用户名: 密码: 验证码:
电弧炉飞灰和垃圾焚烧灰及剩余活性污泥的部分资源化处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要对电弧炉飞灰,垃圾焚烧灰及污水厂剩余活性污泥开展部分资源化技术方法的研究,以期为进一步实现对这三种固体废物的资源化处理提供一定的研究基础。
     首先,开展了电弧炉飞灰的资源化研究。本研究阶段主要利用电炉熔炼电弧炉飞灰和玻璃粉末回收金属材料并降解其含有的高浓度二恶英(PCDD/Fs)和多溴联苯醚(PBDEs)。从整个装置系统出发,研究了PCDD/Fs和PBDEs在电弧炉飞灰、玻璃材料、熔渣、金属铸块、冷却系统,过滤装置和聚氨酯泡沫塑料套筒系统中的含量。同时分析了PCDD/Fs和PBDEs各种同类物的特性,并基于物质平衡研究了PCDD/Fs的生成,降解和最终归宿。实验结果表明,电弧炉飞灰中PCDD/Fs的国际毒性当量为1414ngI-TEQ/kg,超出了现有的相关土地的排放标准。电炉飞灰经1450℃高温熔炼处理后能回收其所含的金属材料,且PCDD/Fs在所有固体产物中和经过安装尾气处理系统后尾气中的浓度均低于相关的排放标准值。另外,电弧炉飞灰中PBDEs含量为50128ng/kg,经1450℃热处理后,固体产物中PBDEs的含量低于相关背景土壤中的含量,而最终尾气所排放的浓度也都低于其它冶金行业烟囱所排放的浓度。同时实验得出PCDD/Fs和PBDEs都能在实验冷凝系统的管壁中通过de novo主导方式重新合成。通过Pearson相关系数分析结果表明,logPBDEs/(logPCDD/Fs)比值能够用来评价烟囱中同时排放PBDEs和PCDD/Fs两种污染物相互之间的变化关系。因此,实验所设计的利用电炉熔炼电弧炉飞灰和玻璃粉的研究方法,不但能够很好的降解含氯/溴量高的PCDD/Fs和PBDEs同类物,同时也能够降解PCDD/Fs和PBDEs的碳环结构并回收了电弧飞灰中的金属材料。
     其次,开展了垃圾焚烧灰主要特性的研究。结果表明,华南地区垃圾焚烧飞灰主要质量分布的粒径范围小于0.28mm中,而底灰的主要质量分布在当其粒径大于0.28mm中。通过XRF和XRD分析不同粒径范围下的飞灰和底灰的化合物组成成分和晶体特征,得出飞灰中含有的主要物质同其它地区产生的飞灰和底灰基本相同。经检测得出不同粒径飞灰和底灰中重金属元素Cd, Cr, Cu, Pb和Zn超出了土壤标准GB15618-1995中三类土壤中所规定的值。同时得出其十六种PAHs同类物的总量在不同粒径底灰的含量范围为43.42~247.14ng/g,该含量与欧洲一些国家焚烧底灰中的含量基本相同,但低于中国一些地区焚烧底灰中的含量。通过对不同粒径范围的飞灰和底灰的毒性浸出实验,得出当用蒸馏水作为浸提剂时,Pb元素超过了标准GB5085.3-2007中所规定的值,而当用2#溶液作为浸提剂时,Cd元素则超过了该标准中所规定的值,而所有粒径范围的底灰的重金属浓度都低于该标准所规定的值。因此,建议可将焚烧底灰适当进行资源化利用,但需要进一步进行环境评估和监测。
     另外,利用城市垃圾焚烧飞灰对染料的吸附实验结果表明,粒径小于0.076mm的飞灰对亚甲基蓝的最大吸附量为0.692mg/g,比发电厂所产生的粉煤灰的吸附能力要低。当用0.5mol/L乙酸溶液以液固比值分别为4,6和8处理飞灰后,得出的飞灰样品比原灰对染料的吸附能力得到很大的提升。同时,该样品在对亚甲基蓝染料吸附后混合液中重金属元素Pb, Cr和Cd浓度都低于毒性浸出标准GB5085.3-2007。飞灰对亚甲基蓝染料的吸附符合Langmuir和Freundlich等温吸附模型,动力学模型则符合假二级动力学吸附模型。此外,分别对用蒸馏水和酸溶液处理后的飞灰样品的BET比表面积,XRD,SEM及相应EDS,FT-IR图谱分析研究证明,经乙酸处理后飞灰的微孔数增多,且飞灰中大部分可溶性碱性物质都被溶解于溶液中,从而提高了其对亚甲基蓝染料的去除效率。
     通过对两座垃圾焚烧厂不同粒径的焚烧底灰中PBDEs的含量及其毒性浸出的研究,发现含有工业上常用的PBDEs同类物的垃圾在焚烧过程中有部分PBDEs化合物未被完全降解而直接存留在底灰中。PBDEs主要分布在底灰中的粒径范围为0.25~1.0mm,且趋向于分布在粒径较大的底灰里面。此外,底灰中PBDEs的毒性浸出浓度范围为0.684~18.1ng/l,其百分浸出率是电视机外壳生产过程中所用的原料和加入PBDEs同类物后的成品的5倍以上,因而在利用垃圾焚烧厂焚烧底灰作为资源化材料时必须慎重考虑可能会导致PBDEs的渗出而造成相应的环境问题,建议将底灰进行粒径分类后资源化利用。
     最后,开展了市政活性污泥的资源化利用研究,实验将干污泥以不同百分含量的方式掺入到水泥生产过程的生料中,从而利用水泥窑煅烧熟料的过程来达到完全处理剩余活性污泥的目的。通过对水泥熟料,水泥凝结时间,水泥抗压抗折强度,水泥XRD,SEM的表征测定及毒性浸出实验得出:XRD图谱显示所有熟料中的主要物质是C3S, C_2S,C3A和C4AF,熟料中还发现了存在物质形式为Ca54MgAl2Si16O90的晶体相。同时,熟料中C_2S (α-C_2S或β-C_2S)晶相随着干污泥掺入量的增加而增加。通过SEM测定得出,当干污泥的掺入量达到15%时,熟料中的微观结构上出现了一定量的微孔特征,说明干污泥的掺入导致了熟料的微相结构发生了变化。另外,干污泥的掺入导致了所得水泥产品的的初凝和终凝时间的增加,并降低水泥砂胶的早期抗折强度且随着干污泥掺入量的增加而逐渐降低,但对水泥抗压强度的影响不大。这是由于经煅烧后所得熟料中C_2S(α-C_2S或β-C_2S)晶相含量的增加,从而降低了水泥的水化速度。并且C_2S的含量随着干污泥掺入量的增加而增加,从而水化速度降低程度也就越大,初期强度降低也就越大。熟料中金属元素Ti, Ba, Zn, Cr, Cu, Ni和Pb的含量随着干污泥掺入量的增加而增加,而Al, Fe和Mn则略显降低。而这些元素含量的变化可能与水泥的水化速度和熟料煅烧过程中晶体的形成变化有关。通过毒性浸出实验得出所有熟料中重金属的浸出浓度都低于国家标准GB5085.3-2007中所规定的值。
In this study, several treatment methods on the recycling of electric arc furnace (EAF) flyash,municipal solid waste incineration(MSWI)ash and sewage sludge were carried out basedon the disposal and reuse of those waste solids.
     Firstly, thermal treatment equipment was employed to treat the EAF fly ash. ThePCDD/F and PBDEs contents/concentrations in the EAF fly ash, cullet, slag, ingot, coolingunit, filter and PUF cartridge were all determined. The congener profiles were then derivedand analyzed, while the fate of the PCCD/Fs and PBDEs was discussed based on massbalance calculations. The results showed that the total PCDD/F I-TEQ in the EAF fly ash was1414ng I-TEQ/kg, revealing that it exceeded the soil pollution standard (1000ng I-TEQ/kg).After treatment of EAF fly ash at1450°C, the total contents of PCDD/Fs and I-TEQ in theEAF fly ash can be effectively reduced and the metal contents were sucessful to be recoveredas the ingot. The PCDD/Fs I-TEQ in the emission was lower than the value of relativeemission standards after the emission was treated with the air pollution control devices(APCDs). Moreover, the total PBDE content in EAF fly ash was50128ng/kg. After thethermal treatment at1450°C, the amount of PBDEs in EAF fly could significantly reduce andthe PBDEs existed in the slag and ingot also were less than in the natural ground soil. Thetotal PBDE concentration in the flue gas was much lower than the content in all the otherplants when it was installed the APCDs. In addition, the reformation of PCDD/F and PBDEcongeners was found in the cooling unit through de novo synthesis and precursorcondensation. The results of the mass ratio and Pearson correlation analyses suggested thatthe ratio of log PBDEs/(log PCDD/Fs) could be used to evaluate the emissions from one tothe other (PCDD/Fs and PBDEs) from the emission sources. Therefore, the thermal treatmentmethod presented in this work not only enhanced the dechlorination/debromination of thehigh-chlorinated/brominated congeners, but also decomposed the aromatic rings of PCDD/Fsand PBDEs. But most of all, it recovered the metal from the EAF fly ash.
     In addition, the characteristics of the MSWI fly ash and bottom ash which had beenproduced from the incinerator located in South China were investigated. The results showedthat the size distributions of the highest particle mass content in the fly ash was located at theparticle size below0.28mm, while that in the bottom ash was located at the particle sizelarger than0.28mm. The main components and its characteriation of the MSWI fly ash andbottom ash were detected by XRD and XRF. The results showed that main components andcrystal phases of them were similar to those of other areas of China and abroad. The contents of Cd, Cr, Cu, Pb and Zn in the MSWI fly ash and bottom ash exceeded the regulatorythreshold value of the Ⅲ kind soil in accordance with GB15618-1995. The total contents ofPAHs in different particle sizes of bottom ash had a range of43.42-247.14ng/g, revealing thatit was similar to those in the European regional. However, it was lower than some areas ofChina. The leaching concentrations of Pb was exceeded the regulatory threshold value inChina which was listed in accordance with GB5085.3-2007when it used distilled water asleaching agent, while the leaching concentrations of Cd was exceeded the regulatory thresholdvalue when it used2#solution as leaching agent. Moreover, the leaching concentrations of allthe heavy metals in the bottom ash were lower than the regulatory threshold criteria values inChina (GB5085.3-2007) when it used distilled water and2#solution as leaching agents.Therefore, we recommend that the bottom ash can be reutilization as construction material,but its the environmental safety and influences need to be further evaluated.
     Moreover, the evaluation and test of adsorption dye from aqueous solutions by theoriginal and modified MSWI fly ash were investigated. The fly ash was used to remove theMethylene Blue from aqueous solutions. The maximum amount of MB on to the original flyash was0.692mg/g when their the particle size of the was below0.076mm, which showedthat it lower than those of using coal fly ash as adsorbent for the removal of MB. Moreover, itcould be found that the Pb content in the fly ash could be completely removed and itsadsorption capacity could be obvious improved when the fky ash was treated with a0.5mol/Lacetic acid solution at the L/S ratios of4,6and8. The concentrations of Pb, Cr and Cd in theMB solutions after adsorption processes were below the regulatory threshold values in Chinawhich were listed in accordance with GB5085.3-2007. In addition, the adsorption isothermdata were well fitted by both Langmuir and Freundlich models, and the seconded-orderkinetic model perfectly fitted for the MSWI fly ash systems. According to the results of BET,XRD, SEM-EDS and FT-IR, it revealed that the BET surface area of acetic acid solutiontreatment fly ash was four times than that of original fly ash. This was due to the impurities insurface of original fly ash could be removed by acetic acid solutions and formed the smallerpores, leading to the increasing of BET surface and increase the dye removal percentage.
