用户名: 密码: 验证码:
深部流体对岩石物性的影响及其地震地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是地震多发的国家之一,强震常给人民生命财产造成巨大损失。但是,目前人类对地震孕育、发生的机理认识尚浅,进行地震短临预测的水平很低,远不能满足减轻地震灾害的社会需求。因此,有必要对中-强震孕育过程、发生机理以及流体地震前兆等方面进行深入研究。
     在总结深部流体、高温高压实验研究和流体在地震预测研究进展的基础上,利用高温高压实验技术测定了辉长岩和斜长岩高温高压下弹性波速和电导率,结合实验产物的岩组学和微区化学分析结果探讨了孕震介质高温高压下物理性质变化的机制;采用气体地球化学方法研究了四川西部三个地震带温泉气体的来源及其与地震活动的关系。研究表明从震源介质演化和流体地震异常特征方面探讨地震成因和地震预测是个有效的途径。
     高压下不同类型岩石的波速随温度的升高逐渐降低,但是具体变化特征存在差异。在1.0 GPa下,辉长岩的纵波速度从室温到800℃下降4%,而从800℃到1100℃下降幅度为16.4%;但是,在2.0 GPa下,纵波速度从室温到850℃时下降3.6%,从850℃到1000℃下降4.6%。然而,在1.0 GPa下,斜长岩纵波速度(V_P)当温度低于680℃时,斜长岩的纵波速度缓慢下降,V_P从室温到680℃降低了2.2%;当温度高于680℃时,纵波速度开始大幅度下降,V_P从680℃到880℃下降了7.6%。高温高压下矿物脱水、熔融导致岩石密度、结构变化,形成新的颗粒边界相,从而使岩石纵波速度开始大幅度下降。
     高压下辉长岩和斜长岩电导率值随温度的升高而升高。在1.2GPa和较低温度条件下,岩石导电性质变化不大,颗粒内部电子传导方式站主导地位。在1.0GPa、410-750℃的温压条件下,测得的斜长岩的电导率值较低,分布在10~(-7)S/m到10~(-5)S/m之间。辉长岩在680℃以下,导电机制以颗粒内部传导机制为主,在680℃以上,开始出现颗粒边缘传导机制。岩石在固体状态下,颗粒边缘传导会降低岩石的总电阻率。
     辉长岩和斜长岩的纵波速度和电导率的就位测量表明,岩石中的含水矿物脱水导致其P波速度开始大幅度下降时,岩石的电传导机制和电导率值却未发生突变。这是由于脱水程度和水的连通程度较低,所以在这样的实验条件下矿物脱水未使电导率急剧增大,也未改变岩石的电传导机制。地球内部低速层和高导层的形成与演化也可能具有类似的特征。在一定的条件下,通过含水矿物脱水可以形成地球内部的低速层,但不一定同时形成高导层,低速层是否同时具有高导的特征取决于矿物脱水程度和区域内自由水的连通程度。
     稳定同位素地球化学特征表明四川西部鲜水河地震带、龙门山地震带和安宁河地震带温泉中的氦具有多源性,温泉的氦、碳同位素组成在不同的地震带存在明显的差异。在鲜水河地震带、龙门山地震带和安宁河地震带温泉的~3He/~4He值分别在0.48-2.59R_A、0.22-1.07R_A和0.01-0.82R_A的范围内。康定地区温泉中的氦有相一当部分来源于地幔。然而,采自鲜水河断裂带西北段甘孜(No.1,2)、泸定(No.9)和安宁河地震带石棉南—普格(No.12,13,21-25)与龙门山地震带的温泉样品具有很低的~3He/~4He值,表明这些温泉的氦主要来自地壳。当然,温泉气中也不能排除大气氦的混入的可能。
     四川西部温泉中二氧化碳的δ~(13)C值分布在-17.09‰—-3.34‰的范围内,游离气样中的CO_2比水溶气样中的CO_2富集重碳同位素~(13)C。不同的构造带内温泉二氧化碳具有不同的碳同位素组成。鲜水河断裂带内温泉二氧化碳主要来源于地
    
    慢,地慢的二氧化碳与氦一起向地表运移。
     高的’He/4He和6”c值,地热异常是四川西部地震带的显著特征。研究区
    不同构造带温泉气体的主要来源不同,意味着不同构造带的热能的来源和供给速
    率也不同。四川西部地热区热储的主要能量源为上地慢热和地壳热。地下流体中
    的氦与二氧化碳是反映地震活动的有效指标。
     深部流体是导致地震的重要因素。地慢流体向上逸散,同时带入地壳大量的
    热。当地慢流体在地壳内局部富集时,地体内产生的空隙压力和热应力能使流体
    富集区的围岩破裂产生地震。火山、地热区的地震与中、深源地震可以用这种孕
    震机制来解释。
     然而,目前我们对地球内部的认识还是很肤浅的。合理地解释地震的成因和
    利用气体地球化学方法实现短临地震预测尚需开展大量工作。
It is necessary to study the genetic mechanics of strong earthquake and the fluid precursors for the shocks because our knowledge about earthquake is so poor that can not meet the social needs of mitigating disaster of strong earthquakes that frequently occurred in China.
