ingegneria Ferroviaria, Vol. 33, No. 2, 1978, 143~150.
    [28] G. R. Corazza, F. de Falco. Basic theories of the behavior in curves of a bogie with independent wheels[J]. Ingegneria Ferroviaria, Vol. 33, No. 5, 1978, 449~458.
    [30] B. M. Eickhoff and R. F. Harvey. Theoretical and Experimental Evaluation of Independently Rotating Wheels for Railway Vehicles[J]. The Dynamics of Vehicles on Roads and on Tracks[J]. 1989: 190~201.
    [31] Shiro Koyangi. The Dynamics of Guided Independently-Rotating-Wheel Truck. Quarterly Reports. 1981, (1): 19~25.
    [32] D. C. Gilmore, J. A. C. Fortin. The Application of Free Wheelsets to a Steerable Truck: Analysis and Test Experience[J]. The Dynamics of Vehicles on Roads and on Tracks. 1989: 261~274.
    [33] W. Choromanski, J. kisikowski. Dynamics of Railway Trucks with Wheelset with Independently Rotating Wheels and Controlled Slip[J]. The Dynamics of Vehicles on Roads and on Tracks, 1989: 108~125.
    [34] Y. Suda. High Speed Stability and Curving Performance of Longitudinally Asymmetric Trucks with Semi-active Control[J]. Vehicle System Dynamics, 1994, Vol. 23: 29~52.
    [35] F. Frederich. Dynamics of a Bogie with Independent Wheels[J]. The Dynamics of Vehicles on Roads and on Tracks , 1989: 217~213.
    [36] Eisaku Satho, Masayuki Miyamoto, Katoshi Fukazawa, Takeshi Hayase. Dynamics of a Bogie with Independently Rotating Wheels -A Case ofT railing Bogie. QR of RTRI. 1994, Vol.35(2): 83~88.
    [37] 佐藤荣作.独立车轮用踏面形状的研制[J],国外铁道车辆,Vol.39(2),2002:36~38.
    [38] G. Shen, J B Ayasse, H Chollet and I Pratt. A unique design method for wheel profiles by considering the contact angle function[J]. Journal of Rail and Rapid Transit, 2003, Vol. 217: 25~30.
    [39] 叶志森,沈钢.独立车轮踏面外形的设计[J].铁道车辆,2003,Vol.49(1):19~21.
    [40] 文彬,陈泽深,王成国.高速车辆拖动式独立车轮轮对的研究(1)[J].铁道车辆,2000,Vol.38(6):6~8.
    [41] 文彬,陈泽深,王成国.高速车辆拖动式独立车轮轮对的研究(2)[J].铁道车辆,2000,Vol.38(7):12~14.
    [42] 毛家训,严隽耄,沈志云.迫导向转向架的原理与应用[J].铁道车辆,1985,Vol.22(11):22~27.
    [43] 沈钢.铁路车辆径向转向架和轮轨磨耗问题研究:[学位论文],上海:上海交通大学,1999
    [44] J. A. Elkins. IRW: a simple modification to improve the performance of the conventional three piece truck[C]. Proc. of the 9th wheelset congress, Montreal, Canada, 1988.
    [45] J. A. Elkins. The performance of three-piece trucks equipped with independently rotating wheels[C]. Proc. 11th IAVSD Symp, 1989: 203~216.
    [46] S. N. Swany, R. V. Dukkipati, M. O. M.Osman. Analysis of Modified Railway Passenger Truck Designs to Improve Lateral Stability/Curving Behavior Compatibility[J]. Pro. Instn. Mech. Engrs. 1995, Vol. 209(4): 49~59.
    [47] Y. Suda, R. Nishimura, N. Kato, el. Self-Steering Trucks Using Unsymmetric Suspension with Independently Rotating Wheels—Comparison between Stand Test and Calculations[J]. Vehicle System Dynamics Suppement. 1999, Vol. 33: 180~190.