     The leaching characteristics and particle size distributions of polybrominated diphenylethers (PBDEs) in the bottom ash of two municipal solid waste incinerators (MSWIs A and B)were measured and discussed. The results showed that industrial waste in the municipal wastecontained commercial PBDE mixtures and they were not completely destroyed during theincineration process. The size distribution of the PBDE content in the bottom ash of bothMSWIs was mainly in the range of0.25to1.0mm, with the larger particles predominating. Moreover, the PBDE concentrations in the leachate for MSWI A and B ranged from0.684to1.23ng/l. The mean normalized leaching ratios of the individual PBDE congeners in thebottom ash in MSWIs A and B were5times more than the levels found in the leaching test forone raw plastic material (ND-HIPS) and three different TV housing samples. Therefore, thepotential leaching of PBDEs to the around during reutilization of bottom ash from MSWIsmust be carefully considered. We suggest that the bottom ash may be reutilization asconstruction material with different particle sizes.
     Finally, the effects of using dried sewage sludge as additive on cement property in theprocess of clinker burning were investigated in this part. The results indicated that the majorcomponents in the eco-cement clinkers were similar to those in ordinary Portland cement. Theflexural and compressive strength and setting time of eco-cement pastes, scanning electronmicroscope (SEM) micrographs, XRD characterization analysis, heavy metal leachability andchanges of element content of eco-cement clinkers are also investigated. The X-ray diffractionpatterns of all the clinkers showed that the major components present in the eco-cementclinkers were C3S, C2S, C3A, C4AF and that the phase formation of Ca54MgAl2Si16O90wasidentified in all the clinkers. The C2S (α-C2S or β-C2S) phase formation and peaks increasedwith increases in sewage sludge. Investigations by SEM gave evidence of the C2S (α-C2S orβ-C2S) phase formation increasing with increases in sewage sludge content while the C3Sstructures decreased. Particularly, the microstructure of the mixture in the clinker containing15.0%sewage sludge was significantly different in that it displayed a larger amount of poredistribution. Moreover, all the eco-cement pastes had both delayed initial setting times andfinal setting times. The early flexural strengths of all the eco-cement pastes were lower thanthat of the plain paste, whereas their compressive strengths only were a little lower than theplain paste. The more sewage sludge that was added to the raw meals, the lower the flexuralstrengths of the eco-cement pastes. However, there was no significant effect on all thestrengths at later curing ages. This might be primarily attributed to the increased amounts ofC2S in the eco-clinkers and the minor elements carried from the sewage sludge. In addition,the concentrations of Ti, Ba, Zn, Cr, Cu, Ni and Pb in the clinkers increased with the sewagesludge addition into the raw meals, while Mg, Sr obviously decreased, and Al, Fe, Mn slightlydecreased. Finally, the leaching concentrations of all types of eco-cement clinkers met thestandard of current Chinese regulatory thresholds.
引文
[1] Liberti L., Notarnicola M., Primerano R., et al. Air pollution from a large steel factory:Polycyclic aromatic hydrocarbon emissions from coke-oven batteries [J]. J. Air. Waste.Manage.,2006,56(3):255-260.
    [2] Yang H. H., Lai S. O., Hsieh L. T., et al. Profiles of PAH emission from steel and iron industries[J]. Chemosphere,2002,48(10):1061-1074.
    [3] Bajpai M. K., Gupta I. P., Kumar P., et al., Slit burner for use in sintering plants of steel industry[P], Steel Authority India Ltd Res&Dev Cent:2/DEL/1997A,2009.
    [4] Anderson D. R., Fisher R.. Sources of dioxins in the United Kingdom: the steel industry andother sources [J]. Chemosphere,2002,46(3):371-381.
    [5] Wang L. C., Lee W. J., Tsai P. J., et al. Emissions of polychlorinated dibenzo-p-dioxins anddibenzofurans from stack flue gases of sinter plants [J]. Chemosphere,2003,50(9):1123-1129.
    [6] Wang T. S., Anderson D. R., Thompson D., et al. Studies into the formation of dioxins in thesintering process used in the iron and steel industry.1. Characterisation of isomer profiles inparticulate and gaseous emissions [J]. Chemosphere,2003,51(7):585-594.
    [7] Aries E., Anderson D. R., Ordsmith N., et al. Development and validation of a method foranalysis of "dioxin-like" PCBs in environmental samples from the steel industry [J].Chemosphere,2004,54(1):23-31.
    [8] Quass U., Fermann M. W., Broker G. Steps towards a European dioxin emission inventory [J].Chemosphere,2000,40(9-11):1125-1129.
    [9] Alcock R. E., Gemmill R., Jones K. C. Improvements to the UK PCDD/F and PCB atmosphericemission inventory following an emissions measurement programme [J]. Chemosphere,1999,38(4):759-770.
    [10] Japan Ministry of the Environment, The environmental monitoring report on the persistentorganic pollutants (POPs) in Japan [R]. Japan,2002:40-50.
    [11] Cieplik M. K., De Jong V., Bozovic J., et al. Formation of dioxins from combustionmicropollutants over MSWI fly ash [J]. Environ. Sci. Technol.,2006,40(4):1263-1269.
    [12] Shih T. S., Lee W. J., Shih M., et al. Exposure and health-risk assessment of polychlorinateddibenzo-p-dioxins and dibenzofurans (PCDD/Fs) for sinter plant workers [J]. Environ. Int.,2008,34(1):102-107.
    [13] Shih T. S., Shih M., Lee W. J., et al. Particle size distributions and health-related exposures ofpolychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of sinter plant workers [J].Chemosphere,2009,74(11):1463-1470.
    [14] Odabasi M., Bayram A., Elbir T., et al. Electric Arc Furnaces for Steel-Making: Hot Spots forPersistent Organic Pollutants [J]. Environ. Sci. Technol.,2009,43(14):5205-5211.
    [15] Alcock R. E., Sweetman A. J., Prevedouros K., et al. Understanding levels and trends ofBDE-47in the UK and North America: an assessment of principal reservoirs and sourceinputs [J]. Environ. Int.,2003,29(6):691-698.
    [16]陆勇,田洪海,周志广,等.电弧炉炼钢过程中二英类的排放浓度和同类物分布[J].环境科学研究,2009,22(3):304-308.
    [17] Ward D. B., Goh Y. R., Clarkson P. J., et al. A novel energy-efficient process utilizingregenerative burners for the detoxification of fly ash [J]. Process. Saf. Environ.,2002,80(6):317-326.
    [18] Kim S.C., Na J.G., Chose S.H., et al. PCDDs/PCDFs Emission from Nonferrous MetalIndustry [J]. Organohalog. Compd.,2003,63:77-80.
    [19] Gass H. C., Charles W., Wolfgang S., et al. Emission after Failure in Activated CarbonInjection at Steel Plant [J]. Organohalog. Compd.,2005,67:2265-2267.
    [20] Li H. W., Wu Y. L., Lee W. J., et al. Fate of polychlorinated dibenzo-p-dioxins anddibenzofurans in a fly ash treatment plant [J]. J. Air. Waste. Manage.,2007,57(9):1024-1031.
    [21] Lahl U. Sintering plants of steel industry: the most important thermical PCDD/F sourceinindustrialized regions [J]. Organohalog. Compd.,1993,11:311-314.
    [22] Lahl U. Sintering Plants of Steel-Industry-PCDD/F Emisson Status and Perspectives [J].Chemosphere,1994,29(9-11):1939-1945.
    [23] Kumagai S., Koda S., Miyakita T., et al. Polychlorinated dibenzop-dioxin and dibenzofuranconcentrations in serum samples of workers at intermittently burning municipal wasteincinerators in Japan [J]. Occup. Environ. Med.,2002,59(6):362-368.
    [24]张玉君,杨春根,范美玲.电弧炉炼钢工艺二恶英节能型防治措施[J].环境工程,2011,29(5):88-91.
    [25]陆勇,田洪海,周志广,等.电弧炉炼钢过程中二噁英类的排放浓度和同类物分布[J].环境科学研究,2009,22(3):304-308.
    [26] Everaert K., Baeyens J. The formation and emission of dioxins in large scale thermal processes[J]. Chemosphere,2002,46(3):439-448.
    [27] Wang L. C., Wang Y. F., Hsi H. C., et al. Characterizing the Emissions of PolybrominatedDiphenyl Ethers (PBDEs) and Polybrominated Dibenzo-p-dioxins and Dibenzofurans(PBDD/Fs) from Metallurgical Processes [J]. Environ. Sci. Technol.,2010,44(4):1240-1246.
    [28] Wu Y. L., Li H. W., Chien C. H., et al. Monitoring and Identification of PolychlorinatedDibenzo-p-dioxins and Dibenzofurans in the Ambient Central Taiwan [J]. Aerosol Air Qual.Res.,2010,10(5):463-471.
    [29] Lee W. S., Chang-Chien G. P., Wang L. C., et al. Emissions of polychlorinateddibenzo-p-dioxins and dibenzofurans from stack gases of electric arc furnaces and secondaryaluminum smelters [J]. J. Air. Waste. Manage.,2005,55(2):219-226.
    [30] Li H. W., Lee W. J., Tsai P. J., et al. A novel method to enhance polychlorinateddibenzo-p-dioxins and dibenzofurans removal by adding bio-solution in EAF dust treatmentplant [J]. J. Hazard. Mater.,2008,150(1):83-91.
    [31] Yu K. M., Lee W. J., Tsai P. J., et al. Emissions of polychlorinated dibenzo-p-dioxins anddibenzofurans (PCDD/Fs) from both of point and area sources of an electric-arc furnace-dusttreatment plant and their impacts to the vicinity environments [J]. Chemosphere,2010,80(10):1131-1136.
    [32] Shen C. F., Tang X. J., Yao J., et al. Levels and patterns of polycyclic aromatic hydrocarbonsand polychlorinated biphenyls in municipal waste incinerator bottom ash in Zhejiang province,China [J]. J. Hazard. Mater.,2010,179(1-3):197-202.
    [33] Yao J., Li W. B., Tang M. L., et al. Effect of weathering treatment on the fractionation andleaching behavior of copper in municipal solid waste incinerator bottom ash [J]. Chemosphere,2010,81(5):571-576.
    [34] Yao J., Li W. B., Kong Q. N., et al. Content, mobility and transfer behavior of heavy metals inMSWI bottom ash in Zhejiang province, China [J]. Fuel,2010,89(3):616-622.
    [35] Zhu F. F., Takaoka M., Oshita K., et al. Chlorides behavior in raw fly ash washing experiments[J]. J. Hazard. Mater.,2010,178(1-3):547-552.
    [36] Sun Y., Zheng J. C., Zou L. Q., et al. Reducing volatilization of heavy metals inphosphate-pretreated municipal solid waste incineration fly ash by forming pyromorphite-likeminerals [J]. Waste Manage.,2011,31(2):325-330.
