用户名: 密码: 验证码:
砷价态调控净化铜电解液工艺及基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:铜电解液净化工业生产广泛采用诱导法脱铜脱杂,该法能耗高、产生剧毒砷化氢气体及大量黑铜粉。本文形成了梯度电流密度调控脱铜、价态调控脱砷的铜电解液净化工艺,该工艺可显著提高铜电解液电积过程合格阴极铜的产出率,大大减少黑铜粉的产生,并能直接从中回收得到As203产品,有效克服了诱导脱铜脱杂法的不足。通过铜沉积电化学机理研究揭示了电积深度脱铜机理。
     采用S02还原铜电解液中As(V),调节As(V)和AsT的物质的量之比为0.4,同时调节Sb(V)与SbT的物质的量之比为0.4,蒸发浓缩使蒸发前后溶液体积比为2.5,10℃下冷却结晶后,Cu、As、Sb和Bi脱除率分别达到82%、62%、55%和85%,XRD分析表明净化渣为CuSO4·5H20和As203。净化渣经溶解、过滤后,得到三氧化二砷和硫酸铜溶液。硫酸铜溶液经双氧水氧化、Na2CO3溶液调节pH为3.7、蒸发结晶,得到的硫酸铜晶体中CuSO4·5H2O含量达98.8%。
     根据砷价态调控规律调整电解液中AsT和As(Ⅲ)浓度分别为10.00g/L和5.00g/L,在电流密度为235A/m2、电解液温度为65℃下电解168h,电解液中AsT、Sb和Bi的质量浓度分别下降2.9%、35%和18.18%。在电解过程中,As(Ⅲ)不断被氧化,其氧化反应符合一级反应动力学规律。
     采用电流密度调控分段电积可以实现铜电解液中铜与砷的分离。铜电解液中Cu.As.Sb.Bi和H28O4浓度分别为49.51g/L.10.75g/L.0.369g/L.0.299g/L和181g/L,一段电积脱铜电流密度为200A/m2,添加剂(骨胶:明胶:硫脲质量比为6:4:5)用量为40mg/L,电解液循环速度为10mL/min,电解液温度为55℃,Cu2+浓度从49.51g/L降至29.99g/L时,得到A级阴极铜;二段电积脱铜调节电流密度为100A/m2,电解液温度为65℃,Cu2+浓度从29.99g/L降至8.94g/L时,得到1号标准阴极铜;三段电积脱铜电流密度为100A/m2, Cu2+浓度从8.94g/L降至1.69g/L时,阴极产物主要为黑铜泥。铜电解液中Cu、As、Sb和Bi总的脱除率分别为96.59%、21.30%、25.20%和75.58%。
     采用8O2还原,使深度脱铜液中As(V)转化为As(III),蒸发浓缩使蒸发前溶液与结晶后溶液体积比为2.65,在15℃冷却结晶脱砷,过滤得到As203晶体,脱砷后液再经-20℃冷冻结晶得到粗硫酸镍。As和Ni总的脱除率分别为90.5%和56.58%。
     将As203加入电解液中维持As(Ⅲ)浓度为4.84g/L,电解液温度为65℃,在235A/m2电流密度下电解168h后,Sb浓度从0.48g/L下降至0.40g/L, Bi浓度从0.45g/L下降至0.34g/L。将脱镍液返回电解系统,电解液温度为65℃,在235A/m2电流密度下电解154h后,Sb浓度从0.492g/L下降至0.441g/L, Bi浓度从0.341g/L下降至0.234g/L;在305A/m2电流密度下电解123h后,Sb浓度从0.411g/L下降至0.375g/L, Bi浓度从0.336g/L下降至0.232g/L。所得阴极铜质量均达到A级阴极铜标准(GB/T467-2010)。
     当Cu2+为2.5g/L和H2SO4为250g/L时,铜电解液中铜电沉积过程是Cue2++e→Cu+为速度控制步骤的不可逆电极过程,铜电沉积过程无表面转化反应,受电化学极化和浓差极化混合控制,阴极过程表观传递系数α为0.49,阳极过程表观传递系数α为1.42,控制步骤化学计量数为1,阴极反应级数为1;阳极反应级数为O。其阴极沉积动力学方程为:
     在Cu2+为2.5g/L和H2SO4为250g/L的电解液体系中,As(Ⅴ)和As(Ⅲ)对铜电沉积过程均具有去极化作用,均使阴极过程的峰电流密度增大。电解液中存在As(V)时,循环伏安曲线阴极分支上只出现-个阴极还原峰,使铜电沉积的峰电位负移;电解液中存在As(Ⅲ)时,循环伏安曲线阴极分支上出现两个阴极还原峰,均无氧化峰。As(V)和As(Ⅲ)存在时,电极过程均受电化学和浓差极化混合控制。
     沉积物中砷含量随阴极电极电位的降低而增加,在Cu2+为2.5g/L、H2SO4为250g/L和As(V)为10g/L的电解液中,当阴极电位为-0.2V vs.SCE时,阴极产物主要为Cu和Cu20;当阴极电位为-0.43V vs.SCE时,阴极产物主要为Cu3As、Cu2O和Cu5As2;当阴极电位为-0.6Vvs.SCE时,阴极上主要析出H2和AsH3气体。结果表明,在As(V)存在下,控制电流密度电积,可以实现铜电解液中铜与砷的分离。
Abstract:The technology of removing copper and impurities by induction method is widely used for purifying copper electrolyte in industrial production, the method presents many disadvantages, such as high energy consumption, forming toxic arsine gas and producing a lot of black copper. In the paper, the new copper electrolyte purification process of decopperization by gradient current density-adjustment and dearsenication by valence-adjustment was proposed to solve these problems. The process can markedly increase the output ratio of cathode copper during copper electrowinning, and greatly reduce the black copper and recover As2O3from copper electrolyte. The electrodepositing mechanism of copper in Cu-depleted electrolyte was investigated to reveal the copper removal mechanism.