    The advances of the role of deep-earth fluids in earthquake generation, high temperature and high pressure experiments with rocks and the earthquake prediction based on fluid precursors were reviewed in the dissertation. The compression wave velocities (VP) and conductivity (σ) of gabbro and plagioclasite under high temperature and high pressure were measured with the ultrasonic pulse transmission method and impedance spectra technique, respectively. The original and unloaded samples were chemically measured and analyzed with the electron microprobe instrument and observed under the microscope. The mechanisms of VP and σ variations of the rocks were discussed based on the data of the experiments and analysis. In addition, the origins of gases in the hot springs and seismological activity in West Sichuan Province were mentioned in the viewpoint of stable isotopic geochemistry.
    VP values of the rocks under high pressure decreased with the increase of temperature. However, VP values of different rocks decreased in the different ways. VP values of the gabbro at the pressure of 1.0 GPa reduced by 4% from the room temperature to 800℃, but reduced severely by 16.4% from 800C to 1100C. VP values of the gabbro at 2.0 GPa reduced 3.6% from room temperature to 850℃, and decreased 4.6% from 850℃ to 1000℃. Otherwise, VP values of plagioclasite at 1.0 GPa decreased by 2.2% from room temperature to 680℃, and decreased sharply by 7.6% from 680℃ to 880℃. The VP value decrease results from mineral dehydration, rock partially-melting under the experiment conditions.
    The values of conductivity of the rocks at the pressures of 1 and 2 GPa increased with temperature increasing. Under the conditions of 1GP and 410-750℃, the conductivity values of plagioclasite are in the range of 10-7 S/m to 10-5 S/m, and the complex impedance of plagioclasite collected from 12Hz to 105Hz shows only one semicircular impedance arc that represents the conductive mechanism of the grain interior conduction. The experiment data indicated that conductive mechanism of gabbro at temperature less than 680 ℃ was the grain interior conduction, and that the grain boundary conduction occurred at the temperature higher than 680 ℃, which resulted in the increase of conductivity of the rocks.
    The data of the microscope observation and microprobe analyses argue that no high conductivity grid of interconnection hydrous fluids in the rock was formed during the dehydration, which hints that the formation and evolution of the high conductivity zone in the crust have a close relationship with the amount of the fluids and the interconnection of the fluids as well.
    The phenomena that the conductivity values of the experiment rocks changed little when the VP values began to decreasing sharply indicated that the grade of minerals dehydration was so lower that the mineral grain boundary and structure of the rock samples changed severely, but did not change the conductive mechanism, which would be the feature of the early stage of a lower-velocity-layer evolution in lithosphere.
    The stable isotopic geochemical characteristics of helium and carbon of the hot springs indicate that the helium and carbon dioxide in the three earthquake zones of Xianshuihe,
    
    
    Anninghe and Longmenshan in West Sichuan Province have the multiple origins. 3He/4He ratios of the hot springs in Xianshuihe, Longmenshan and Anninghe earthquake zones have the ranges of 0.48-2.59RA, 0.22-1.07 RAand 0.01-0.82 RA, respectively. Higher 3He/4He ratios of the hot springs in the Kangding district demonstrate that the helium is partially derived from the mantle, and the helium of the hot springs in the Aninghe and Longmenshan earthquake zones are predominately derived from the crust with mixing of atmospheric helium.
     13C values of carbo
引文
1. Alfrons B. Supercritical fluids in heterogenous catalysis. Chem Rev, 1999, 99:453-473.
    2. Alvarez R, Reyhoso J P, Alvarez L J and Martinez M L, Electrical conductivity of igneous rocks: composition and temperature relations. Bull Volconol, 1978, 41(4): 317-327.