    [37] Yang Y., Xiao Y., Wilson N., et al. Thermal behaviour of ESP ash from municipal solid wasteincinerators [J]. J. Hazard. Mater.,2009,166(1):567-575.
    [38] Xue Y. J., Hou H. B., Zhu S. J., et al. Utilization of municipal solid waste incineration ash instone mastic asphalt mixture: Pavement performance and environmental impact [J]. Constr.Build. Mater.,2009,23(2):989-996.
    [39] Kaikake K., Sekito T., Dote Y. Phosphate recovery from phosphorus-rich solution obtainedfrom chicken manure incineration ash [J]. Waste Manage.,2009,29(3):1084-1088.
    [40] Hattori H., Yoshiie R., Moritomi H. Effect of carbon particles on heavy metal emissions underash-melting conditions [J]. J. Mater. Cycles Waste,2009,11(3):284-292.
    [41] Fukui K., Naoki A., Kenji J., et al. Performance of fuel cell using calcium phosphate hydrogelmembrane prepared from waste incineration fly ash and chicken bone powder [J]. J. Hazard.Mater.,2009,168(2-3):1617-1621.
    [42] Chang C. Y., Wang C. F., Mui D. T., et al. Application of methods (sequential extractionprocedures and high-pressure digestion method) to fly ash particles to determine the elementconstituents: A case study for BCR176[J]. J. Hazard. Mater.,2009,163(2-3):578-587.
    [43] Wai C. M., Koegler S. S. Recovering enriched uranium from incineration ash usingsupercritical carbon dioxide [R]. New Orleans, LA,2008.
    [44] Ohbuchi A., Sakamoto J., Kitano M., et al. X-ray fluorescence analysis of sludge ash fromsewage disposal plant [J]. X-ray. Spectrom.,2008,37(5):544-550.
    [45] Arvelakis S., Folkedahl B., Frandsen F. J., et al. Studying the melting behaviour of fly ashfrom the incineration of MSW using viscosity and heated stage XRD data [J]. Fuel,2008,87(10-11):2269-2280.
    [46] Jung C. H., Matsuto T., Tanaka N., et al. Metal distribution in incineration residues ofmunicipal solid waste (MSW) in Japan [J]. Waste Manage.,2004,24(4):381-391.
    [47] Remond S., Pimienta P., Bentz D. P. Effects of the incorporation of Municipal Solid WasteIncineration fly ash in cement pastes and mortars I. Experimental study [J]. Cement ConcreteRes.,2002,32(2):303-311.
    [48] Bethanis S., Cheeseman C. R., Sollars C. Properties and microstructure of sintered incineratorbottom ash [J]. Ceram. Int.,2002,28(8):881-886.
    [49] Song G. J., Kim K. H., Seo Y. C., et al. Characteristics of ashes from different locations at theMSW incinerator equipped with various air pollution control devices [J]. Waste Manage.,2004,24(1):99-106.
    [50] Chen H. L., Chen I. J., Chia T. P. Occupational exposure and DNA strand breakage of workersin bottom ash recovery and fly ash treatment plants [J]. J. Hazard. Mater.,2010,174(1-3):23-27.
    [51] Rigo C., Luca Z., Giancarlo R., et al. Characterization of a former dump site in the Lagoon ofVenice contaminated by municipal solid waste incinerator bottom ash, and estimation ofpossible environmental risk [J]. Chemosphere,2009,77(4):510-517.
    [52] Huang W. J., Tang H. C., Lin K. L., et al. An emerging pollutant contributing to thecytotoxicity of MSWI ash wastes: Strontium [J]. J. Hazard. Mater.,2010,173(1-3):597-604.
    [53] Lo H. M., Liao Y. L. The metal-leaching and acid-neutralizing capacity of MSW incineratorash co-disposed with MSW in landfill sites [J]. J. Hazard. Mater.,2007,142(1-2):512-519.
    [54] Shih P. H., Chang J. E., Chiang L. C. Replacement of raw mix in cement production bymunicipal solid waste incineration ash [J]. Cement Concrete Res.,2003,33(11):1831-1836.
    [55] Lin K. L., Wang K. S., Lee T. Y., et al. The hydration characteristics of MSWI fly ash slagpresent in C3S [J]. Cement Concrete Res.,2003,33(7):957-964.
    [56] Goh C. C., Show K. Y., Cheong H. K. Municipal solid waste fly ash as a blended cementmaterial [J]. J. Mater. Civil. Eng.,2003,15(6):513-523.
    [57] Lin K. L., Wang K. S., Tzeng B. Y., et al. The hydration characteristics and utilization of slagobtained by the vitrification of MSWI fly ash [J]. Waste Manage.,2004,24(2):199-205.
    [58] Lin K. L., Wang K. S., Lin C. Y., et al. The hydration properties of pastes containingmunicipal solid waste incinerator fly ash slag [J]. J. Hazard. Mater.,2004,109(1-3):173-181.
    [59] Aubert J. E., Husson B., Vaquier A. Use of municipal solid waste incineration fly ash inconcrete [J]. Cement Concrete Res.,2004,34(6):957-963.
    [60] Dyer T. D., Dhir R. K. Hydration reactions of cement combinations containing vitrifiedincinerator fly ash [J]. Cement Concrete Res.,2004,34(5):849-856.
    [61] Becquart F., Bernard F., Abriak N. E., et al. Monotonic aspects of the mechanical behaviour ofbottom ash from municipal solid waste incineration and its potential use for road construction[J]. Waste Manage.,2009,29(4):1320-1329.
    [62] Shih H. C., Ma H. W. Assessing the health risk of reuse of bottom ash in road paving [J].Chemosphere,2011,82(11):1556-1562.
    [63] Dabo D., Rabia B., De Windt L., et al. Ten-year chemical evolution of leachate and municipalsolid waste incineration bottom ash used in a test road site [J]. J. Hazard. Mater.,2009,172(2-3):904-913.
    [64] Izquierdo M., Querol X., Josa A., et al. Comparison between laboratory and field leachabilityof MSWI bottom ash as a road material [J]. Sci. Total Environ.,2008,389(1):10-19.
    [65] Lind B. B., Norrman J., Larsson L. B., et al. Geochemical anomalies from bottom ash in a roadconstruction-Comparison of the leaching potential between an ash road and the surroundings[J]. Waste Manage.,2008,28(1):170-180.
    [66] Zhang H. Y., Zhao Y. C., Qi J. Y. Study on use of MSWI fly ash in ceramic tile [J]. J. Hazard.Mater.,2007,141(1):106-114.
    [67] Cheeseman C. R., Da Rocha S. M., Sollars C., et al. Ceramic processing of incinerator bottomash [J]. Waste Manage.,2003,23(10):907-916.
    [68] Park Y. J., Heo J. Nucleation and crystallization kinetics of glass derived from incinerator flyash waste [J]. Ceram. Int.,2002,28(6):669-673.
    [69] Monteiro R. C. C., Alendouro S. J. G., Figueiredo F. M. L., et al. Development and propertiesof a glass made from MSWI bottom ash [J]. J. Non-cryst. Solids.,2006,352(2):130-135.
    [70] Barbieri L., Corradi A., Lancellotti I. Thermal and chemical behaviour of different glassescontaining steel fly ash and their transformation into glass-ceramics [J]. J. Eur. Ceram. Soc.,2002,22(11):1759-1765.
    [71] Yang J. K., B. Xiao, A. R. Boccaccini. Preparation of low melting temperature glass-ceramicsfrom municipal waste incineration fly ash [J]. Fuel,2009,88(7):1275-1280.
    [72] Hu Y. J., Rem P. Aluminium alloys in municipal solid waste incineration bottom ash [J].Waste. Manage. Res.,2009,27(3):251-257.
    [73] Ishigaki T., Nakanishi A., Tateda M., et al. Bioleaching of metal from municipal wasteincineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria [J].Chemosphere,2005,60(8):1087-1094.
    [74] Yang J., Wang Q. H., Wang Q., et al. Heavy metals extraction from municipal solid wasteincineration fly ash using adapted metal tolerant Aspergillus niger [J]. Bioresource. Technol.,2009,100(1):254-260.
    [75] Bac B. H., Song Y., Moon Y., et al. Effective utilization of incinerated municipal solid wasteincineration ash: zeolitic material synthesis and silica extraction [J]. Waste. Manage. Res.,2010,28(8):714-722.
    [76] Etoh J., Kawagoe T., Shimaoka T., et al. Hydrothermal treatment of MSWI bottom ashforming acid-resistant material [J]. Waste Manage.,2009,29(3):1048-1057.
    [77] Ducom G., Radu-Tirnoveanu D., Pascual C., et al. Biogas-Municipal solid waste incineratorbottom ash interactions: Sulphur compounds removal [J]. J. Hazard. Mater.,2009,166(2-3):1102-1108.
    [78] Chen H., Yan S. H., Ye Z. L., et al. Utilization of urban sewage sludge: Chinese perspectives[J]. Environ. Sci. Pollut. R.,2012,19(5):1454-1463.
    [79] Zhang X. Y., Ren J. A., Niu H. S., et al., Composting of Sewage Sludge Using RecycledMatured Compost as a Single Bulking Agent (2nd International Symposium on Aqua Science,Water Resource and low Carbon Energy)[C]. Sanya Hainan, China, American Institute ofPhysics, USA,2010:177-180.
    [80]陶明涛,张华,王艳艳,等.基于部分湿式氧化法的污泥资源化研究[J].环境工程,2011,29(增刊):402-404.
    [81] Gago-Ferrero P., Diaz-Cruz M. S., Barcelo D. Occurrence of multiclass UV filters in treatedsewage sludge from wastewater treatment plants [J]. Chemosphere,2011,84(8):1158-1165.
    [82]黄鸥.应提高污泥的可资源化利用程度[J].给水排水,2012,38(11):1-3.
    [83]吴大付,李东方,任秀娟,等.污水处理厂污泥的处置方法及其土地利用[J].广西轻工业,2008(2):67-68.
    [84]周立祥,胡霭堂,戈乃扮.城市生肥活污泥农田利用对土壤肥力的影响[J].土攘通报,1994,25(3):126-129.
    [85]李贵宝,尹澄清,单保庆.我国森林与园林绿地污泥的利用及其展望[J].北京林业大学学报,2007,23(4):71-74.
    [86]王新,陈涛,梁仁禄,等.污泥土地利用对农作物及土壤的影响研究[J].应用生态学报,2002,13(2):163-166.
    [87]张天红,薛澄泽.西安市污水污泥林地施用效果的研究[J].西北农业大学学报,1994,22(2):67-71.
    [88] Pigozzo A. T. J., Lenzi E., De Luca J., et al. Transition metal rates in latosol twice treated withsewage sludge [J]. Braz. Arch. Biol. Techn.,2006,49(3):515-526.
    [89] Frost H. L., Ketchum L. H.. Trace metal concentration in durum wheat from application ofsewage sludge and commercial fertilizer [J]. Adv. Environ. Res.,2000,4(4):347-355.
    [90] Nogueira T. A. R., Franco A., He Z. L., et al. Short-term usage of sewage sludge as organicfertilizer to sugarcane in a tropical soil bears little threat of heavy metal contamination [J]. J.Environ. Manage.,2013,114:168-177.
    [91] Roig N., Sierra J., Marti E., et al. Long-term amendment of Spanish soils with sewage sludge:Effects on soil functioning [J]. Agr. Ecosyst. Environ.,2012,158(1):41-48.