     Arsenic(V) in copper electrolyte was reduced to arsenic(Ⅲ) with the aid of sulfur dioxide, and n(As(V))/n(ATT) was adjusted to0.4, as well as n(Sb(V))/n(SbT), the resultant electrolyte was subject to concentrate and the ratio of initial volume and final volume was2.5time, then the electrolyte was cooled to10℃to crystallize, the removal rates of Cu, As, Sb and Bi are82%,62%,55%and85%respectively, the purifying residue includes CuSO4·5H2O and As2O3. When the purifying residue was dissolved in water, As2O3residue and copper sulfate solution were obtained respectively after filtering. The CuSO4-5H2O content is98.8%when the copper sulfate solution was purified through oxidation by H2O2, adjusting pH by Na2CO3and evaporative crystallization.
     Adjusting the concentrations of AsT and As(Ⅲ) to10.00g/L and5.00g/L,respectively according to the rule of arsenic valence-adjustment, after copper electrolysis carried out with current density235A/m2at65℃for168h, the concentrations of AsT, Sb and Bi were decreased2.9%,35%and18.18%, respectively. In the process of copper electrolysis, As(Ⅲ) was gradually oxidized, and the oxidation process is applicable to the first order kinetic model.
     The copper and arsenic in copper electrolyte were separated by multiple stage electrowinning of current density adjustment. When the Cu, As, Sb, Bi and H2SO4in the electrolyte were49.51g/L,10.75g/L,0.369g/L,0.299g/L and181g/L, respectively, the high-purity copper cathode is prepared in the first electrowinning under the conditions that current density of200A/m2, additive(with mass ratio of bone glue:gelatin: thiourea of6:4:5) dosage of40mg/L, electrolyte circulation rate of10mL/min, electrolytic temperature of55℃and Cu concentration in the electrolyte decreased from49.51g/L to29.99g/L. By adjusting the current density to100A/m2and the electrolyte temperature to65℃, when the Cu concentration decreased from29.99g/L to8.94g/L, the copper cathode(Cu-CATH-2) is prepared in the second electrowinning. In the third electrowinning with current density of100A/m2, when the Cu concentration decreased from8.94g/L to1.69g/L, the main product is black sludge. The removal rates of Cu, As, Sb and Bi are96.59%,21.30%,25.20%and75.58%, respectively.
     The As(V) in the Cu-depeleted electrolyte was reduced to As(III) by SO2, then the resultant solution was subjected to evaporation concentration, when the volume ratio of the reduced solution to the crystallized solution was2.65, and the concentration solution was cooled to15℃to crystallize, As2O3is obtained after filtering, then the arsenic removing solution was cooled to-20℃to crystallize and crude NiSO4is obtained. The removal rates of As, Sb and Ni are90.5%,25.38%and56.58%, respectively.
     By adding As2O3into the electrolyte to maintain As(III) concentration at about4.84g/L, after copper electrolysis carried out with current density235A/m2at65℃for168h, the Sb concentration decreased from0.48g/L to0.40g/L, and the Bi concentration decreased from0.45g/L to0.34g/L. Nickel removal solution was returned to electrolysis system, after copper electrolysis carried out with current density235A/m2at65℃for154h, the Sb concentration decreased from0.492g/L to0.441g/L, and the Bi concentration decreased from0.341g/L to0.234g/L, after copper electrolysis carried out with current density305A/m2for123h, the Sb concentration decreased from0.411g/L to0.375g/L, and the Bi concentration decreased from0.336g/L to0.232g/L. The quality of all the copper cathodes reaches to the Chinese standard of A grade of copper cathode (GB/T467-2010).
     For the electrodeposition of copper from solutions of2.5g/L Cu2++250g/L H2SO4, the reaction Cu2++e->Cu+is the rate controlling step, and which is an irreversible charge transfer reaction. There is no surface conversion in the cathodic process. The electrode reaction is controlled by both of the electrochemical and concentration polarization. The values of the apparent transfer coefficient for cathodic process (a) and anodic process(a) are0.49and1.42, respectively. The chemical measurement number for the rate controlling step, v equals1approximately. The orders of the cathodic and anodic processes are1and0, respectively. The kinetics equation of copper electrodeposition is shown as follows:
     When Cu2+concentration is2.5g/L and H2SO4is250g/L in the electrolyte, both As(V) and As(Ⅲ) have a depolarization effect on the process of copper deposition and increase its peak current density. When As(V) exists in the electrolyte, only one reduction peak is observed in the cyclic voltammogram, and As(V) makes the peak potential of copper deposition shift to more negative value, while when As(Ⅲ) exists in the electrolyte, two reduction peaks are observed, and oxidation peak is not observed in the presence of As(V) and As(Ⅲ).The electrode reaction is controlled by both of the electrochemical and concentration polarization.
     The As content in the deposit increases with the decrease of cathodic potential. In the electrolyte with Cu2+of2.5g/L, H2SO4of250g/L and As(V) of10g/L, when the cathode potential is-0.2V vs.SCE, the deposit contains Cu and Cu2O, while the deposit forms at-0.43V vs.SCE contains Cu3As, Cu2O and Cu5As2. When the cathode potential is-0.6V vs.SCE, H2and AsH3are produced. The results show that the copper and arsenic in copper electrolyte contaning As(V) can be separated by multiple stage electrowinning of current density adjustment.
引文
[1]罗劲松.赤峰云铜铜电解净液工序的工艺设计[D].昆明:昆明理工大学,2007.
    [2]邹韶禄.国内铜冶炼企业面临的原料状况技术特征和资源策略[J].世界有色金属,2011(12):4-10.
    [3]杨长华.中国铜资源保障现状与未来发展[J].中国金属通报,2010(36):16-17.
    [4]工信部原材料司.2012年我国有色金属工业运行情况分析及2013年形势展望[EB/OL].北京:中华人民共和国工业和信息化部,2013-02-18.http://www.chinania.org.cn/html/hangyetongji/tongji/2013/0218/11258.html.