    [48] 须田义大等.后轮对采用独立回转车轮的自导向径向转向架的曲线通过性能[J].国外内燃机车,1999,(5):8~14.
    [49] C. K Benington. The Railway wheelset and suspension unit as a closed-loop guidance control system: A method for performance improvement[J]. Journal of Mechanical Engineering Science. 1968, 10(2): 91~100.
    [50] Dukkipati, R. V. Bahgat, B. M. and Osman, M. O. M. Comparative performance analysis of conventional and damper coupled wheelsets. ASME paper no.82-WA/RT-13.
    [51] A. K. W. Ahmed. Lateral stability behaviour of railway freight car system with Elasto-Damper Coupled Wxheelset[D]. Ph.D. Thesis, Concordia University, Montreal, Canada, 1986.
    [52] A. K. W. Ahmed, S. Sankar. Lateral stability behavior of railway freight car system with Elasto-Damper Coupled Wheelset: Part 1-Wheelset model[J]. Journal of Mechanisms, Transmissions, and Automation in Design. 1987, Vol.109(12): 493~499.
    [53] A. K. W. Ahmed, S. Sankar. Lateral stability behavior of railway freight car system With Elasto-Damper Coupled Wheelset: Part 2-Truck model[J]. Journal of Mechanisms, Transmissions, and Automation in Design. 1987, Vol. 109(12): 500~507.
    [54] A. K. W. Ahmed, S, Sankar. Steady-state curving performance of railway freight truck with damper coupled wheelsets[J]. Vehicle System Dynamics, 1988, Vol. 33(17): 295~315.
    [55] 池茂儒,王开文等.磁流体耦合轮对转向架直线稳定性的研究[J].同济大学学报(自然科学版).2003,Vol.(2):464~468.
    [56] 池茂儒,王开文等.磁流体耦合轮对转向架曲线通过性能的研究[J].铁道学报,2002,Vol.24(4):28~33.
    [57] 池茂儒,王开文等.磁流变耦合轮对耦合度对轮轨横向力的影响[J].铁道学报.2003,Vol.25(1):30~33.
    [58] 池茂儒,王开文等.磁流体耦合轮对转向架动力学性能的研究[J].西南交通大学学报.2002,Vol.37(6):664~668.
    [59] J. K. Hedrik. Railway vehicle active suspension[J]. Vehicle System Dynamics, 1981, Vol. 10: 267-283.
    [60] E. Andersson, N. Nilstam, et al. Later track force at high speed curving comparisons of practical and theoretical results of Swedish high speed train X2000[J]. Vehicle System Dynamics, Supplement, 1996, Vol. 25: 37-52.
    [61] 严隽耄.摆式列车的发展和运用概况[M].国内外摆式列车文集.成都:西南交通大学出版社,1998.
    [62] R. M. Goodall, W. Kortum. Active suspension for railway vehicles-an avoidance luxury or an inevitable consequence?[C]. Proc. 11th 1FAC world Congress, Tallium, USSR, 1990.
    [63] R. M. Goodall. Active railway suspension: implementation status and technological trends[J]. Vehicle System Dynamics, 1997, 28(10): 87~117.
    [64] R. M. Goodall, W. Kortum. Mechatronic development for railway vehicles of the future. Control Engineering Practice[J], 10 (2002): 887~898.
    [65] 则直久.500系列动车的半主动悬挂系统.国外内燃机车,1998(5):8~12.
    [66] A. Striversky, S. Steidl, H. Muller and B. Roth. On dynamic analyses of vehicles with electronically controlled suspension[C]. Proc.14th IAVSD Symp., Vehicle System Daynamics, 1996, Vol.25(Supplement): 614-628.
    [67] R. A. Willimans. Automotive active suspensions, Part 1: Basic priciples and Part 2: Practical considerations[J]. Proc. Instn. Mech. Engrs. 1997, Vol. 211 Part D.