    3. Bai Q, Wang Z-C, Kohlstedt D L. Manganese olivine I: electrical conductivity. Phys Chem Minerals, 1995, 22: 489-503.
    4. Bai Q, Wang Z-C and Kohlstedt D L. Manganese olivine Ⅱ: point defect relaxation. Phys Chem Minerals, 1998, 25: 122-129.
    5. Bell D R and Rossman G R. Water in earth's mantle: the role of nomin ally anhydrous minerals. Science, 1992, 255:1392-1396.
    6. Blacic J D. Effect of water on the experimental deformation of olivine. Am Geophys Union Monograph, 1972, 16:109-115.
    7. Boerner D E, Kurtz R D, Craven J A, et al. Electrical conductivity in the Precambrian lithosphere ofwestem Canada. Science, 1999, 283: 668-670.
    8. Carter N L, Hansen F D, Senseny P E, et al. Stress magnitudes in nature rock salt. J Geophys Res, 1982, 87:9289-9330.
    9. Cater N L, Tsenn M C. Flow properties of continental lithosphere. Tectonophysics, 1987, 136:27-63.
    10. Cemic L, Wil G and Hinze E. Electrical conductivity measurements of olivines under defined thermodynamic conditions. Phys Chem Minerals, 1980, 6: 95-107.
    11. Cheng P, Gao L. Summery of studying geothermal anomaly. In Gao, L. (Eds.), Application and Research on Geothermics, Beijing: Seismological Publish House, 1990, 1-5. (in Chinese)
    12. Cho C H, Shingh S and Robinson G W. Understanding all of water's anomalies with a nonlocal potential. J Chem Phys, 1997, 107:7979-7988.
    13. Constable S, Shankland T J and Duba A. The electrical conductivity of an isotropic olivine mantle. J Geophys Res, 1992, 97: 3397-3404.
    14. Constable S and Duba A. Electrical conductivity of olivine, a dunite and the mantle. J Geophys Res, 1990, 95(B1): 6967-6978.
    15. Constable S and Roberts J J. Simultaneous modeling of thermopower and electrical conduction in olivine. Phys Chem Minerals, 1997, 24:319-325.
    16. Drury M and John D F G. Mantle rheology: insights from laboratory studies of deformation and phase transition. In: Jackon Ⅰ. (Ed), The Earth's mantle: composition, structure, and evolution. Cambridge University Press, 1998, 556-558.
    17. Du J. Helium isotope evidence of mantle degassing in rift valley, Eastern China. Chinese Science Bull, 1994, 39 (12): 1021-1024.
    18. Du J, Xu Y and Sun M. ~3He/~4He and heat flow in oil and gas-bearing basins, China's mainland. Chinese J of Geophys, 1998, 14 (2):239—247.
    19. Du J, et al. Geochemical characteristics of gases from the volcanic area Wudalianchi, Northeastern China. Acta Geologica Sinica, 1999, 73(2):225-229.
    20. Duba A, Jamieson J C and Ito J. The effect of ferric iron on the electrical conductivity of
    
    olivine. Earth Planet Sci Lett, 1973, 18: 279-284.
    21. Duba A, Heard H C and Schock R N. Electrical conductivity of olivine at high pressure and under controlled oxygen fugacity. J Geophys Res, 1974, 79:1667-1673.
    22. Duba A G and Shankland T J. Free carbon and electrical conductivity in the Earth's mantle. Geophys Res Lett, 1982, 9: 1271-1274.
    23. Duba A E, Huenges G and Nover G. Impedance of black shale from Munsterland borehole: an anomalously good conductor?. Geophys J, 1988, 94: 413-419.
    24. Duba A. The electrical conductivity of lherzolite. J Geophys Res, 1993, 98(B7): 11885-11899.
    25. Duba A and Gonna J. Comment on change of electrical conductivity of olivine associated with the olivine-spinel transition. Phys Earth Planet Inter, 1994a, 82: 75-77.
    26. Duba A G, Heikamp S, Meurer W, et al. Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity. Nature, 1994b, 367: 59-61.
    27. Dobson D P and Brodholt J P, The electrical conductivity of the lower mantle phase magnesiowustite at high temperatures and pressures, J Geophys Res, 2000, 105(B1): 531-538
    28. Eckert C A and Chandler K. The 4th International Syposium on Supercritical Fluids. Sendai Japan. 1997, 799-806.
    29. ELEKTB Group. KTB and the electrical conductivity of the crust. J Geophys Res, 1997, 102(B8): 18289-18305.
    30. Finger L W and Prewitt C T. Predicted compositions for high density hydrous magnesium silicates. Geophys Res Lett, 1989,16:1395-1397.