    [5]杨长华.2012年中国铜市场分析及2013年展望[R].福建:中国有色金属工业协会,2012.
    [6]姚素平.我国废杂铜冶炼技术进步与展望[J].有色金属工程,2011,1(1):14-17.
    [7]周俊.废杂铜冶炼工艺及发展趋势[J].中固有色冶金,201 0(4):20-26.
    [8]邱竹贤.有色金属冶金学[M].北京:冶金工业出版社,1988.
    [9]陈立华.浅述铜冶炼技术发展方向及趋势[J].有色矿冶,2010,26(5):24-25.
    [10]DAVENPORT W G, KING M J, SCHLESINGER M, et al. Extractive metallurgy of copper[M].Netherlands:Pergamon press,2002.
    [11]ILKHCHI M O, YOOZBASHIZADEH H, SAFARZADEH M S. The effect of additives on anode passivation in electrorefining of copper[J]. Chem Eng Process, 2007,46(8):757-763.
    [12]CARRANZA F, ROMERO R, MAZUELOS A, et al. Biorecovery of copper from converter slags:Slags characterization and exploratory ferric leaching tests[J], Hydrometallurgy,2009,97(1-2):39-45.
    [13]朱祖泽,贺家齐.现代铜冶金学[M].北京:科学出版社,2003.
    [14]揭晓武.铜冶炼系统阳极炉用新型固体还原剂开发研究[D].昆明:昆明理工大学,2007.
    [15]肖纯.铜造锍熔炼工艺的选择及发展方向[J].铜业工程,2006(4):32-36.
    [16]Li Y J, PEREDERIY I, PAPANGELAKIS V G. Cleaning of waste smelter slags and recovery of valuablemetals by pressure oxidative leaching[J]. J Hazard Mater,2008,152(2):607-615.
    [17]王智友.炼铜烟尘湿法处理回收有价金属的新工艺研究[D].昆明:昆明理工大学,2009.
    [18]陈淑萍,伍赠玲,蓝碧波,et al.火法炼铜技术综述[J].铜业工程,2010(106):44-49.
    [19]许并社,李明照.铜冶炼工艺[M].北京:化学工业出版社,2007.
    [20]李卫民.铜吹炼技术的进展[J].云南冶金,2008,37(5):24-28.
    [21]王翠芝.粗铜火法精炼的技术的发展趋势[J].有色矿冶,2005,21(1):27-28,32.
    [22]谭鹏夫,张传福.不同渣型的铜熔炼中冰铜品位对伴生元素分配行为的影响[J].化工冶金,1998,19(2):166-169.
    [23]谭鹏夫,张传福.富氧对铜熔炼中伴生元素行为和能耗的影响[J].中南工业大学学报,1997,28(5):437-439.
    [24]谭鹏夫,张传福.砷、锑、铋、铅和锌在铜闪速熔炼过程中的行为[J].矿冶工程,1997,17(2):53-56.
    [25]张春发.铜的电解精炼工艺综述[J]. Club,2011(5):49-52.
    [26]肖细元,陈同斌,廖晓勇,et al.中国主要含砷矿产资源的区域分布与砷污染问题[J].地理研究,2008,27(1):201-212.
    [27]魏梁鸿,周文琴.砷矿资源开发与环境治理[J].湖南地质,1992,11(3):259-262.
    [28]寇建军,朱昌洛.As2O3湿法提取工艺进展[J].矿产综合利用,2002(1):26-31.
    [29]殷志勇,成海芳,张文彬.浅谈含砷铜矿的砷害治理[J].云南冶金,2006,35(6):21-23.
    [30]WINKEL L, WOCHELE J, LUDWIG C, et al. Decomposition of copper concentrates at high-temperatures:An efficient method to remove volatile impurities[J]. Miner Eng,2008,21(10):731-742.
    [31]JIA Y F, DEMOPOULOS G P. Coprecipitation of arsenate with iron(III) in aqueous sulfate media:Effect of time, lime as base and co-ions on arsenic retention[J]. Water Res,2008,42(3):661-668.
    [32]李诚.铜火冶过程中砷的脱除[J].稀有金属与硬质合金,1993(113):77-79.
    [33]张传福,谭鹏夫,曾德文,et al.砷、锑、铋在铜熔炼中的分子形态[J].中南矿冶学院学报,1994,25(6):706-709.
    [34]RIVEROS G, UTIGARD T A. Disposal of arsenic in copper discharge slags[J]. J Hazard Mater,2000,77(1-3):241-252.
    [35]梁勇,李亮星,廖春发,et al.铜闪速炉烟灰焙烧脱砷研究[J].有色金属(冶炼部分),2011(1):9-11.
    [36]赵思佳.有色冶金工业含砷烟尘处理及利用研究进展[J].湖南有色金属, 2012,28(3):20-24.
    [37]李芝生.铜冶炼过程砷的分布及处理[J].有色金属(冶炼部分),1991(6):13-18.
    [38]鲁根启.云南铜业股份有限公司现流程元素分布调查[D].昆明:昆明理工大学,2000.
    [39]田凯.砷在铜冶炼中的分布及综合利用[C].中国有色金属协会.中国有色金属学会重有色金属冶金学术委员会2000年学术年会.北京:2000:57-59.
    [40]俞信康.闪速炼铜砷资源的综合利用[J].江西有色金属,1995,9(2):34-38.
    [41]王从明.闪速炉熔炼中杂质的分布[J].有色冶炼,1988(2):37-39.
    [42]陈知若.在炼铜过程中次要元素的分布[C].中国有色金属学会重冶学委会.中国首届熔池熔炼技术及装备专题研讨会.昆明:2007:277-294.
    [43]崔涛.高砷脱铜电解液的净化与回用研究[D].长沙:中南大学,2012.