    [92]郭媚兰.城市污泥和污水与垃圾堆肥的使用对土壤性质的影响[J].农业环境保护,1994,13(5):22-26.
    [93]吴吉夫,王淑坤,臧树良.城市污水处理厂污泥的有效利用和相关的环境问题研究[J].辽宁大学学报,2002,29(1):90-91.
    [94]王占华,杨少华,崔玉波.我国污泥堆肥的土地利用现状及对策[J].吉林建筑工程学院学报,2005,22(2):8-11.
    [95]明银安,陶涛,谢小青,等.污泥果肥利用中重金属迁移特征研究[J].环境工程学报,2008,12(2):1685-1690.
    [96]朱志良,梁栋,张荣华,等.污泥堆肥土地利用中重金属在几种观赏植物中富集作用的研究[J].农业环境科学学报,2006,25(3):690-693.
    [97]陈涛,王新,梁仁禄,等.污泥草地利用的初步研究[J].应用生态学报,2002,13(4):463-466.
    [98]王军辉,方海兰,黄懿珍,等.程桥污水厂污泥来源堆肥产品的绿地利用可行性探讨[J].上海交通大学学报(农业科学版),2005,23(4):424-429.
    [99] Petersen S. O., Henriksen K., Mortensen G. K., et al. Recycling of sewage sludge andhousehold compost to arable land: fate and effects of organic contaminants, and impact on soilfertility [J]. Soil Till. Res.,2003,72(2):139-152.
    [100] Debosz K., Petersen S. O., Kure L. K., et al. Evaluating effects of sewage sludge andhousehold compost on soil physical, chemical and microbiological properties [J]. Appl. SoilEcol.,2002,19(3):237-248.
    [101] Song U., Lee E. J. Ecophysiological Responses of Plants After Sewage Sludge CompostApplications [J]. J. Plant Biol.,2010,53(4):259-267.
    [102]张晓耕,叶美锋,林琰,等.利用城市生活污泥生产的有机-无机混配肥料在西瓜上的应用效果[J].广西农学报,2006,22(2):7-9.
    [103]张益民,任玉锋,赵银宝.利用城市污泥生产高效有机无机复混肥研究初探[J].农业科学研究,2006,27(1):95-97.
    [104]赵玉翔.利用发酵污泥生产高尔夫草坪专用有机控释肥[J].磷肥与复肥,2005,20(6):56-56.
    [105]王敦球,解庆林,李金城,等.利用污泥制复合肥在水稻上应用的初步研究[J].昆明理工大学学报,2000,25(2):65-67.
    [106]李海英,张学军,张书廷,等.利用污水厂污泥生产复混肥及对冬小麦增产效果研究[J].华南农业大学学报,2006,27(1):21-24.
    [107]王猛,张安龙.污泥处理技术及资源化利用[J].纸和造纸,2007,26(5):52-54.
    [108] Weigand H., Bertau M., Hubner W., et al. RecoPhos: Full-scale fertilizer production fromsewage sludge ash [J]. Waste manage.,2013,33(3):540-544.
    [109]刘莲香.污水处理厂污泥于陶粒生产中的综合利用[J].陶瓷研究与职业教育,2003,1(1):35-41.
    [110]李南生.利用粉煤灰陶粒生产工艺处理剩余污泥的技术[J].粉谋灰,1995(3):26-30.
    [111]李玉林.利用城市污水厂污泥制备陶粒的试验研究[J].研究进展,2008(3):32-35.
    [112]白慧玲.城市污泥处置与利用综述[J].山西建筑,2008,34(20):180-181.
    [113]张方梅.用排水管污泥混合堆肥或做建筑的可行性研究[J].环境卫生工程,1998,6(2):52-56.
    [114] Ingunza M. P. D., Duarte A. C. L., Nascimento R. M. Use of Sewage Sludge as Raw Materialin the Manufacture of Soft-Mud Bricks [J]. J. Mater. Civil. Eng.,2011,23(6):852-856.
    [115] Liew A. G, Idris A., Wong C. H., et al. Incorporation of sewage sludge in clay brick and itscharacterization [J]. Waste Manage. Resource,2004,22(4):226-233.
    [116] Jordan M. M., Almendro-Candel M. B., Romero M., et al. Application of sewage sludge inthe manufacturing of ceramic tile bodies [J]. Appl. Clay. Sci.,2005,30(3-4):219-224.
    [117] Weng C. H., Lin D. F., Chiang P. C. Utilization of sludge as brick materials [J]. Adv. Environ.Res.,2003,7(3):679-685.
    [118] Yue M., Q. Yue Y., Qi Y. F., et al. Properties and effect of forming sewage sludge intolightweight ceramics [J]. Front. Environ. Sci. Engin.,2012,6(1):117-124.
    [119] Endo H., Nagayoshi Y., Suzuki K. Production of glass ceramics from sewage sludge [J].Water Sci. Technol.,1997,36(11):235-241.
    [120] Montero M. A., Jordan M. M., Hernandez-Crespo M. S., et al. The use of sewage sludge andmarble residues in the manufacture of ceramic tile bodies [J]. Appl. Clay. Sci.,2009,46(4):404-408.
    [121]范方禄,陈益民.论利用城市污泥烧制水泥的迫切性[J].论坛技术与应用,2005(6):76-79.
    [122]杨力远,杨俊,马军涛.利用污水厂污泥配料煅烧水泥熟料研究[J].武汉理工大学学报,2007,29(11):11-13.
    [123]漆宏.利用污泥生产生态水泥的可行性初探[J].安徽农业科学,2008,36(17):7380-7381.
    [124]赵启纲,田巍,张觊.利用水泥窑处置工业废弃物及城市生活污泥技术的研究和应用[J].利废技术,2006(11):49-52.
    [125]施惠生.利用水泥窑处理污水厂污泥的应用研究[J].水泥,2002(7):8-10.
    [126]冯乃谦,邢峰.生态水泥及应用[J].混凝土与水泥制品,2000(6):18-21.
    [127] Chang F. C., Lin J. D., Tsai C. C., et al. Study on cement mortar and concrete made withsewage sludge ash [J]. Water Sci. Technol.,2010,62(7):1689-1693.
    [128] Monzo J., Paya J., Borrachero M. V., et al. Reuse of sewage sludge ashes (SSA) in cementmixtures: the effect of SSA on the workability of cement mortars [J]. Waste Manage.,2003,23(4):373-381.
    [129] Monzó J., Payá J., Borrachero M. V., et al. Mechanical behavior of mortars containingsewage sludge ash (SSA) and Portland cements with different tricalcium aluminate content[J]. Cement Concrete Res.,1999,29(1):87-94.
    [130] Bhatty J. I., Reid K. J. Compressive strength of municipal sludge ash mortars [J]. Mater. J.,1989,86(4):394-400.
    [131] Cyr M., Coutand M., Clastres P. Technological and environmental behavior of sewage sludgeash (SSA) in cement-based materials [J]. Cement Concrete Res.,2007,37(8):1278-1289.
    [132] Pan Sh.Ch., Tseng D.H., Lee Ch. Use of sewage sludge ash as fine aggregate and pozzolan inPortland cement mortar [J]. Journal of Solid Waste Technol.,2002,28(3):121-130.
    [133] Tay J. H., Show K. Y. Utilization of municipal wastewater sludge as building andconstruction materials [J]. Resour. Conserv. Recy.,1992,6(3):191-204.
    [134] Monzó J., Payá J., Borrachero M. V., et al. Use of sewage sludge ash(SSA)-cementadmixtures in mortars [J]. Cement Concrete Res.,1996,26(9):1389-1398.
    [135] Lee T. C. Recycling of municipal incinerator fly-ash slag and semiconductor waste sludge asadmixtures in cement mortar [J]. Constr. Build. Mater.,2009,23(11):3305-3311.
    [136] Garces P., Carrion M. P., Garcia-Alcocel E., et al. Mechanical and physical properties ofcement blended with sewage sludge ash [J]. Waste Manage.,2008,28(12):2495-2502.
    [137] Lin K. L., Lin D. F., Luo H. L.. Influence of phosphate of the waste sludge on the hydrationcharacteristics of eco-cement [J]. J. Hazard. Mater.,2009,168(2-3):1105-1110.
    [138] Payá J. M., Borrachero M.V., Girbés I. F. Amahjour, et al. Advantages in the use of fly ashesin cements containing pozzolanic combustion residues: silica fume, sewage sludge ash, spentfluidized bed catalyst and rice husk ash [J]. J. Chem. Technol. Biot,2002,77(3):331-335.
    [139] Luo H. L., Lin D. F., Kuo W. T. The effects of nano-materials on the behaviors of sludgemortar specimens [J]. Water Sci. Technol.,2004,50(9):57-65.
    [140] Al Sayed M. H., Madany I. M., Buali A. R. M.. Use of sewage sludge ash in asphaltic pavingmixes in hot regions [J]. Constr. Build. Mater.,1995,9(1):19-23.
    [141] Tay J. H., Show K. Y. Municipal wastewater sludge as cementitious and blended cementmaterials [J]. Cement and Concrete Comp.,1994,16(1):39-48.
    [142] Manara P., Zabaniotou A. Towards sewage sludge based biofuels via thermochemicalconversion-A review [J]. Renew. Sust. Energ. Rev.,2012,16(5):2566-2582.
    [143]李成杰,张东,凡基正,等.新型污水处理厂污泥资源化利用方案探讨[J].科技资讯,2007(29):229.
    [144]郑立辉,司梅芳,李磊.剩余污泥处理与资源化研究进展[J].污染防治技术,2008,21(1):66-68.
    [145] Fonts I., Gea G., Azuara M., et al. Sewage sludge pyrolysis for liquid production: A review[J]. Renew. Sust. Energ. Rev.,2012,16(5):2781-2805.
    [146] Kwon E. E., Yi H., Kwon H. H. Urban energy mining from sewage sludge [J]. Chemosphere,2013,90(4):1508-1513.
    [147] Shao J. G., Chen Y. R., Wang H. P., et al. Pyrolysis characteristics and kinetics of sewagesludge by thermogravimetry Fourier transform infrared analysis [J]. Energ. Fuel.,2008,22(1):38-45.
    [148] Gonzalez I. O., Pastor R. M. P., Hervas J. M. S. Sampling of tar from sewage sludgegasification using solid phase adsorption [J]. Anal. Bioanal. Chem.,2012,403(7):2039-2046.
    [149] Cao J. P., Li L. Y., Morishita K., et al. Nitrogen transformations during fast pyrolysis ofsewage sludge [J]. Fuel,2013,104:1-6.
    [150]刘和,堵国成,陈坚.我国应用生物技术资源化利用城市剩余污泥的研究进展[J].化工进展,2008,27(8):1137-1142.
    [151] Chen C. Y., Yang M. H., Yeh K. L., et al. Biohydrogen production using sequential two-stagedark and photo fermentation processes [J]. Int. J. Hydrogen. Energ.,2008,33(18):4755-4762.
    [152]张全国,李刚.生物制氢技术现状及其发展潜力[J].特别关注,2007(4):17-22.
    [153] Hallenbeck P. C., Benemann J. R. Biological hydrogen production: fundamentals and limitingprocesses [J]. Int. J. Hydrogen. Energ.,2002,27(11-12):1185-1193.