    31. Frenkel J. Kinetic Theory of Liquids. Clarendon:Oxford UK. 1946.
    32. Frost B R, Fyfe W S, Tazaki K, et al. Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust. Nature, 1989, 340: 134-136.
    33. Fyfe W. S., Price N. J. and Thompson A. B., Fluids in The Earth's Crust. Elsevier, 1978.
    34. Gaspasrik T. The role of volatiles in the transition zone. J Geophys Res, 1993, 98(B3):4287-4299
    35. Glover P W and Ross R A. Method of measuring the electric conductivity of saturated rocks in a high-pressure cell subjected to high temperatures. High Temperatures-High Pressures, 1990, 22: 533-539.
    36. Glover P W and Vine F J. Electrical conductivity of carbon-bearing granulite at raised temperatures and pressures. Nature, 1992, 360: 723-726.
    37. Glover P W and Vine F J. Electrical conductivity of the continental crust. Geophys Res Lett, 1993, 21(22): 2357-2360.
    38. Glover P W and Vine F J. Beyond KTB-electrical conductivity of the deep continental crust. Surv Geophys, 1995, 16: 5-36.
    39. Glover P W. Graphite and electrical conductivity in the lower continental crust: a review. Phys Chem Earth, 1996, 21(4): 279-287.
    40. Gough D I. Seismic reflectors, conductivity, water and stress in the continental crust. Nature, 1986, 323:143-144.
    41. Gougt D I. Elctromagnetic exploration for fluids in the Earth's crust. Earth-Sci Rev, 1992, 32(1/2): 3-18.
    42. Griesshaber E, O′Nions R K and Oxburgh E R. Helium and carbon isotope systematics in
    
    crustal fluids from the Eifel, the Rhine Graben and Black Forest, F. R. G. Chem Geol, 1992, 99:213-235.
    43. Griggs D T. Hydrolytic weakening of quartz and other silicates. Geophys J, 1967, 14: 19-31.
    44. Habbert M K and Rubey W W. Role of fluid pressure in mechanics of overthrust faulting. Bull Geol Soc Am, 1959, 70(2).
    45. Hart R, Dymond J and Hogan L. Preferential formation of the atmosphere-sialic crust system from the upper mantle. Nature, 1979, 278:156-159.
    46. Hirsch L M and Shankland T J. Quantitative olivine-defect chemical model: insights on electrical conduction, diffusion, and the role of Fe content. Geophys J Int, 1993, 114: 21-35.
    47. Hoefs J. Stable Isotope Geochemistry. Spring-Verlag Berlin Heideberg New York: Elsevier, 1980.
    48. Hubbert M K and Rubey W W., Geol. Soc. Am. Bull. 1959, 70:115-205.
    49. Huebner S J and Voigt D E. Electrical conductivity of diopside: evidence for oxygen vacancies. Amer Miner, 1988, 73: 1235-1254.
    50. Huebner S J and Dillenaurg G D. Impedance spectra of dry silicate minerals and rock: qualitative interpretation of spectra. Am Miner, 1995, 80: 46-64.
    51. Hyndman R D and Shearer P M. Water in the lower continental crust: modelling magneto-telluric and seismic reflection results. Geophys J Intern, 1989, 98: 343-365.
    52. Hyndman R D, Vanyan L L, Marquis G, et al. The origin of electrically conductive lower continental crust: saline water or graphite?. Phys Earth Planet Inter, 1993, 81: 325-344.
    53. Hyndman R D. Dipping seismic reflectors, electrically conductivity zone, and trapped water in the crust over a subducting plate. J Geophys Res, 1988, 93(B11): 13391-13405.
    54. Igarashi G and Wakita H. Groundwater radon anomalies associated with earthquakes. Tectophysics, 1990,180(2/4): 237-254.
    55. Inoue T, Yurimoto H and Kudoh Y. Hydrous modified spinel, Mg_(1.75)SiH_(0.5)O_4: a new water reservoir in the mantle transition region. Geophys Res Letters, 1995, 22(2): 117-120.
    56. Ito K. Effects of H_2O on elastic wave velocities in ultrabasic rocks at 900℃ under 1GPa. Phys Earth Planet Inter, 1990, 61:260-268
    57. Jackon I, Paterson M S, Niesler H and Waterford R M. Rock anelasticity measurement at high pressure, low strain amplitude and seismic frequency. Geophys Res Lett, 1982, 11: 1235-1238.