    [44]ROGAC M B, BABIC V, PERGER T M, et al. Conductometric study of ion association of divalent symmetric electrolytes:I. COSO4, MSO4, CuSO4 and ZnSO4 in water[J]. J Mol Liq,2005,118(1-3):111-118.
    [45]李坚,王达健,朱祖泽.铜电解液物理化学性质之一:电解液的密度[J].有色矿冶,2003,19(3):32-36.
    [46]李坚,樊雪平,王达健.铜电解液物理化学性质之二:电解液的粘度[J].有色矿冶,2003,19(4):23-27.
    [47]李坚,王达健,樊雪萍.铜电解液物理化学性质之三:电解液的电导率[J].有色矿冶,2003,19(5):30-33.
    [48]华宏全,张豫.铜电解过程中砷存在形态的研究及其控制实践[J].矿冶,2011,20(1):68-71.
    [49]郑金旺.铜电解精炼过程中砷、锑、铋的危害及脱除方式的进展[J].铜业工程,2002(2):17-20.
    [50]文燕,张源,张胜树.铜电解过程中杂质分配的控制[C].中国有色金属学会.全国铜镍钴生产技术、装备、材料及市场研讨会.北京,2003:93-97.
    [51]陈维东.铜电解精炼中阳极杂质的行为[J].中国有色冶金,1993(4):54-60.
    [52]黄善富.浅析砷锑在铜电解过程中的行为[J].有色冶炼,2002(3):20-23.
    [53]CHEN T T, DUTRIZAC J E. Mineralogical characterization of a copper anode and the anode slimes from the la caridad copper refinery of mexicana de cobre[J]. Metall Mater Trans B,2005,36(2):229-240.
    [54]王中月.高镍、砷、锑阳极铜的电解精炼实践[J].有色金属(冶炼部分),2004(6):19-20,26.
    [55]RIVEROS P A, DUTRIZAC J E, LASTRA R. A study of the ion exchange removal of antimony(Ⅲ) and antimony(Ⅴ) from copper electrolytes[J]. Canadian Metallurgical Quarterly,2008,47(3):307-315.
    [56]梁永宣,陈胜利,郭学益.铜电解液中As. Sb, Bi杂质净化研究进展[J].中国有色冶金,2009(4):69-73.
    [57]任新民,钟忠.精细过滤设备在铜电解精炼中的应用及改进[J].中国有色冶金,2009(2):31-32.
    [58]周文科.S02还原法净化铜电解液工艺研究[D].长沙:中南大学,2011.
    [59]朱国祥,钟占芝.高砷铜阳极电解精炼电铜质量的控制[J].有色金属(冶炼部分),1989(1):4-7.
    [60]DEMA J,刘英杰.砷在铜电解精炼过程中的行为[J].沈冶科技,1990(3):36-42.
    [61]梅光贵,钟云波,钟竹前.硫化沉淀法净化铜废电解液的热力学分析[J].中南工业大学学报,1996,27(1):31-35.
    [62]曹庭礼,郭炳南.氮磷砷分族[M].张青莲.无机化学丛书.北京:科学出版社,1995:369-381.
    [63]彭天照.砷冰铜处理工艺研究[D].昆明:昆明理工大学.
    [64]王季梅,张树春.砷与人体健康[J].环境保护,1989(11):16-17.
    [65]黄戊生,路素云.锑砷钙渣的应用[J].环境保护科学,2003,29(119):36-37.
    [66]彭长宏,唐谟堂.砷污染防治与含砷木材防腐剂的开发应用[J].安全与环境学报,2001,1(4):10-14.
    [67]梁峰.砷污染治理及其资源化的研究[D].长沙:中南大学,2004.
    [68]杨齐.砷的毒害作用及其研究进展[J].医学动物防制,2007,23(1):66-67.
    [69]DALEWSKI F. Removing arsenic from copper smelter gases[J]. Jom-J Min Met Mat S,1999,51(9):24-26.
    [70]彭容秋.重金属冶金学[M].长沙:中南工业大学出版社,1994.
    [71]易克俊.砷在铜冶炼过程的分布及其控制[J].湖南有色金属,2001,17:1-3.
    [72]陈晓东.贵溪冶炼厂As、Sb、Bi的危害及控制措施浅议[J].有色金属(冶炼部分),1996(3):1-5.
    [73]万黎明.化学法净化铜电解液工艺研究[D].长沙:中南大学,2010.
    [74]仇勇海,陈白珍.电积法净化铜电解液技术的比较[J].有色冶炼,2002(3):33-33.
    [75]陈白珍,仇勇海,梅显芝,et al.电积法脱铜脱砷的现状与进展[J].有色金属(冶炼部分),1998(3):29-31.
    [76]褚仁雪.连续脱铜电解研讨[J].有色冶炼,1996(6):46-50.
    [77]钟点益.国外铜电解液净化除砷、锑、铋的方法[J].有色冶炼,1991(5):30-34.
    [78]许卫.铜电解液净化及工业放大实验研究[D].长沙:中南大学,2007.
    [79]吴继烈.连续脱铜脱砷技术[J].有色金属(冶炼部分),1991(1):15-18,21.
    [80]姚素平.诱导法脱砷的工艺与实践[J].有色冶金设计与研究,1994,15(3):18-24.
    [81]丁昆,华宏全.铜电解净液过程中砷的脱除[J].有色冶炼,2003(5):30-31,61.
    [82]毛志琨.铜电解液脱铜及脱杂技术探讨[J].有色冶金设计与研究,2010,31(6):44-47.
    [83]陈白珍,仇勇海,梅显芝,et al.控制阴极电势电积法脱铜砷[J].中国有色金属学报,1997,7(2):39-41.
    [84]仇勇海,陈白珍,梅显芝,et al.控制阴极电势电积法新工艺及其应用[J].中南工业大学学报,1999,30(5):501-504.
    [85]王学文,肖炳瑞,张帆.铜电解液碳酸钡脱铋新工艺[J].中国有色金属学报,2006,16(7):1295-1299.