    [154] Hema R., Agrawal P. Production of Clean Fuel from Waste Biomass using Combined Darkand Photofermentation [J]. J. Comput. Eng.,2012,1(4):39-47.
    [155]伍峰,周少奇.超声技术在污泥生物产氢中的应用研究[J].环境科学与技术,2008,31(5):95-98.
    [156]张婷.污水处理厂污泥的环境消纳与综合利用初探[J].宁德师专学报(自然科学版),2007,19(3):410-413.
    [157] Wang L. C., Lee W. J., Lee W. S., et al. Characterizing the emissions of polychlorinateddibenzo-p-dioxins and dibenzofurans from crematories and their impacts to the surroundingenvironment [J]. Environ. Sci. Technol.,2003,37(1):62-67.
    [158] Lin L. F., Shih S. I., Su J. W., et al. Dry and Wet Deposition of PolychlorinatedDibenzo-p-dioxins and Dibenzofurans on the Drinking Water Treatment Plant [J]. AerosolAir Qual. Res.,2010,10(3):231-244.
    [159] Chiu J. C., Shen Y. H., Li H. W., et al. Emissions of Polychlorinated Dibenzo-p-dioxins andDibenzofurans from an Electric Arc Furnace, Secondary Aluminum Smelter, Crematory andJoss Paper Incinerators [J]. Aerosol Air Qual. Res.,2011,11(1):13-20.
    [160] Kuo Y. C., Chen Y. C., Yang C. W., et al. Identification the Content of the Windbox DustRelated to the Formation of PCDD/Fs during the Iron Ore Sintering Process [J]. Aerosol AirQual. Res.,2011,11(4):351-359.
    [161] Huang C. J., Chen K. S., Lai Y. C., et al. Characterization of Atmospheric Dry Deposition ofPolychlorinated Dibenzo-p-dioxins/Dibenzofuran in a Rural Area of Taiwan [J]. Aerosol AirQual. Res.,2011,11(4):448-459.
    [162] Huang H., Buekens A. De novo synthesis of polychlorinated dibenzo-p-dioxins anddibenzofurans-Proposal of a mechanistic scheme [J]. Sci. Total Environ.,1996,193(2):121-141.
    [163] Cheeseman C. R., Makinde A., Bethanis S. Properties of lightweight aggregate produced byrapid sintering of incinerator bottom ash [J]. Resour. Conserv. Recy.,2005,43(2):147-162.
    [164] Park K., Hyun J., Maken S., et al. Vitrification of municipal solid waste incinerator fly ashusing Brown's gas [J]. Energ. Fuel.,2005,19(1):258-262.
    [165] Wu H. Y., Ting Y. P. Metal extraction from municipal solid waste (MSW) incinerator fly ash-Chemical leaching and fungal bioleaching [J]. Enzyme. Microb. Tech.,2006,38(6):839-847.
    [166] Browers H. J. H., Augustijn D. C. M., Krikke B., et al. Use of cement and quicklime toaccelerate ripening and immobilize contaminated dredging sludge [J]. J. Hazard. Mater.,2007,145(1-2):8-16.
    [167] El-Nadi Y. A., Daoud J. A., Aly H. F. Leaching and separation of zinc from the black paste ofspent MnO2-Zn dry cell batteries [J]. J. Hazard. Mater.,2007,143(1-2):328-334.
    [168] Li C. T., Lee W. J., Huang K. L., et al. Vitrification of chromium electroplating sludge [J].Environ. Sci. Technol.,2007,41(8):2950-2956.
    [169] Chou J. D., Wey M. Y., Chang S. H. Evaluation of the distribution patterns of Pb, Cu and Cdfrom MSWI fly ash during thermal treatment by sequential extraction procedure [J]. J.Hazard. Mater.,2009,162(2-3):1000-1006.
    [170] Kuo Y. M., Chang J. E., Jin C. H., et al. Vitrification for reclaiming spent alkaline batteries[J]. Waste Manage.,2009,29(7):2132-2139.
    [171] Kuo Y. M., Lin T. C., Tsai P. J. Metal behavior during vitrification of incinerator ash in acoke bed furnace [J]. J. Hazard. Mater.,2004,109(1-3):79-84.
    [172] Yang Y., Xiao Y., Voncken J. H. L., et al. Thermal treatment and vitrification of boiler ashfrom a municipal solid waste incinerator [J]. J. Hazard. Mater.,2008,154(1-3):871-879.
    [173] Wang Q., Yan J. H., Tu X., et al. Thermal treatment of municipal solid waste incinerator flyash using DC double arc argon plasma [J]. Fuel,2009,88(5):955-958.
    [174] Buekens A., Stieglitz L., Hell K., et al. Dioxins from thermal and metallurgical processes:recent studies for the iron and steel industry [J]. Chemosphere,2001,42(5-7):729-735.
    [175] Li C. T., Huang Y. J., Huang K. L., et al. Characterization of slags and ingots from thevitrification of municipal solid waste incineration ashes [J]. Ind. Eng. Chem. Res.,2003,42(11):2306-2313.
    [176] Lai Y. C., Lee W. J., Li H. W., et al. Inhibition of polybrominated dibenzo-p-dioxin anddibenzofuran formation from the pyrolysis of printed circuit boards [J]. Environ. Sci.Technol.,2007,41(3):957-962.
    [177] Lee W. J., Shih S. I., Chang C. Y., et al. Thermal treatment of polychlorinateddibenzo-p-dioxins and dibenzofurans from contaminated soils [J]. J. Hazard. Mater.,2008,160(1):220-227.
    [178] Giugliano M., Cernuschi S., Grosso M., et al. PCDD/F mass balance in the flue gas cleaningunits of a MSW incineration plant [J]. Chemosphere,2002,46(9-10):1321-1328.
    [179] Kim B. H., Lee S. J., Mun S. J., et al. A case study of dioxin monitoring in and around anindustrial waste incinerator in Korea [J]. Chemosphere,2005,58(11):1589-1599.
    [180] Lundin L., Marklund S. Thermal degradation of PCDD/F, PCB and HCB in municipal solidwaste ash [J]. Chemosphere,2007,67(3):474-481.
    [181] Visez N., Sawerysyn J. P. On the thermal degradation of PCDD/Fs promoted by CuCl orCuCl2at350℃[J]. Organohalog. Compd.,2005,67:2195-2199.
    [182] Li H. W., Lee W. J., Huang K. L., et al. Effect of raw materials on emissions ofpolychlorinated dibenzo-p-dioxins and dibenzofurans from the stack flue gases of secondaryaluminum smelters [J]. J. Hazard. Mater.,2007,147(3):776-784.
    [183] Lin L. F., Lee W. J., Li H. W., et al. Characterization and inventory of PCDD/F emissionsfrom coal-fired power plants and other sources in Taiwan [J]. Chemosphere,2007,68(9):1642-1649.
    [184] Lee W. S., Chang-Chien G. P., Wang L. C., et al. Source identification of PCDD/Fs forvarious atmospheric environments in a highly industrialized city [J]. Environ. Sci. Technol.,2004,38(19):4937-4944.
    [185] Wang L. C., Tsai C. H., Chang-Chien G. P., et al. Characterization of polybrominateddibenzo-p-dioxins and dibenzofurans in different atmospheric environments [J]. Environ. Sci.Technol.,2008,42(1):75-80.
    [186] Wang L. C., Lee W. J., Lee W. S., et al. Emission estimation and congener-specificcharacterization of polybrominated diphenyl ethers from various stationary and mobilesources [J]. Environ. Pollut.,2010,158(10):3108-3115.
    [187] Cetin B., Odabasi M. Particle-phase dry deposition and air-soil gas-exchange ofpolybrominated diphenyl ethers (PBDEs) in Izmir, Turkey [J]. Environ. Sci. Technol.,2007,41(14):4986-4992.
    [188] Cetin B., Odabasi M. Atmospheric concentrations and phase partitioning of polybrominateddiphenyl ethers (PBDEs) in Izmir, Turkey [J]. Chemosphere,2008,71(6):1067-1078.
    [189] Wang Y. F., Hsiao-Chung H., Li H. W., et al. Dry and Wet Depositions of PolychlorinatedDibenzo-p-dioxins and Dibenzofurans in the Atmosphere in Taiwan [J]. Aerosol Air Qual.Res.,2010,10(4):378-390.
    [190] Cahill T. M., Groskova D., Charles M. J., et al. Atmospheric concentrations ofpolybrominated diphenyl ethers at near-source sites [J]. Environ. Sci. Technol.,2007,41(18):6370-6377.
    [191] Choi S. D., Baek S. Y., Chang Y. S. Atmospheric levels and distribution of dioxin-likepolychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in thevicinity of an iron and steel making plant [J]. Atmos. Environ.,2008,42(10):2479-2488.
    [192] Wang T., Wang Y. W., Fu J. J., et al. Characteristic accumulation and soil penetration ofpolychlorinated biphenyls and polybrominated diphenyl ethers in wastewater irrigatedfarmlands [J]. Chemosphere,2010,81(8):1045-1051.
    [193] Sinkkonen S., Paasivirta J., Lahtipera M., et al. Screening of halogenated aromaticcompounds in some raw material lots for an aluminium recycling plant [J]. Environ. Int.,2004,30(3):363-366.
    [194] Choi H. D., Sharac T. J., Holsen T. M. Mercury deposition in the Adirondacks: A comparisonbetween precipitation and throughfall [J]. Atmos. Environ.,2008,42(8):1818-1827.
    [195] Wang L. C., Hsi H. C., Wang Y. F., et al. Distribution of polybrominated diphenyl ethers(PBDEs) and polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) in municipalsolid waste incinerators [J]. Environ. Pollut.,2010,158(5):1595-1602.
    [196] Artha A. A., Wu E. M.Y., Wang L. C., et al. Thermal Formation of Polybrominated DiphenylEthers in Raw and Water-Washed Fly Ash [J]. Aerosol Air Qual. Res.,2011,11(4):393-400
    [197] Gullett B. K., Wyrzykowska B., Grandesso E., et al. PCDD/F, PBDD/F, and PBDEEmissions from Open Burning of a Residential Waste Dump [J]. Environ. Sci. Technol.,2010,44(1):394-399.
    [198] Lenoir D., Zier B., Bieniek D., et al. The influence of water and metal on PBDD/Fconcentration in incineration of decabromobiphenyl ether in polymeric matrices [J].Chemosphere,1994,28(11):1921-1928.
    [199] Thoma H., Hauschulz G., Hutzinger O. Pvc-induced chlorine-bromine exchange in thepyrolysis of polybrominated diphenyl ethers,polybrominated biphenyls, polybrominateddibenzodioxins and dibenzofurans [J]. Chemosphere,1987,16(1):297-307.
    [200] Thoma H., Hauschulz G., Knorr E., et al. Polybrominated dibenzofurans (PBDF) anddibenzodioxins (PBDD) from the pyrolysis of neat brominated diphenylethers, biphenyls andplastic mixtures of these compounds [J]. Chemosphere,1987,16(1):277-285
    [201] Zier B., Lenoir D., Lahaniatis E. S., et al. Surface catalyzed halogenation-dehalogenationreactions of aromatic bromatic bromine compounds adsorbed on fly-ash [J]. Chemosphere,1991,22(12):1121-1129.