    [68] 戴焕云.车辆主动悬挂的鲁棒控制研究:[学位论文],成都:西南交通大学,1999.
    [69] 王月明.高速客车半主动悬挂控制研究:[学位论文],成都:西南交通大学,2002.
    [70] 周劲松.高速列车运行平稳性及其控制研究:[学位论文],上海:上海交通大学,2004.
    [71] R. M. Goodall. Tilting trains and beyond the future for active railway suspension part 1: Improving stability and guidance[J]. Computing and Control Engineering Journal, 1999, Vol. 10(8): 153~160.
    [72] R. M. Goodall. Tilting trains and beyond the future for active railway suspension part 2: Improving stability and guidance[J]. Computing and Control Engineering Journal, 1999, Vol. 10(10): 221~230.
    [73] T. X. Mei, R. M. Goodall. Recent development in active steering of railway vehicle[J]. Vehicle System Dynamics, 2003, Vol. 39: 415~436.
    [74] R. Sommerer. Integral-ein gliderzugsystem fur den vollbahnbetrieb[J]. ZEV+DET Glas, Ann,Vol. 123(2): 73~84.
    [75] G. Shen, R. M. Goodall. Active yaw relaxation for improved bogie performance[J]. Vehicle System Dynamics, 1997, Vol. 28: 273~289.
    [76] T. X. Mei, R. M. Goodall. Modal controllers for active steering of railway vehicles with solids axle wheelsets[J]. Vehicle System Dynamics, 2000, Vol. 34: 25~41.
    [77] T. X. Mei, etc el. Mechatronic solutions for high-speed railway vehicles[J]. Control Engineer Practice, 2003(10): 1023~1028.
    [78] T. X. Mei, R. M. Goodall, A. H. Wickens. A systems approach for wheelset and traction control[J]. Vehicle System Dynamics, 2002(2): 257~266.
    [79] A. H, Wickens. Dynamics Stability of acticulated and steered railway vehicles guided by lateral displacement feedback[C]. 13th IAVSD Symposium, Chengdu, China, 1993.
    [80] A. H. Wickens. Dynamic stability of articulated and steered railway vehicles guided by lateral displacement feedback[J]. Vehicle System Dynamics, 1994, Vol. 23(Supplement): 541~553.
    [81] A. J. Powell, A. H. Wickens. Active guidance of railway vehicle using traction motor torque control[C]. Proc. 14th IAVSD Symp., Ann Arbor, Mi. USA.
    [82] H. Li, R. M. Goodall. State estimation for active steering of railway vehicles[C]. 14th Triennial World Congress, Beijing, P. R. China. 1999.
    [83] Mei. T. X., Goodall, R. M. Optimal Control Strategies for Active Steering of Railway Vehicles. IFAC99 Congress, Beijing, China, July 1999.
    [84] T. X. Mei, R. M. Goodall. LQG and GA solutions for active steering of railway vehicles[J]. IEEE Proc. control theory application, 2001(1).
    [85] T. X. Mei, R. M. Goodall. Robust control for independently rotating wheelsets on a railway vehicle using practical sensors[J]. IEEE Transactions on control system technology, 2001(4).
    [86] T. G. Pearce. wheelset guidance-conicity, wheel wear and safety[J]. Procedings of ImechE, 1996, Vol. 210: 1~9.
    [87] 金鼎昌.磨耗型踏面研究[J].西南交通大学学报.1984,(1):81~87.
    [88] 佐藤荣作.踏面设计外形的科学化[J].国外内燃机车,2003(2):39-43.
    [89] S. Soeleiman. Modified wheel profile development and implementation[C]. The Fourth International Heavy Haul Railway Conference, 1989, pp322~326.
    [90] K. Sawley. Managing profiles to extend both wheel and rail lift[J]. Railway Track & Structure, 2001, (9): 17~19.