    [86]钟云波,梅光贵,钟竹前.硫化法脱除铜电解废液中As,Sb,Bi的试验[J].中南工业大学学报,1997,28(4):336-339.
    [87]何万年,何思郏.净化铜电解液中杂质的方法[J].江西有色金属,1996,10(1):38-43.
    [88]贾静宁,金荣涛.利用碳酸盐净化处理铜电解液的实践[J].甘肃有色金属,1997(2):11-14.
    [89]GABAI B, DOS SANTOS N A A, AZEVEDO D C S, et al. Removal of copper electrolyte contaminants by adsorption[J]. Brazilian Journal of Chemical Engineering,1997,14(3):199-208.
    [90]许民才,单承湘,吴国荣,et al.共沉淀法净化铜电解液中砷锑铋的研究[J].合肥工业大学学报(自然科学版),1992,15(S1):134-139.
    [91]NAVARRO P, ALGUACIL F J. Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon[J]. Hydrometallurgy,2002, 66(1-3):101-105.
    [92]王学文,陈启元,龙子平,et al. Sb在铜电解液净化中的应用[J].中国有色金属学报,2002,12(6):1277-1280.
    [93]WANG X W, CHEN Q Y, YIN Z L, et al. Removal of impurities from copper electrolyte with adsorbent containing antimony [J]. Hydrometallurgy,2003, 69(1-3):39-44.
    [94]梁永宣.粗硫酸铜净化除杂及电积法制备铜粉的研究[D].长沙:中南大学,2010.
    [95]NAVARRO P, ALGUACIL F J. Removal of arsenic from copper electrolytes by solvent extraction with tributylphosphate[J]. Canadian Metallurgical Quarterly, 1996,35(2):133-141.
    [96]韩文利,崔秉懿.N1923从铜电解液中萃除铋、锑的分配模型及其工艺参数优化[J].中国有色金属学报,1994,4(1):37-39,49.
    [97]GUPTA B, BEGUM Z. Separation and removal of arsenic from metallurgical solutions using bis(2,4,4-trimethylpentyl)dithiophosphinic acid as extractant[J]. Sep Purif Technol,2008,63(1):77-85.
    [98]NAVARRO P, SIMPSON J, ALGUACIL F J. Removal of antimony(Ⅲ) from copper in sulphuric acid solutions by solvent extraction with lix 1104sm[J]. Hydrometallurgy,1999,53(2):121-131.
    [99]李坚,彭大龙.用溶剂萃取除去铜电解液中砷的研究[J].昆明理工大学学报,1998,23(3):71-77.
    [100]IBERHAN L, WISNIEWSKI M. Extraction of arsenic(Ⅲ) and arsenic(V) with cyanex 925, cyanex 301 and their mixtures[J]. Hydrometallurgy,2002,63(1): 23-30.
    [101]IBERHAN L, WISNIEWSKI M. Removal of arsenic(Ⅲ) and arsenic(V) from sulfuric acid solution by liquid-liquid extraction[J]. J Chem Technol Biot,2003, 78(6):659-665.
    [102]ANIRUDHAN T S, UNNITHAN M R. Arsenic(V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery[J]. Chemosphere,2007,66(1):60-66.
    [103]HOFFMANN J E. The purification of copper refinery electrolyte[J]. Jom-Us, 2004,56(7):30-33.
    [104]WANG S J. Impurity control and removal in copper tankhouse operations [J]. Jom-Us,2004,56(7):34-37.
    [105]WANG X W, CHEN Q Y, YIN Z L, et al. Homogeneous precipitation of As, Sb and Bi impurities in copper electrolyte during electrorefining[J]. Hydrometallurgy,2011,105(3-4):355-358.
    [106]WANG X W, CHEN Q Y, YIN Z L, et al. Identification of arsenato antimonates in copper anode slimes[J]. Hydrometallurgy,2006,84(3-4):211-217.
    [107]ABE S, TAKASAWA Y. Prevention of floating slimes precipitation in copper electrorefining[C]. Hoffmann J E, Bautista R G, Ettel V A, et al. The Electrorefining and Winning of Copper.USA.1987:87-98.
    [108]PETKOVA E N. Mechanisms of floating slime formation and its removal with the help of sulphur dioxide during the electrorefing of anode copper[J]. Hydrometallurgy,1997,46(3):277-286.
    [109]XIAO F X, ZHENG Y J, WANG Y, et al. Novel technology of purification of copper electrolyte[J]. T Nonferr Metal Soc,2007,17(5):1069-1074.
    [110]郑雅杰,王勇,赵攀峰.一种利用含砷废水制备亚砷酸铜或砷酸铜的方法.中国:CN101168451A[P],2008-4-30.
    [111]郑雅杰,肖发新,王勇,et al,亚砷酸铜的制备及应用.中国CN 101108744A[P],2008-1-23.
    [112]史建远,许卫,乐安胜,et al.铜电解液高As自净化工业实践[J].中国有色冶金,2010,39(1):13-16,40.
    [113]郑雅杰,许卫,肖发新,et al.亚砷酸铜净化铜电解液工业实验研究[J].矿冶工程,2008,28(1):51-54.
    [114]ZHENG Y J, XIAO F X, WANG Y, et al. Industrial experiment of copper electrolyte purification by copper arsenite[J]. J Cent South Univ T,2008,15(2): 204-208.
    [115]李强,辜敏,鲜晓红.铜电结晶的研究进展[J].化学进展,2008,20(4):483-490.
    [116]VARVARA S, MURESAN L, POPESCU I C, et al. Kinetics of copper electrodeposition in the presence of triethyl-benzyl ammonium chloride[J]. J Appl Electrochem,2003,33(8):685-692.
    [117]STANKOVIC Z D, CVETKOVSKI V, VUKOVIC M. The effect of antimony presence in anodic copper on kinetics and mechanism of anodic dissolution and cathodic deposition of copper[J]. J Min Metall B,2008,44(1):107-114.