    58. Jin Z, Green H W and Zhou Y. Melt topology in partially molten peridotite during ductile deformation, Nature, 1994, 372: 164-167.
    59. Johnson J W and Norton D. Critical phenomena in hydrothermal system: State, thermodynamic, electrostatic, and transport properties of H_2O in the critical region. Am J Sci, 1991, 291:541-648.
    60. Johnston K P, Pack D G and Kim S. Modeling Supercritical Mixtures: How predictive is it?. Ind Eng Chem Res, 1989, 28:1115-1125.
    61. Jones A G. Electrical conductivity of the continental lower crust. In: Fountain D M, Arculus R J and Kay R W (Eds). Continental Lower Crust. Elsevier, Amsterdam, 1992, 81-143.
    62. Julian B R and Sipkin S A. Journal of Geophysics Research, 1985,90:11155-11169.
    
    
    63. Kaneoka I. and Takaoka N. Noble gas state in the Earth's interior - some constraints on the present state. Chemical Geology, (Isotope Geosciece Section), 1985, 52: 75-95.
    64. Kanzaki M. Stability of hydrous magnesian silicates in the mantle transition zone. Phys Earth Planet Inter, 1991, 66: 307-319.
    65. Keiko Kuge. Evolution of the theory of earthquake mechanism. J. Earthquake, 1995, 19:26-32.(in Japan)
    66. Kern H, Tubia J M. Pressure and temperature dependence of P- and S-wave velocities, seismic anisotroy and density of sheared rocks from the Alpujata massif Ronda peridotites, Southern Spain. Earth Planet Sci Lett, 1993, 119: 191-205.
    67. Kern H., Gao Shan, Liu Qing-Shen. Seismic propecies and densities of middle and lower crustal rocks exposed along the North China Geoscience Transect, Earth Planet Sci Lett, 1996, 139::339-355.
    68. Kharaka Y K and Chudaev O V. Water-Rock Interaction, A. A. Balkema, 1995.
    69. Kubo T, Ohtani E and Kato T. Effects of water on the α→β transformation kinetics in San Carlos olivine, Science, 1998: 85-87.
    70. Li X-Y, Ming L C and Manghnani M-H. Pressure dependence of the electrical conductivity of (Mg_(0.9)Fe_(0.1)SiO_3 perovskite. J Geophys Res, 1993, 98(B1): 501-508.
    71. Liera F J, Sato M and Nakatsuka K. Temperature dependence of the electrical resistivity of water-saturated rocks, Geophysics. 1990, 55: 576-585.
    72. Liu L. Effects of H_2O on the phase behavior of the forsterite-enstertite system at high pressures and temperatures and implications for the earth. Phys. Earth Planet Inter, 1987, 49:142-167.
    73. Lupton J E. Terrestrial inert gases: isotope tracer studies and clues to primordial components in the mantle. Annual Review of Earth and Planetary Sciences, 1983,11: 371-414.
    74. Mamyrin B A & Tolstikhin I N. Helium Isotopes in Nature. Elsever Sci Publ, New York, 1984.
    75. Mao H-K and Bell P M. Electrical conductivity and the red shift of absorption in olivine and spinel at high pressure. Science, 1972, 176:403-406.
    76. Macdonald J R. Generalizations of "universal dielectric response" and a general distribution-of-activation-energies model for dielectric and conducting systems. J Appl Phys, 1985, 58:1971-1978
    77. Mareschal M. Fyfe W S, Percival J, et al. Grain-boundary graphite in Kapuskasing gneisses and implications for lower-crustal conductivity. Nature, 1992, 357:674-676.
    78. Mareschal M. Kellett R L and Kurtz R D, Archaean cratonic roots, mantle shear zones and deep electrical anisotropy. Nature, 1995, 375: 134-137.
    79. Matsushima S. Partial melting of rocks observed by the sound velocity method and the possibility of a quasi - dry low velocity zone in the upper mantle, Phys Earth Planet Inter, 1989, 55:306-312.
    80. McSween H Y, et al. Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature, 2001, 409: 487-490.
    81. Mede C and Jeanloz R. Deep-focus earthquakes and recycling of water into the earth's mantle. Science, 1991, 252:68-72.
    82. Menzier M A and Hawkesworth C J. Mantle Metasomatsm. Academic Press, London,
    
    1987.
    83. Miller S A, Ben-Zion Y. and Burg J-P. A three-dimensional fluid-controlled earthquake model: behavior and implications. Journal of Geophysics Research, 1999,104 (B5): 10621-10638.