    [202] Luijk R., Dorland C., Smit P., et al. The role of bromine in the de-novo synthesis in a modelfly-ash system [J]. Chemosphere,1994,28(7):1299-1309.
    [203] Liu W. X., Zheng M. H., Liu W. B., et al. Mechanism of polychlorinated diphenyl etherformation on a simulated fly ash surface [J]. J. Hazard. Mater.,2011,186(1):814-819.
    [204] Chao H. R., Wang S. L., Lee W. J., et al. Levels of polybrominated diphenyl ethers (PBDEs)in breast milk from central Taiwan and their relation to infant birth outcome and maternalmenstruation effects [J]. Environ. Int.,2007,33(2):239-245.
    [205] Jamshidi A., Hunter S., Hazrati S., et al. Concentrations and chiral signatures ofpolychlorinated biphenyls in outdoor and indoor air and soil in a major UK conurbation [J].Environ. Sci. Technol.,2007,41(7):2153-2158.
    [206] Sellstrom U., De Wit C. A., Lundgren N., et al. Effect of sewage-sludge application onconcentrations of higher-brominated diphenyl ethers in soils and earthworms [J]. Environ.Sci. Technol.,2005,39(23):9064-9070.
    [207] Harrad S., Hunter S. Concentrations of polybrominated diphenyl ethers in air and soil on arural-urban transect across a major UK conurbation [J]. Environ. Sci. Technol.,2006,40(15):4548-4553.
    [208] Hassanin A., Breivik K., Meijer S. N., et al. PBDEs in European background soils: Levelsand factors controlling their distribution [J]. Environ. Sci. Technol.,2004,38(3):738-745.
    [209] Lin Y. M., Zhou S. Q., Shih S. I., et al. Fate of Polychlorinated Dibenzo-p-dioxins andDibenzofurans during the Thermal Treatment of Electric Arc Furnace Fly Ash [J]. AerosolAir Qual. Res.,2011,11(5):584-595.
    [210] Wang M. S., Chen S. J., Lai Y. C., et al. Characterization of Persistent Organic Pollutants inAsh Collected from Different Facilities of a Municipal Solid Waste Incinerator [J]. AerosolAir Qual. Res.,2010,10(4):391-402.
    [211] Hsieh L.T., Wu E. M.Y., Wang L. C., et al. Reduction of Toxic Pollutants Emitted fromHeavy-duty Diesel Vehicles by Deploying Diesel Particulate Filters [J]. Aerosol Air Qual.Res.,2011,11(6):709-715.
    [212] Fujimori T., Takaoka M., Takeda N. Influence of Cu, Fe, Pb, and Zn Chlorides and Oxides onFormation of Chlorinated Aromatic Compounds in MSWI Fly Ash [J]. Environ. Sci.Technol.,2009,43(21):8053-8059.
    [213] De Windt L., Dabo D., Lidelow S., et al. MSWI bottom ash used as basement at twopilot-scale roads: Comparison of leachate chemistry and reactive transport modeling [J].Waste Manage.,2011,31(2):267-280.
    [214] Cioffi R., Colangelo F., Montagnaro F., et al. Manufacture of artificial aggregate using MSWIbottom ash [J]. Waste Manage.,2011,31(2):281-288.
    [215] Bayuseno A. P., Schmahl W. W. Characterization of MSWI fly ash through mineralogy andwater extraction [J]. Resour. Conserv. Recy.,2011,55(5):524-534.
    [216] Chimenos J. M., Segarra M., Fernandez M., et al. Characterization of the bottom ash inmunicipal solid waste incinerator [J]. J. Hazard. Mater.,1999,64(3):211-222.
    [217] Fedje K. K., Ekberg C., Skarnemark G., et al. Removal of hazardous metals from MSW flyash-An evaluation of ash leaching methods [J]. J. Hazard. Mater.,2010,173(1-3):310-317.
    [218] Gori M., Bergfeldt B., Pfrang-Stotz G., et al. Effect of short-term natural weathering onMSWI and wood waste bottom ash leaching behaviour [J]. J. Hazard. Mater.,2011,189(1-2):435-443.
    [219] Chimenos J. M., Fernandez A. I., Miralles L., et al. Change of mechanical properties duringshort-term natural weathering of MSWI bottom ash [J]. Environ. Sci. Technol.,2005,39(19):7725-7730.
    [220] Gaelle T. B., Clement B., Blake G. Ecotoxicological assessment of pollutant flux releasedfrom bottom ash reused in road construction [J]. Aquat. Ecosyst. Health,2005,8(4):405-414.
    [221] Kokalj F., Samec N., Juric B. Utilization of bottom ash from the incineration of separatedwastes as a cement substitute [J]. Waste. Manage. Res.,2005,23(5):468-472.
    [222] Li H. S., Zhou S. Q., Sun Y. B., et al. Advanced treatment of landfill leachate by a newcombination process in a full-scale plant [J]. J. Hazard. Mater.,2009,172(1):408-415.
    [223] Johansson I., Van Bavel B. Polycyclic aromatic hydrocarbons in weathered bottom ash fromincineration of municipal solid waste [J]. Chemosphere,2003,53(2):123-128.
    [224] Sukandar S., Yasuda K., Tanaka M., et al. Metals leachability from medical waste incineratorfly ash: A case study on particle size comparison [J]. Environ. Pollut.,2006,144(3):726-735.
    [225] Lancellotti I., Kamseu E., Michelazzi M., et al. Chemical stability of geopolymers containingmunicipal solid waste incinerator fly ash [J]. Waste Manage.,2010,30(4):673-679.
    [226] Sun C. J., Li M. G., Gau S. H., et al. Effect of the milling solution on lead stabilization inmunicipal solid waste incinerator fly ash during the milling processes [J]. Waste Manage.,2011,31(2):318-324.
    [227] Barbieri L., Lancellotti I., Manfredini T., et al. Design, obtainment and properties of glassesand glass-ceramics from coal fly ash [J]. Fuel,1999,78(2):271-276.
    [228] Galiano Y. L., Pereira C. F., Vale J. Stabilization/solidification of a municipal solid wasteincineration residue using fly ash-based geopolymers [J]. J. Hazard. Mater.,2011,185(1):373-381.
    [229] Takahashi F., Etoh J., Shimaoka T. Metal mobilization from municipal solid wasteincineration bottom ash through metal complexation with organic and inorganic ligands [J]. J.Mater. Cycles Waste,2010,12(1):1-9.
    [230] Phongphiphat A., Ryu C., Finney K. N., et al. Ash deposit characterisation in a large-scalemunicipal waste-to-energy incineration plant [J]. J. Hazard. Mater.,2011,186(1):218-226.
    [231] Forteza R., Far M., Segui C., et al. Characterization of bottom ash in municipal solid wasteincinerators for its use in road base [J]. Waste Manage.,2004,24(9):899-909.
    [232] Vegas I., Ibanez J. A., Jose J. T. S., et al. Construction demolition wastes, Waelz slag andMSWI bottom ash: A comparative technical analysis as material for road construction [J].Waste Manage.,2008,28(3):565-574.
    [233] Kamon M., Katsumi T., Sano Y. MSW fly ash stabilized with coal ash for geotechnicalapplication [J]. J. Hazard. Mater.,2000,76(2-3):265-283.
    [234] Chen C. K., Lin C. E., Wang L. C., et al. The size distribution of polychlorinateddibenzo-p-dioxins and dibenzofurans in the bottom ash of municipal solid waste incinerators[J]. Chemosphere,2006,65(3):514-520.
    [235] Chiang K. Y., Hu Y. H. Water washing effects on metals emission reduction duringmunicipal solid waste incinerator (MSWI) fly ash melting process [J]. Waste Manage.,2010,30(5):831-838.
    [236] Zheng L., Wang C. W., Wang W., et al. Immobilization of MSWI fly ash throughgeopolymerization: Effects of water-wash [J]. Waste Manage.,2011,31(2):311-317.
    [237] Wang W., Zheng L., Wang F., et al. Release of elements from municipal solid wasteincineration fly ash [J]. Front. Environ. Sci. Engin. China,2010,4(4):482-489.
    [238] Pera J., Coutaz L., Ambroise J., et al. Use of incinerator bottom ash in concrete [J]. CementConcrete Res.,1997,27(1):1-5.
    [239] Weng M. C., Lin C. L., Ho C. I. Mechanical properties of incineration bottom ash: Theinfluence of composite species [J]. Waste Manage.,2010,30(7):1303-1309.
    [240] Wang L., Jin Y. Y., Nie Y. F. Investigation of accelerated and natural carbonation of MSWIfly ash with a high content of Ca [J]. J. Hazard. Mater.,2010,174(1-3):334-343.
    [241] Li M. G., Sun C. J., Gau S. H., et al. Effects of wet ball milling on lead stabilization andparticle size variation in municipal solid waste incinerator fly ash [J]. J. Hazard. Mater.,2010,174(1-3):586-591.
    [242] Bontempi E., Zacco A., Borgese L., et al. A new method for municipal solid waste incinerator(MSWI) fly ash inertization, based on colloidal silica [J]. J. Environ. Monitor.,2010,12(11):2093-2099.
    [243] Hyks J., Astrup T. Influence of operational conditions, waste input and ageing oncontaminant leaching from waste incinerator bottom ash: A full-scale study [J]. Chemosphere,2009,76(9):1178-1184.
    [244] Shim Y. S., Yoo Y. S., Rhee S. W., et al. Evaluation of pelletized adsorbent made forremoving VOCs by MSWI fly ash (II)[J]. Mater. Sci. Forum.,2006,510-511:594-597.
    [245] Wang Q., Yan J. H., Chi Y., et al. Application of thermal plasma to vitrify fly ash frommunicipal solid waste incinerators [J]. Chemosphere,2010,78(5):626-630.
    [246] Davies I. W., Harrison R. W., Perry R., et al. Municipal Incinerator as Source of PolynuclearAromatic Hydrocarbons in Environment [J]. Environ. Sci. Technol.,1976,10(5):451-453.
    [247] Johansson I., Van Bavel B. Levels and patterns of polycyclic aromatic hydrocarbons inincineration ashes [J]. Sci. Total Environ.,2003,311(1-3):221-231.
    [248] Di Palo C. Emission of polycyclic aromatic hydrocarbons (PAH) from solid waste incineratorequipped with an after-combustion chamber [J]. Fuel and Energy Abstracts,1996,38(5):351-351.
    [249] Dugenest S., Casabianca H., Grenier-Loustalot M. F.. Municipal solid waste incinerationbottom ash: Physicochemical characterization of organic matter [J]. Analusis,1999,27(1):75-81.
    [250] Errais E., Duplay J., Darragi F., et al. Efficient anionic dye adsorption on natural untreatedclay: Kinetic study and thermodynamic parameters [J]. Desalination.,2011,275(1-3):74-81.
    [251] Akgul M., Abdulkerim K. Promoted dye adsorption performance over desilicated naturalzeolite [J]. Micropor. Mesopor. Mat.,2011,145(1-3):157-164.
    [252] Wang S. B., Boyjoo Y., Choueib A., et al. Removal of dyes from aqueous solution using flyash and red mud [J]. Water Res.,2005,39(1):129-138.
    [253] Ponnusami V., Krithika V., Madhuram R., et al. Biosorption of reactive dye usingacid-treated rice husk: Factorial design analysis [J]. J. Hazard. Mater.,2007,142(1-2):397-403.