    [118]MAJIDI M R, ASADPOUR-ZEYNALI K, HAFEZI B. Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode[J]. Electrochim Acta,2009,54(3):1119-1126.
    [119]VARVARA S, MURESAN L, POPESCU I C, et al. Comparative study of copper electrodeposition from sulphate acidic electrolytes in the presence of IT-85 and of its components[J]. J Appl Electrochem,2005,35(1):69-76.
    [120]VARVARA S, MURESAN L, POPESCU I C, et al. Copper electrodeposition from sulfate electrolytes in the presence of hydroxyethylated 2-butyne-1, 4-diol[J]. Hydrometallurgy,2004,75(1-4):147-156.
    [121]SHAO W, PATTANAIK G, ZANGARI G. Electrochemical nucleation and growth of copper from acidic sulfate electrolytes on n-si(001)[J]. J Electrochem Soc,2007,154(7):D339-D345.
    [122]BARRADAS R G, GIRGIS M. Cathodic copper deposition at 65℃ in the absence and presence of Bi3+and Sb3+additives in acidified CUSO4 aqueous solutions[J]. Metallurgical and materials transactions B,1991,22(5):575-581.
    [123]HISKEY J B, MAEDA Y. A study of copper deposition in the presence of group-15 elements by cyclic voltammetry and auger-electron spectroscopy[J]. J Appl Electrochem,2003,33(5):393-401.
    [124]DARKO G, BATRIC P. Electrodeposition of copper:The nucleation mechanisms[J]. Electrochim Acta,2002,47(18):2901-2912.
    [125]RADISIC A, WEST A C, SEARSON P C. Influence of additives on nucleation and growth of copper on n-si(111) from acidic sulfate solutions[J]. J Electrochem Soc,2002,149(2):C94-C99.
    [126]赵夕,徐强,丁飞,et al.石墨基体上电沉积铜成核机理的研究[J].电镀与精饰,2010,32(10):1-4.
    [127]邓文,刘昭林,项民,et al.酸性镀铜体系的交流阻抗研究[J].电化学,1998,4(2):152-158.
    [128]安茂忠.电镀理论与技术[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [129]肖发新,郑雅杰,简洪生,et al.砷、锑和铋对铜电沉积及阳极氧化机理的影响[J].中南大学学报(自然科学版),2009,40(3):575-580.
    [130]陈少华,鲁道荣.As3+浓度对阴极铜稳态极化曲线平衡电位的影响[J].安徽化工,2005(6):39-40.
    [131]鲁道荣,李学良,林建新.砷锑铋对阴极铜沉积过程的影响[J].应用化学,1998(2):56-59.
    [132]鲁道荣,林建新.As5+、Sb3+、Bi3+对阴极铜沉积反应动力学的影响[J].合肥工业大学学报(自然科学版),1997,20(5):51-56.
    [133]鲁道荣.杂质在铜电解精炼中的电化学行为[J].有色金属,2002,54(4):51-52,62.
    [134]鲁道荣,林建新.铋对铜电解精炼中阴极铜沉积过程的影响[J].合肥工业大学学报(自然科学版),1996,19(S1):22-25.
    [135]肖发新,郑雅杰,简洪生,et a1.砷、锑和铋对铜电积及阳极氧化机理的影响[J].中南大学学报(自然科学版),2009,40(3):575-580.
    [136]刑卫国.二次脱铜过程中砷行为分析和工艺控制[J].有色金属,1999(3):1-6.
    [137]DEWALENS J, HEERMAN L, SIMAEYS L V. The codeposition of copper and arsenic from H2SO4-CuSO4-AS2O3 solutions[J]. J. Electrochem. Soc: Electrochemical science and technology,1975,122(4):477-482.
    [138]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社,2006.
    [139]游玉萍,岳伟,张小琴,et al.砷铜合金中铜的电解测定[J].南方金属,2008(165):12-13.
    [140]岳伟,游玉萍,张小琴,et al.用过氧化氢控制电解测定砷铜合金中的铜[J].材料研究与应用,2009,3(2):150-152.
    [141]NORWITZ G. Electrolytic separation of copper from arsenic [J]. Analyst, 1951(76):236-237.
    [142]XIAO F X, ZHENG Y J, WANG Y, et al. Purification mechanism of copper electrolyte by As(III) [J]. T Nonferr Metal Soc,2008,18(5):1275-1279.
    [143]郑雅杰,赵攀峰,王勇,et al.高电流密度电解对阴极铜质量的影响[J].中南大学学报(自然科学版),2009,40(2):311-316.
    [144]J A迪安主编.兰氏化学手册[M].北京:科学出版社,1991.
    [145]LATIMER W M, The oxidation states of the elements and their potentials in aqueous solution[M].New York Prerceton Hall,1952.
    [146]武汉大学等五校编.分析化学[M].北京:人民教育出版社,1978.
    [147]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M].长沙:中南工业大学出版社,1986.
    [148]LI N, LAWSON F. Kinetics of heterogeneous reduction of arsenic(V) to arsenic (III) with sulfur dioxide[J]. Hydrometallurgy,1989,22(3):339-351.
    [149]KRISSMANN J, SIDDIQI M A, LUCAS K. Thermodynamics of SO2 absorption in aqueous solutions[J]. Chemical Engineering and Technology 1998,21(8):641-644.
    [150]PALMER B R, NAMI F, FUERSTENAU M C. Reduction of arsenic acid with aqueous sulfur dioxide[J]. Metallurgical Transactions B,1976,7(3):385-390.
    [151]郑雅杰,周文科,彭映林,et al.砷锑价态对铜电解液中砷锑铋脱除率的影响[J].中南大学学报(自然科学版),2012,43(3):821-826.
    [152]陈永康.铜电解液还原净化脱砷工艺研究[J].有色金属:冶炼部分,1998(1):8-12.
    [153]王钧扬,黄虹.在硫酸介质中处理含砷物料[J].中国物资再生,1999(3): 15-16.