    84. Morgan P, Sawka W.N. and Furlong K.P., Background and implications of the linear heat flow-heat production relationship. Geophys Res Lett, 1987, 14(3): 248-251.
    85. Nietson J E and Wilshire H G. Magma transport and metasomatism in the mantle: a critical view of current geochemical models. Am Mineral, 1993, 78:1117-1134.
    86. Olhceft G R. Electrical properties of granite with implications for the lower crust. J Geophys Res, 1981, 86:931-936.
    87. Ozima M and Podosek F A. Noble Gas Geochemistry, Cambridge Univ. Press, Cambridge, 1983, 127-298.
    88. Ozima M. Noble gas state in the mantle. Reviews of Geophysics, 1994, 32 (4): 405-426.
    89. Peyronneau J and Poirier J P. Electrical conductivity of the Earth's lower mantle. Nature, 1989, 342; 537-539.
    90. Poirier J P, Goddat A and Peyronneau J. Ferric iron dependence of the electrical conductivity of the Earth's lower mantle material. Phal Trans R Soc Lond, 1996, 354: 1361-1369.
    91. Politzer P, Murray J S, Jane P and Brinck T. Relationships between solute molecular properties and solubility in supercritical CO_2. J Phys Chem, 1993, 97:729-732.
    92. Polyak B G, Prasolov EM, Cermak V and Verkhovskiy A B. Isotopic composition of noble gases in geothermal fluids of the Krusne Hory Mts. Czechoslovakia, and the nature of the local geothermal anomaly. Geochimica et Cosmochimica Acta, 1985,49: 695-699.
    93. Popp T and Kern H. Thermal dehydration reactions characterised by combined measurements of electrical conductivity and elastic wave velocities. Earth Planet Sci Lett, 1993, 120: 43-57.
    94. Quist A S and Marshall W L. Electrical conductances of aqueous sodium chloride solutions from 0-800℃ and at pressure to 4000 bars. J Phys Chem, 1968, 72(2): 684-703.
    95. Reid H E The California earthquake of April 19, 1906, Vol. Ⅱ: The mechanics of the Earthquake. Washington DC: Carnegia Institution of Washington, 1910.
    96. Richet P, Ingrin J, Mysen B O. Premelting effects in minerals: an experimental study, Earth Planet Sci Lett, 1994, 121(4): 589-600.
    97. Rikitake T. Earthquake Forecasting and Warning. Tokyo: Center for Academic Publications Janpan, 1982, 123-142.
    98. Ringwood A E. Composition and Petrology of the Earth's Mantle. New York: McGrawHill, 1975.
    99. Robert W S, Thomas B B, Anthony A C, et al. Supercritical water: A medium of chemistry. Chemistry and Engineering News, 1991,11:26-39.
    100. Robert J J and Tyburczy J A. Frequency dependent electrical properties of minerals and partial-melts, Surv Geophys, 1994, 15:239-262.
    101. Roberts J J and Tyburczy J A. Frequency dependent electrical properties of
    
    polycrystalline olivine compacts. J Geophys Res, 1991, 96(B10): 16205-16222.
    102. Roberts J J and Tyburczy J A. Frequency dependent electrical properties of dunite as functions of temperature and oxygen fugacity. Phys Chem Minerals, 1993a, 19:545-561.
    103. Roberts J J and Tyburczy J A. Impedance spectroscopy of single and polycrystalline olivine: evidence for grain boundary transport. Phys Chem Minerals, 1993b, 20:19-26.
    104. Roberts J J and Duba A G. Transient electrical response of San Quintin dunite as a function of oxygen fugacity changes: information about charge carriers. Geophys Res Lett, 1995, 22(4): 453-456.
    105. Roberts J J and Tyburczy J A. Partial-melt electrical conductivity: influence of melt composition. J Geopys Res, 1999, 104: (B4): 7055-7065.
    106. Rubey W W. In: Polderaart A (Ed.), Crest of the Earth. New York: The Geological Society of America, 1955,631-650.
    107. Sato H and Ida Y. Low frequency electrical impedance of partially molten gabbro: the effect of melt geometry on electrical properties. Tectonophys, 1984, 107:105-134.
    108. Sato H. High temperature a.c. electrical properties of olivine single crystal with varying oxygen partial pressure: implications for the point defect chemistry. Phys Earth Planet Inter, 1986, 41:269-282.