    [91] 刘新明.机车车辆弧形踏面外形研制[J].铁道车辆,2002,Vol.38(2):24-28.
    [92] 沈钢,叶志森.用接触角曲线反推法设计铁路车辆踏面外形[J].同济大学学报(自然科学版),2003,Vol.30(9):1095~1098.
    [93] 王福天.车辆系统动力学[M].北京,中国铁道出版社,1994.
    [95] 杨国桢.磨耗型踏面轮轨接触几何学参数的研究[J].中国铁道科学.1980,3.
    [96] 严隽耄.具有任意轮廓形状的轮轨空间几何约束的研究[J].西南交通大学学报.1983(3):40~48.
    [97] O. Polach. Coupled single-axle running gears-a new radial steering sesign[J]. Journal of Rail and Rapid Transit, ImechE, 2002, 216(F3): 197~206.
    [98] 沈钢,周劲松,任利惠.单轮对耦合转向架曲线通过性能的研究[J].铁道学报,2004,Vol.26(5):20~25.
    [99] 陆正刚,赵惠祥,胡用生.柔性耦合轮对转向架的径向原理和稳定性分析[J].同济大学学报(自然科学版),2004,Vol.32(9):1209~1214.
    [100] 池茂儒,张洪,黄其祯等.新型独立车轮低地板转向架曲线通过性能研究[J].铁道车辆,2005,Vol.43(3):1~5.
    [101] 沈钢.面向对象的机车车辆动力学集成仿真系统的开发[J].铁道学报,1998(3).
    [102] 沈钢.机车车辆动力学集成仿真系统的开发[J].铁道车辆,1997(12).
    [103] Edward B.Margrab.MATLAB原理与工程应用[M].北京,电子工业出版社,2002.
    [104] 薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京,清华大学出版社,2002.
    [105] 任利惠,沈钢.独立车轮耦合转向架耦合机构的一种实现[J].铁道机车车辆,2005,Vol.25(6):1~3
    [106] Y. Michitstuji, Y. Suda. Running performance of power-steering railway bogie with independently rotating wheels[C]. Proc. 19th IAVSD Symp., Milan, Italy, 2005.
    [107] D. C Karnopp. Active and passive isolation of random vibration[J]. In isolation of mechanical vibration impact and noise(Eds J. C. Snowdon and E. E. Ungar)1973, ASME Monograph, AMD, Vol. 1: 357~366.
    [108] H. Li, R. M. Goodall. Linear and nonlinear skyhook damping control law for active railway suspensions[J]. Control Engineering Practice, 1999, 7: 843~850.
    [109] R. M. Goodall, H. Li. Solid axle and independently-rotating railway wheelsets-A control engineering assessment of stability [J]. Vehicle System Dynamics, 2000, Vol. 33(1): 57~67.
    [110] 刘豹.现代控制理论[M].北京:机械工程出版社,2003.
    [111] 任利惠,周劲松,沈钢.一种基于转速差的独立车轮的主动导向控制研究[J].中国铁道科学[J],2006,Vol.27(1):89—93.
    [112] 刘荣.摆式列车机电式倾摆机构试验研究,[学位论文],成都:西南交通大学,2000.
    [113] 刘金琨.先进PID控制及其MATLAB仿真[M].北京,电子工业出版社,2003.
    [114] 张洪润,张亚凡.传感技术与应用教程[M].清华大学出版社,北京,2005.
    [115] 陈家新.两轮电动车用电机及其驱动方式[J].电机电气技术,2002(1):16~19.
    [116] 陈清泉,孙迎春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2002.
    [117] 张丽平,李芾.弹性阻尼耦合轮对客车横向稳定性分析[J].交通运输工程学报.2002.Vol.(1):13~19.
    [118] T. X. Mei, R. M. Goodall. Stability control of railway bogies using absolute stiffness-skyhook spring approach[C]. Proc. 19th IAVSD Symp., Milan, Italy, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700