    [154]李洪桂.冶金原理[M].北京:科学出版社,2005.
    [155]张传福,谭鹏夫.第VA族元素物理化学数据手册[M].长沙:中南大学出版社,1995.
    [156]KTAS S. A novel purification method for copper sulfate using ethanol[J]. Hydrometallurgy,2011,106(3/4):175-178.
    [157]夏兆泉,陈礼运.试剂硫酸铜生产中除铁工艺的研究[J].湖南冶金,1997(4):14-15,32.
    [158]刘本发,向兴凯.冶炼硫酸铜由工业级提纯为饲料级的工艺研究[J].湖南冶金,1997(4):19-20,36.
    [159]杨久义,刘昆鹏,王赫,et al.饲料级硫酸铜生产新工艺的研究[J].河北工业科技,2002,19(6):28-31,47.
    [160]吴西.用工业硫酸铜制取高纯硫酸铜的试验研究[J].湿法冶金,1999(3):44-46.
    [161]龚竹青,李景升,杨喜云.硫酸铜脱除砷、铁的工艺研究[J].中南工业大学学报,2000,31(3):222-224.
    [162]郑雅杰,罗园,王勇.采用含砷废水沉淀还原法制备三氧化二砷[J].中南大学学报(自然科学版),2009,40(1):48-54.
    [163]郑雅杰,刘万宇,白猛,et al.采用硫化砷渣制备三氧化二砷工艺[J].中南大学学报(自然科学版),2008,39(6):1157-1163.
    [164]CHOONG T S Y, CHUAH T G, ROBIAH Y, et al. Arsenic toxicity, health hazards and removal techniques from water:An overview[J]. Desalination, 2007,217(1-3):139-166.
    [165]KARTINEN E O, MARTIN C J. An overview of arsenic removal processes[J]. Desalination,1995,103(1/2):79-88.
    [166]王阗,史建远,郑雅杰.冶炼硫酸铜氧化法除铁砷实验研究[J].金属世界,2009(5):41-47.
    [167]HUG S J, LEUPIN O. Iron-catalyzed oxidation of arsenic(Ⅲ) by oxygen and by hydrogen peroxide:pH-dependent formation of oxidants in the fenton reaction[J]. Environ Sci Technol,2003,37(12):2734-2742.
    [168]王阗.冶炼硫酸铜制备电镀级硫酸铜研究[D].长沙:中南大学,2009.
    [169]GHIMIRE K N, INOUE K, YAMAGUCHI H, et al. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste[J]. Water Res,2003,37(20):4945-4953.
    [170]XIAO F X, ZHENG Y J, WANG Y, et al. Preparation of copper arsenite and its application in purification of copper electrolyte[J]. T Nonferr Metal Soc,2008, 18(2):474-479.
    [171]WANG X W, CHEN Q Y, YIN Z L, et al. The role of arsenic in the homogeneous precipitation of As, Sb and Bi impurities in copper electrolyte [J]. Hydrometallurgy,2011,108(3-4):199-204.
    [172]ZHENG Y J, ZHOU W K, PENG Y L, et al. Effect of valences of arsenic, antimony on removal rates of arsenic, antimony and bismuth in copper electrolyte[J]. Journal of Central South University(Science and Technology), 2012,43(3):821-826.
    [173]LOSILLA E R, SALVAD M A, ARANDA M A G, et al. Layered acid arsenates a-m(HAsO4)3·H2O(m=Ti, Sn, Pb) synthesis optimization and crystal structures[J]. Journal of Molecular Structure,1998(470):93-104.
    [174]NAILI H, MHIRI T. X-ray structural, vibrational and calorimetric studies of a new rubidium pentahydrogen arsenate RbH5(AsO4)2[J]. J Alloy Compd,2001, 315(1-2):143-149.
    [175]QURESHI M, KUMAR V. Synthesis and IR, X-ray and ion-exchange studies of some amorphous and semicrystalline phases of titanium antimonate separation of VO2+ from various metal ions[J]. Journal of Chromatograhy A, 1971,62(3):431-438.
    [176]COLOMBAN P, DOREMIEUX-MORIN C, PIFFARD Y, et al. Equilibrium between protonic species and conductivity mechanism in antimonic acid, H2Sb4O11·nH2O [J]. Journal of Molecular Structure,1989,213:83-96.
    [177]MYNENI S C B, TRAINA S J, LOGAN T J, et al. Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces[J]. Geochimica et Cosmochimica Acta,1998,62(19-20):3285-3300.
    [178]钟耀东,强颖怀,赵新兵.重金属砷的前期处理实验[J].江苏环境科技,2007,20(5):6-9.
    [179]VASVDEVAN S, MOHAN S, SOZHAN G, et al. Studies on the oxidation of As(III) to As(V) by in-situ generated hypochlorite[J]. Ind Eng Chem Res,2006, 45(21):7729-7732.
    [180]HUG S J, CANONICA L, WEGELIN M, et al. Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters[J]. Environ Sci Technol, 2001,35(10):2114-2121.
    [181]PIROGOV B Y, ZELINSKY A G. Numerical simulation of electrode process in Cu/CuSO4+H2SO4 system[J]. Electrochim Acta,2004,49(20):3283-3292.
    [182]占寿祥,郑雅杰.硫铁矿烧渣酸浸反应动力学研究[J].化学工程,2006,34(11):36-39.
    [183]DENBIGH K G, TURNER J C R.Chemical reactor theory:An introduction [M].Cambridge Cambridge university press,1984.
    [184]张平民.工科大学化学[M].长沙:湖南教育出版社,2002.
    [185]TURNER D R, JOHNSON G R. The effect of some addition agents on the kinetics of copper electrodeposition from a sulfate solution[J]. J Electrochem Soc,1962,109(9):798-804.
    [186]董云会,许珂敬,刘曙光,et al.硫脲在铜阴极电沉积中的作用[J].中国有色金属学报,1999,9(2):370-376.