    109. Sato H. High temperature a.c. electrical properties of olivine single crystal with varying oxygen partial pressure: implications for the point defect chemistry. Phys Earth Planet Inter, 1986, 41:269-282
    110. Shaw R W. Chem Eng, Spei. Report, 1991.
    111. Schmeling H, Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. Part 1: elasticity and anelasticity, Phys. Earth Planet Inter, 1985, 41:34-57.
    112. Schmeling H. Partial melt below Iceland: A combined interpretation of seismic and conductivity data. J Geophys Res, 1985, 90:10105-10116.
    113. Schmeling H. Numerical model on the influence of partial melt on elastic, anelastic and electrical properties of rocks. Part Ⅱ: electrical conductivity. Phys Earth Planet Inter, 1986, 43:123-136.
    114. Schilling F R, Partzsch G M, Brasse H, et al. Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data. Phys Earth Planet Inter, 1997, 103:17-31.
    115. Sibson R H. Nature, 1981, 289:665-667.
    116. Sibson RH. Earth-Sci. Rev., 1992, 32(1/2):141-144.
    117. Schock R N, Duba A G, Heard H C, et al., The electrical conductivity of polycrystalline olivine and pyroxene under pressure. In: Manghnani M H, Akimoto S I eds. High-Pressure Research: Applications in Geophysics. New York, San Francisco, London: Academic Press, 1977, 39-51
    118.
    119. Schock R N. Electrical conduction in olivine. J Geophys Res, 1989, 94:5829-5839.
    120. Shankland T J and Waff H S. Partial melting and electrical conductivity anomalies in the upper mantle. J Geophys Res, 1977, 82(33): 5409-5417.
    121. Shankland T J and Ander M. Electrical conductivity, temperatures, and fluids in the lower crust. J Geophys Res, 1983, 88(B11): 9475-9484.
    
    
    122. Shankland T J, Peyronneau J and Poirier J R Electrical conductivity of the earth's lower mantle. Nature, 1993, 366:13-15.
    123. Shankland T J, Duba A G, Mathez E A, et al. Increase of electrical conductivity with pressure as an indicator of conduction through a solid phase in midcrustal rocks. J Geophys Res, 1997, 102(B7): 14741-14750.
    124. Specra F J. Carbon dioxide in igneous petrogenesis. Ⅱ. Fluid dynamics of mantle metasomatism. Contrib Mineral Petrol, 1981, 77:56-65.
    125. Spetzler H and Anderson, The effect of temperature and partial melting on velocity and attenation in a simple binary system. J. Geophys. Res., 1968, 73:6051-6060.
    126. Stesky R M and Brace W E Electrical conductivity of serpentinized rocks to 6 kilobar. J Geophys Res, 1973, 78(32): 7614-7621.
    127. Stanley H E and Tiexiera J. Interpretation of the unusual behavior of H_2O and D_2O at low temperatures: test of a percolation model. J. Chemi. Phys. 1980,73:3404-3422.
    128. Steinitz G, Vulkan U and Lang B. Radon flux at the northwestern segment of Dead Sea (Dead Sac Rift) and its relation to earthquakes. Isr. J Earth Sci, 1999, 48: 283-299.
    129. Thompson A B and Connolly J A D. Metamorphic fluids and anomalous porosities in the lower crust. Tectonophysics, 1990, 182: 47-55.
    130. Tronnes R G, Takahashi E and Scarfe C M. Stability of K-richteri te and phlogopite to 14 GPa. EOS, 1988,69:1510-1511.
    131. Tronnes R G. Low-Al, high-K amphiboles in subducted Lithosphere from 200 to 400 km depth:experimental evidence. EOS, 1990,71 (43):1587.
    132. Turcott D L. Rheology of the oceanic and continental lithosphere. Fuch K et al. (Eds), Composition, structure and dynamic of the lithosphere-asthenosphere system, 1987,61-68.
    133. Tyburczy J A had Roberts J J. Low frequency electrical response of polycrystalline olivine compacts: grain boundary transport, phys Chem Minerals, 1990, 17(11): 1985-1988.
    134. Vine F J, Heikamp G N S, Kontuy A, et al. The effect of pressure on the electrical conductivity of KTB rocks. Surv Geophys, 1995, 16(1): 63-81.
    135. Waff H S. Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry. J Geophys Res, 1974, 79(26): 4003-4010.
    136. Waish, J. B. New analysis of attenuation in partially melted rocks, J. Geophys. Res., 1969, 74 (17):4333-4337.
    137. Wanamaker B J and Duba A G. Electrical conductivity of polycrstalline olivine containing a silicate glass. Geophys Res Lett, 1993, 20(19): 2107-2100.