    [254] Emrah B., Mahmut O., Ayhan I. S. Equilibrium and kinetic data and process design foradsorption of Congo Red onto bentonite [J]. J. Hazard. Mater.,2008,154(1-3):613-622.
    [255] Hsu T. C. Adsorption of an acid dye onto coal fly ash [J]. Fuel,2008,87(13-14):3040-3045.
    [256] Varlikli C., Bekiari V., Kus M., et al. Adsorption of dyes on Sahara desert sand [J]. J. Hazard.Mater.,2009,170(1):27-34.
    [257] Hao O. J., H. Kim, P. C. Chiang. Decolorization of wastewater [J]. Crit. Rev. Env. Sci. Tec.,2000,30(4):449-505.
    [258] Nandi B. K., Goswami A., Purkait M. K.. Adsorption characteristics of brilliant green dye onkaolin [J]. J. Hazard. Mater.,2009,161(1):387-395.
    [259] Gupta V. K., Suhas. Application of low-cost adsorbents for dye removal-A review [J]. J.Environ. Manage.,2009,90(8):2313-2342.
    [260] Pandit P., Basu S. Removal of organic dyes from water by liquid-liquid extraction usingreverse micelles [J]. J. Colloid Interf. Sci.,2002,245(1):208-214.
    [261] Jagtap N., Ramaswamy V. Oxidation of aniline over titania pillared montmorillonite clays [J].Appl. Clay. Sci.,2006,33(2):89-98.
    [262] Khadhraoui M., Trabelsi H., Ksibi M., et al. Discoloration and detoxicification of a Congored dye solution by means of ozone treatment for a possible water reuse [J]. J. Hazard. Mater.,2009,161(2-3):974-981.
    [263] Chong M. N., Jin Bo, Chow C. W. K., et al. A new approach to optimise an annular slurryphotoreactor system for the degradation of Congo Red: statistical analysis and modelling [J].Chem. Eng. J.,2009,152(1):158-66.
    [264] Purkait M. K., Dasgupta De S., S. Micellar enhanced ultrafiltration of eosin dye usinghexadecyl pyridinium chloride [J]. J. Hazard. Mater.,2006,136(3):972-977.
    [265] Song Y. L., Li J. T., Chen H. Degradation of CI Acid Red88aqueous solution bycombination of Fenton's reagent and ultrasound irradiation [J]. J. Chem. Technol. Biot.,2009,84(4):578-583.
    [266] Purkait M. K., Maiti A., Dasgupta S., et al. Removal of congo red using activated carbon andits regeneration [J]. J. Hazard. Mater.,2007,145(1-2):287-295.
    [267] Dizge N., Aydiner C., Demirbas E., et al. Adsorption of reactive dyes from aqueous solutionsby fly ash: Kinetic and equilibrium studies [J]. J. Hazard. Mater.,2008,150(3):737-746.
    [268] Ugurlu M. Adsorption of a textile dye onto activated sepiolite [J]. Micropor. Mesopor. Mat.,2009,119(1-3):276-283.
    [269] Kurniawan A., Sutiono H., Indraswati N., et al. Removal of basic dyes in binary system byadsorption using rarasaponin-bentonite: Revisited of extended Langmuir model [J]. Chem.Eng. J.,2012,189-190:264-274.
    [270] Toor M., Jin B. Adsorption characteristics, isotherm, kinetics, and diffusion of modifiednatural bentonite for removing diazo dye [J]. Chem. Eng. J.,2012,187:79-88.
    [271] Montagnaro F., Santoro L. Reuse of coal combustion ashes as dyes and heavy metaladsorbents: Effect of sieving and demineralization on waste properties and adsorptioncapacity [J]. Chem. Eng. J.,2009,150(1):174-180.
    [272] Mittal A., Gupta V. K., Malviya A., et al. Process development for the batch and bulkremoval and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorptionover waste materials (Bottom Ash and De-Oiled Soya)[J]. J. Hazard. Mater.,2008,151(2-3):821-832.
    [273] Sun D. H., Zhang X. D., Wu Y. D., et al. Adsorption of anionic dyes from aqueous solutionon fly ash [J]. J. Hazard. Mater.,2010,181(1-3):335-342.
    [274] Tanyildizi M. S. Modeling of adsorption isotherms and kinetics of reactive dye from aqueoussolution by peanut hull [J]. Chem. Eng. J.,2011,168(3):1234-1240.
    [275] El-Geundi M. S., Nassar M. M. Colour removal from textile effluents by adsorptiontechniques [J]. Water Res.,1991,25(3):271-273
    [276] Cicek F., Ozer D., Ozer A., et al. Low cost removal of reactive dyes using wheat bran [J]. J.Hazard. Mater.,2007,146(1-2):408-416.
    [277] Shah B. A., Patel H. D., Shah A. V. Equilibrium and kinetic studies of the adsorption of basicdye from aqueous solutions by zeolite synthesized from bagasse fly ash [J]. Environ. Prog.Sustain. Energy,2011,30(4):549-557.
    [278] Atun G., Hisarli G., Kurtoglu A. E., et al. A comparison of basic dye adsorption onto zeoliticmaterials synthesized from fly ash [J]. J. Hazard. Mater.,2011,187(1-3):562-573.
    [279] Kao P. C., Tzeng J. H., Huang T. L. Removal of chlorophenols from aqueous solution by flyash [J]. J. Hazard. Mater.,2000,76(2-3):237-249.
    [280] Janos P., Buchtova H., Ryznarova M. Sorption of dyes from aqueous solutions onto fly ash[J]. Water Res.,2003,37(20):4938-4944.
    [281] Wang S.B., Wu H.W. Environmental-benign utilisation of fly ash as low-cost adsorbents [J].J. Hazard. Mater.,2006,136(3):482-501.
    [282] Visa M., Bogatu C., Duta A. Simultaneous adsorption of dyes and heavy metals frommulticomponent solutions using fly ash [J]. Appl. Surf. Sci.,2010,256(17):5486-5491.
    [283] Karagozoglu B., Tasdemir M., Demirbas E., et al. The adsorption of basic dye (Astrazon BlueFGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon:Kinetic and equilibrium studies [J]. J. Hazard. Mater.,2007,147(1-2):297-306.
    [284] Gines O., Chimenos J. M., Vizcarro A., et al. Combined use of MSWI bottom ash and fly ashas aggregate in concrete formulation: Environmental and mechanical considerations [J]. J.Hazard. Mater.,2009,169(1-3):643-650.
    [285] Wang S. B., Boyjoo Y., Choueib A. A comparative study of dye removal using fly ash treatedby different methods [J]. Chemosphere,2005,60(10):1401-1407.
    [286] Viraraghavan T., Ramakrishna K. R. Fly ash for colour removal from synthetic dye solutions[J]. Water Qual. Res. J. Can.,1999,34(3):505-517.
    [287] Rao V. V. B., Rao S. R. M.. Adsorption studies on treatment of textile dyeing industrialeffluent by flyash [J]. Chem. Eng. J.,2006,116(1):77-84.
    [288] Wang K. S., Chiang K. Y., Lin K. L., et al. Effects of a water-extraction process on heavymetal behavior in municipal solid waste incinerator fly ash [J]. Hydrometallurgy,2001,62(2):73-81.
    [289] Lin J. X., Zhan S. L., Fang M. H., et al. Adsorption of basic dye from aqueous solution ontofly ash [J]. J. Environ. Manage.,2008,87(1):193-200.
    [290] Gulnaz O., Kaya A., Dincer S. The reuse of dried activated sludge for adsorption of reactivedye [J]. J. Hazard. Mater.,2006,134(1-3):190-196.
    [291] Gregg S. J., Sing K. S. W. Adsorption, Surface Area and Porosity [M]. London: AcademicPress.1982.
    [292] Yu L. H., Luo X. J., Wu J. P., et al. Biomagnification of Higher Brominated PBDECongeners in an Urban Terrestrial Food Web in North China Based on Field Observation ofPrey Deliveries [J]. Environ. Sci. Technol.,2011,45(12):5125-5131.
    [293] Toms L. M. L., Harden F., Paepke O., et al. Higher accumulation of polybrominated diphenylethers in infants than in adults [J]. Environ. Sci. Technol.,2008,42(19):7510-7515.
    [294] Arkoosh M. R., Boylen D., Dietrich J., et al. Disease susceptibility of salmon exposed topolybrominated diphenyl ethers (PBDEs)[J]. Aquat. Toxicol.,2010,98(1):51-59.
    [295] Clarke B. O., Smith S. R. Review of 'emerging' organic contaminants in biosolids andassessment of international research priorities for the agricultural use of biosolids [J].Environ. Int.,2011,37(1):226-247.
    [296] Agrell C., Ter Schure A. F. H., Sveder J., et al. Polybrominated diphenyl ethers (PBDEs) at asolid waste incineration plant I: Atmospheric concentrations [J]. Atmos. Environ.,2004,38(30):5139-5148.
    [297] Munschy C., Heas-Moisan K., Tixier C., et al. Dietary exposure of juvenile common sole(Solea solea L.) to polybrominated diphenyl ethers (PBDEs): Part1. Bioaccumulation andelimination kinetics of individual congeners and their debrominated metabolites [J]. Environ.Pollut.,2011,159(1):229-237.
    [298] De Wit C. A., Herzke D., Vorkamp K. Brominated flame retardants in the Arctic environment-trends and new candidates [J]. Sci. Total Environ.,2010,408(15):2885-2918.
    [299] Herbstman J. B., Sjoedin A., Kurzon M., et al. Prenatal Exposure to PBDEs andNeurodevelopment [J]. Environ. Health Persp.,2010,118(5):712-719.
    [300] Chen J. S., Liufu C., W. Sun W., et al. Assessment of the neurotoxic mechanisms ofdecabrominated diphenyl ether (PBDE-209) in primary cultured neonatal rat hippocampalneurons includes alterations in second messenger signaling and oxidative stress [J]. Toxicol.Lett.,2010,192(3):431-439.
    [301] Porterfield S. P. Vulnerability of the developing brain to thyroid abnormalities: environmentalinsults to the thyroid system [J]. Environ. Health Perspect.,1994,102(Suppl2):125-130.
    [302] Mcdonald T. A. A perspective on the potential health risks of PBDEs [J]. Chemosphere,2002,46(5):745-755.
    [303] Harley K. G., Marks A. R., Chevrier J., et al. PBDE Concentrations in Women's Serum andFecundability [J]. Environ. Health Persp.,2010,118(5):699-704.
    [304] Chao H. A., Chen S. C. C., Chang C. M., et al. Concentrations of polybrominated diphenylethers in breast milk correlated to maternal age, education level, and occupational exposure[J]. J. Hazard. Mater.,2010,175(1-3):492-500.
    [305] Lake L. R., Foxall C. D., Fernandes A., et al. Effects of River Flooding on PolybrominatedDiphenyl Ether (PBDE) Levels in Cows' Milk, Soil, and Grass [J]. Environ. Sci. Technol.,2011,45(11):5017-5024.
    [306] Chen D., Hale R. C. A global review of polybrominated diphenyl ether flame retardantcontamination in birds [J]. Environ. Int.,2010,36(7):800-811.
    [307] Darnerud P. O., Eriksen G. S., Johannesson T., et al. Polybrominated diphenyl ethers:Occurrence, dietary exposure, and toxicology [J]. Environ. Health Persp.,2001,109(Suppl1):49-68.