    [187]王文祥,刘志宏,章诚.影响电解铜质量因素分析[J].有色矿冶,2001,17(5):25-28.
    [188]彭楚峰,何蔼平,刘爱琴.添加剂对阴极铜结晶的影响研究[J].昆明理工大学学报,2002,27(6):36-40.
    [189]SHIZE J, GHALI E. Effect of thiourea on the copper cathode polarization behavior in acidic copper sulfate at 65℃[J]. Metallurgical and Materials Transactions B,2001,32(5):887-893.
    [190]马朝庆.添加剂在铜电解精炼中的作用及应用[J].矿冶工程,1999,19(4):46-48.
    [191]陈文汨,龚竹青,赵宏刚,et al.铜电解精炼阴极表面长粒子的原因及粒子的消除[J].矿冶工程,2001,21(2):55-57.
    [192]PETKOVA E N. Microscopic examination of copper electrorefining slimes [J]. Hydrometallurgy,1990,24(3):351-359.
    [193]王春海,唐永革.浅谈铜冶炼过程中影响阴极铜质量的因素[J].新疆有色金属,2009(1):42-43.
    [194]武战强.侯马冶炼厂高纯阴极铜质量影响因素分析[J].湿法冶金,2010,29(4):285-288.
    [195]朱福良,张峰,樊丁,et al.铜电解精炼工艺[J].兰州理工大学学报,2007,33(2):9-12.
    [196]EREK C. PRICE, DAVENPORT W G. Densities, electrical conductivities and viscosities of CuSO4/H2SO4 solutions in the range of modern electrorefining and electro winning electrolytes [J]. Metallurgical and Materials Transactions B, 1980,11(1):159-163.
    [197]龚竹青.理论电化学导论[M].长沙:中南工业大学教材科,1987.
    [198]ANSEU-NJIKI C P, ALONZO V, BARTAK D, et al. Electrolytic arsenic removal for recycling of washing solutions in a remediation process of CCA-treated wood[J]. Sci Total Environ,2007,384(1-3):48-54.
    [199]SPEIGHT J G. Lange's handbook of chemistry [M]:McGraw-Hill Professional, 2005.
    [200]程彤.降低阴极铜电单耗生产实践[J].铜业工程,2010(4):50-51.
    [201]LINDROOS L, VIRTANEN H. Method for the removal of arsenic from sulfuric acid solution. US:6495024B1[P],2002-12-17.
    [202]BASHA C A, SELVI S J, RAMASAMY E, et al. Removal of arsenic and sulphate from the copper smelting industrial effluent[J]. Chem Eng J,2008, 141(1-3):89-98.
    [203]PANDA B, DAS S C. Electrowinning of copper from sulfate electrolyte in presence of sulfurous acid[J]. Hydrometallurgy,2001,59(1):55-67.
    [204]仇勇海,唐仁衡,陈白珍.砷化氢析出电势的探讨[J].中国有色金属学报,2000,10(1):101-104.
    [205]郑雅杰,崔涛,彭映林.二段脱铜液还原结晶法脱砷新工艺[J].中国有色金属学报,2012,22(7):2103-2108.
    [206]刘昌勇.贵溪冶炼厂亚砷酸生产工艺[J].有色冶炼,1998(2):8-10.
    [207]RAMANA G R., JAMES L H, QUENEAU B. Arsenic metallurgy fundamentals and applications[M].New York The Metallurgical Society,1987.
    [208]舒余德,陈白珍.冶金电化学研究方法[M].长沙:中南工业大学出版社,1990.
    [209]李春华.三乙醇胺和EDTA-2Na双配合体系快速化学镀铜研究[D].长沙:中南大学,2007.
    [210]刘永辉.电化学测试技术[M].北京:北京航空学院出版社,1987.
    [211]舒余德.电化学研究方法原理[M].长沙:中南工业大学教材科,1987.
    [212]董明月.少量Ti对AB-5型储氢合金性能的影响[D].广州:华南理工大学,2009.
    [213]田昭武.电化学研究方法[M].北京:科学出版社,1984.
    [214]乐红春.中和渣中碲的提取及电解制备高纯碲研究[D].长沙:中南大学,2012.
    [215]周伟航.电化学测量[M].上海:上海科学技术出版社,1985.
    [216]柳厚田,徐品弟等译.电化学中的仪器方法[M].上海:复旦大学出版社,1992.
    [217]HINATSU J T, FOULKES F R. Electrochemical kinetic parameters for the cathodic deposition of copper from dilute aqueous acid sulfate solutions[J]. The Canadian jornal of chemical engineering,1991,69(2):571-577.
    [218]杨余芳,龚竹青,李强国.三价铬的电化学沉积[J].中南大学学报(自然科学版),2008,39(1):113-117.
    [219]贺燕萍.基于电沉积法制备镍纳米网状结构薄膜材料的研究[D].上海:上海交通大学,2010.
    [220]钟琴.添加剂MPS. PEG、Cl-对铜电沉积的影响研究[D].重庆:重庆大学,2010.
    [221]A J巴德,L R福克纳著,谷林英等译.电化学方法原理及应用[M].北京:化学工业出版社,1986.
    [222]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [223]钟琴,辜敏,李强.添加剂3-巯基-1-丙烷磺酸钠对铜电沉积影响的研究[J].化学学报,2010,68(17):1707-1712.
    [224]JIA Z, SIMM A O, DAI X, et al. The electrochemical reaction mechanism of arsenic deposition on an Au(111) electrode[J]. J Electroanal Chem,2006, 587(2):247-253.
    [225]BEJAN D, BUNCE N J. Electrochemical reduction of As(Ⅲ) and As(V) in acidic and basic solutions[J]. J Appl Electrochem,2003,33(6):483-489.
    [226]秦毅红,赵瑞荣,黎书华.As(Ⅲ)在酸性氯化物溶液中的阴极极化行为[J].中南工业大学学报,1995,26(6):821-825.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700