    [308] Lin Y. C., Yen J. H., Lateef S. K., et al. Characteristics of residual organics in municipal solidwaste incinerator bottom ash [J]. J. Hazard. Mater.,2010,182(1-3):337-345.
    [309] Siddique R. Utilization of municipal solid waste (MSW) ash in cement and mortar [J]. Resour.Conserv. Recy.,2010,54(12):1037-1047.
    [310] Wang L. C., Lee W. J., Lee W. S., et al. Polybrominated diphenyl ethers in variousatmospheric environments of Taiwan: Their levels, source identification and influence ofcombustion sources [J]. Chemosphere,2011,84(7):936-942.
    [311] Litten S., Mcchesney D. J., Hamilton M. C., et al. Destruction of the World Trade Center andPCBs, PBDEs, PCDD/Fs, PBDD/Fs, and chlorinated biphenylenes in water, sediment, andsewage sludge [J]. Environ. Sci. Technol.,2003,37(24):5502-5510.
    [312] Wei Y. M., Shimaoka T., Saffarzadeh A., et al. Mineralogical characterization of municipalsolid waste incineration bottom ash with an emphasis on heavy metal-bearing phases [J]. J.Hazard. Mater.,2011,187(1-3):534-543.
    [313] Jing Z. Z., Ran X. Q., Jin F. M., et al. Hydrothermal solidification of municipal solid wasteincineration bottom ash with slag addition [J]. Waste Manage.,2010,30(8-9):1521-1527.
    [314] Kim Y. J., Osako M., Sakai S. I.. Leaching characteristics of polybrominated diphenyl ethers(PBDEs) from flame-retardant plastics [J]. Chemosphere,2006,65(3):506-513.
    [315] Rahman F., Langford K. H., Scrimshaw M. D., et al. Polybrominated diphenyl ether (PBDE)flame retardants [J]. Sci. Total Environ.,2001,275(1-3):1-17.
    [316] Gerecke A. C., Hartmann P. C., Heeb N. V., et al. Anaerobic degradation ofdecabromodiphenyl ether [J]. Environ. Sci. Technol.,2005,39(4):1078-1083.
    [317] Stapleton H. M., Dodder N. G., Kucklick J. R., et al. Determination of HBCD, PBDEs andMeO-BDEs in California sea lions (Zalophus californianus) stranded between1993and2003[J]. Mar. Pollut. Bull.,2006,52(5):522-531.
    [318] Huwe J., Hakk H., Lorentzsen M. Bioavailability and mass balance studies of a commercialpentabromodiphenyl ether mixture in male Sprague-Dawley rats [J]. Chemosphere,2007,66(2):259-266.
    [319] Frederiksen M., Vorkamp K., Thomsen M., et al. Human internal and external exposure toPBDEs-A review of levels and sources [J]. Int. J. Hyg. Envir. Heal.,2009,212(2):109-134.
    [320] Kim B. H., Ikonomou M. G., Lee S. J., et al. Concentrations of polybrominated diphenylethers, polychlorinated dibenzo-p-dioxins and dibenzofurans, and polychlorinated biphenylsin human blood samples from Korea [J]. Sci. Total Environ.,2005,336(1-3):45-56.
    [321] Wiles C. C. Municipal solid waste combustion ash: State-of-the-knowledge [J]. J. Hazard.Mater.,1996,47(1-3):325-344.
    [322] Lee T. C., Chang C. J., Rao M. K., et al. Modified MSWI ash-mix slag for use in cementconcrete [J]. Constr. Build. Mater.,2011,25(4):1513-1520.
    [323] Tian Y., Zuo W., Chen D. Crystallization evolution, microstructure and properties of sewagesludge-based glass-ceramics prepared by microwave heating [J]. J. Hazard. Mater.,2011,196:370-379.
    [324] Wang H., Wang C., Chen F., et al. Modification to degradation of hexazinone in forest soilsamended with sewage sludge [J]. J. Hazard. Mater.,2012,199-200:96-104.
    [325] Hernandez A. B., Ferrasse J. H., Chaurand P., et al. Mineralogy and leachability of gasifiedsewage sludge solid residues [J]. J. Hazard. Mater.,2011,191(1-3):219-227.
    [326] Li X., Xing M., Yang J., et al. Compositional and functional features of humic acid-likefractions from vermicomposting of sewage sludge and cow dung [J]. J. Hazard. Mater.,2011,185(2-3):740-748.
    [327] Wang X. J., Xu X. M., Liang X., et al. Adsorption of copper(II) onto sewage sludge-derivedmaterials via microwave irradiation [J]. J. Hazard. Mater.,2011,192(3):1226-1233.
    [328] Antil R. S., Bar-Tal A., Fine P., et al. Predicting nitrogen and carbon mineralization ofcomposted manure and sewage sludge in soil [J]. Compost. Sci. Util.,2011,19(1):33-43.
    [329] Antonious G. F., Dennis S. O., Unrine J. M., et al. Ascorbic acid, beta-carotene, sugars,phenols, and heavy metals in sweet potatoes grown in soil fertilized with municipal sewagesludge [J]. J. Environ. Sci. Heal. B,2011,46(2):112-121.
    [330] Mariscal-Sancho I., Ball B. C., Peregrina F. Soil quality dynamics following long-termapplication of poultry manure and sewage sludge on grassland [J]. Commun. Soil Sci. Plan,2011,42(6):656-668.
    [331] Song U., Lee E. J. Environmental and economical assessment of sewage sludge compostapplication on soil and plants in a landfill [J]. Resour. Conserv. Recy.,2010,54(12):1109-1116.
    [332] Krzywy-Gawronska E. Impact of composts with the participation of municipal sewage sludgeon the content of the total forms of copper, manganese and zinc in soil [J]. Pol. J. Chem.Technol.,2010,12(4):15-18.
    [333] Lakhdar A., Scelza R., Achiba W. B., et al. Effect of municipal solid waste compost andsewage sludge on enzymatic activities and wheat yield in a clayey-loamy soil [J]. Soil Sci.,2011,176(1):15-21.
    [334] Soares A., Kampas P., Maillard S., et al. Comparison between disintegrated and fermentedsewage sludge for production of a carbon source suitable for biological nutrient removal [J]. J.Hazard. Mater.,2010,175(1-3):733-739.
    [335] Uysal A., Yilmazel Y. D., Demirer G. N. The determination of fertilizer quality of the formedstruvite from effluent of a sewage sludge anaerobic digester [J]. J. Hazard. Mater.,2010,181(1-3):248-254.
    [336] Lu W. D., Zhou X. A., Zhou S. Q. Effect of composted sewage sludge with organic garbageon planting watercress in red soil [J]. J. Food Agric. Environ.,2010,8(3-4):1174-1177.
    [337] Donatello S., Tong D., Cheeseman C. R. Production of technical grade phosphoric acid fromincinerator sewage sludge ash (ISSA)[J]. Waste Manage.,2010,30(8-9):1634-1642.
    [338] Pai T. Y., Lin K. L., Shie J. L., et al. Predicting the co-melting temperatures of municipalsolid waste incinerator fly ash and sewage sludge ash using grey model and neural network[J]. Waste. Manage. Res.,2011,29(3):284-293.
    [339] Lin K. L. Effects of the basicity on the comelting conditions of municipal solid wasteincinerator fly ash and sewage sludge ash [J]. J. Air. Waste. Manage.,2006,56(12):1743-1749.
    [340] Lin K. L., Chiang K. Y., Lin C. Y. Hydration characteristics of waste sludge ash that is reusedin eco-cement clinkers [J]. Cement Concrete Res.,2005,35(6):1074-1081.
    [341] Lin K. L., Lin C. Y. Hydration characteristics of waste sludge ash utilized as raw cementmaterial [J]. Cement Concrete Res.,2005,35(10):1999-2007.
    [342] Pan S. C., Tseng D. H., Lee C. C., et al. Influence of the fineness of sewage sludge ash on themortar properties [J]. Cement Concrete Res.,2003,33(11):1749-1754.
    [343] Celik O., Elbeyli I. Y., Piskin S. Utilization of gold tailings as an additive in Portland cement[J]. Waste. Manage. Res.,2006,24(3):215-224.
    [344] K.L. Lin, Chen B.Y., Chiou C.S., et al. Waste brick's potential for use as a pozzolan inblended Portland cement [J]. Waste. Manage. Res.,2010,28(7):647-652.
    [345] Rukzon S., Chindaprasirt P. Use of disposed waste ash from landfills to replace Portlandcement [J]. Waste. Manage. Res.,2009,27(6):588-594.
    [346] Stephan D., Mallmann R., Kn fel D., et al. High intakes of Cr, Ni, and Zn in clinker: Part II.Influence on the hydration properties [J]. Cement Concrete Res.,1999,29(12):1959-1967.
    [347] Stephan D., Mallmann R., Knofel D., et al. High intakes of Cr, Ni, and Zn in clinker Part I.Influence on burning process and formation of phases [J]. Cement Concrete Res.,1999,29(12):1949-1957.
    [348] Lin K. L., Wang K. S., Tzeng B., et al. Effects of Al2O3on the hydration activity of municipalsolid waste incinerator fly ash slag [J]. Cement Concrete Res.,2004,34(4):587-592.
    [349] Kakali G., Tsivilis S., Tsialtas A. Hydration of ordinary portland cements made from raw mixcontaining transition element oxides [J]. Cement Concrete Res.,1998,28(3):335-340.
    [350] Tsivilis S., Kakali G. A study on the grindability of portland cement clinker containingtransition metal oxides [J]. Cement Concrete Res.,1997,27(5):673-678.
    [351] Takara M. A study on zinc phosphate cement: effect of Ca or Sr ions incorporated in cementliquid [J]. Osaka Daigaku Shigaku Zasshi,1970,15(1):11-25.
    [352] Zhao X. Y., Guo D. G., Han Y., et al. Preparation and property of Sr-containing calciumphophate cement [J]. J. Inorg. Mater.,2005,20(5):1167-1173.
    [353] Achternbosch M., Brautigam K. R., Hartlieb N., et al. Impact of the use of waste on traceelement concentrations in cement and concrete [J]. Waste. Manage. Res.,2005,23(4):328-337.
    [354] Stephan D., Maleki H., Kn fel D., et al. Influence of Cr, Ni, and Zn on the properties of pureclinker phases: Part I. C3S [J]. Cement Concrete Res.,1999,29(4):545-552.
    [355] Stephan D., Maleki H., Knofel D., et al. Influence of Cr, Ni, and Zn on the properties of pureclinker phases part II. C3A and C4AF [J]. Cement Concrete Res.,1999,29(5):651-657.
    [356] Sgirasaka T., Hanehara S., Uchikawa H. Influence of six minor and trace elements in rawmaterial on the composition and structure of clinker [J]. World Cement,1996,27(3):102-115.
    [357] Murat M., Sorrentino F. Effect of large additions of Cd, Pb, Cr, Zn, to cement raw meal onthe composition and the properties of the clinker and the cement [J]. Cement Concrete Res.,1996,26(3):377-385.
    [358] Arliguie G., Grandet J. Influence de la composition d'un ciment portland sur son hydration enpresence de zinc [J]. Cement Concrete Res.,1990,20(4):517-524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700