    138. Wanamaker B J. Point defect diffusivities in San Carlos olivine derived from reequilibration of electrical conductivity following changes in oxygen fugacity. Geophys Res Lett, 1994, 21(1): 21-24.
    139. Watanabe T, Kurita K. The relationship between electrical conductivity and melt fraction in a partially molten system: Arche's law behavior. Phys Earth Planet. inter, 1993, 78:9-17.
    140. Weidner D J, Wang H and Ito J. Elasticity of orthoenstatite. Phys Earth Planet. inter, 1978, 17: 7-13.
    141. Wenzel F. and Sandmeier K J, Geophysical evidence for fluids in the crust beneath the
    
    Black Forest, SW Germany. Earth-Sci. Rev., 1992, 32(1/2): 61-76.
    142. Wood B J and Nell J. High-temperature electrical conductivity of the lower-mantle phase (Mg,Fe)O. Nature, 1991, 351 ( 23): 309-311.
    143. Wyss M and Wiemer S. How Can One Test the Seismic Gap Hypothesis? The Case of Repeated Ruptures in the Aleutians. Pure and Applied Geophysics, 1999, 155 (2-4): 259-278.
    144. Xu Y-S, Poe B, Shankland T J, et al. Electrical conductivity of Olivine, wadsleyite, and ringwoodite under upper-mantle conditions. Science, 1998, 280:1415-1418.
    145. Xu Y-S, McCmmon C and Poe B T. The effect of alumina on the electrical conductivity of silicate perovskite. Science, 1998, 282:922-924.
    146. Yamamoto K and Akimoto S. The system MgO-SiO2-H2O at high pressures a nd temperatures stability field for hydroxyl-chondrodite, hydroxyl-clinohumite and 10Aphase. Am J Sci, 1977, 277:288-312.
    147.上官志冠.火山活动地下流体及其稳定同位素组成初步研究.见:刘若新(主编),人类环境与火山活动.地震出版社,北京,1995,98-100.
    148.马宗晋、马宝林、张流、李彪.山西临汾强震区地壳结构与地震成因.见:国家地震局地质研究所.现今地球动力学研究及其应用,地震出版社,北京,1994,40-49.
    149.马宗晋.地震预报学的三个主要研究分支—震因学、震史学、震兆学.见:国家地震局分析预报中心.地震预报研究(4),北京:地震出版社,1992.36-40.
    150.马宗晋,傅征祥,张郢珍 等.1966~1976年中国九大地震.北京:地震出版社,1982,1-216.
    151.孔令昌,赵谊.五大连池火山地区某些惰性气体同位素比值的研究.地震地质,1993,15(1):88-90.
    152.牛树银,李红阳,孙爱群等.幔枝构造理论与找矿实践,北京:地震出版社,2002.
    153.王钧,黄尚瑶,黄歌山,汪集旸.中国地温分布基本特征,北京:地震出版社,1990.
    154.王吉易.我国水文地球化学地震预报研究的进展和思索.见:国家地震局科技监测司、科技情报中心.地震科技进展与动向.北京:地震出版社,1992,80-85.
    155.王吉易,张素欣,高景春,等.异常系列分析法.地震学报,1994,16(增刊):67-72.
    156.王晓青,石绍先,丁香.前兆异常识别的x~2统计检验法及其应用.地震,1998,18(3):257-264.
    157,王晓青,石绍先,丁香.Bayes判别分析法与地震短临预测.地震,1999,19(1):33-40.
    158.王云基,李正中,贺天培等.地震地下流体观测技术研究与应用.成都:成都地图出版社,1999,53-54.
    159.邓晋福.岩石相平衡与岩石成因,武汉地质学院出版社,1986,1-37.
    160.四川省地震局.一九七六年松潘地震.北京:地震出版社,1979.
    161.白利平,杜建国,刘巍,周文戈.高温高压下辉长岩纵波速度和电导率实验研究.中国科学,2002,
    162.孙丰月,石准立.1995.试论幔源C-H-O流体与大陆板内某些地质作用.地学前缘,2(1/2):167-174.
    163.孙武城,李松林,罗布雷,等.初论华北地区的地壳低速层.地震地质,1987,9:17-26.
    164.李月芳.云南腾冲火山区及红河断裂带温泉地球化学特征.硕士论文,1991,中国科学院兰州地质研究所.
    165.刘庆生,高山,侯渭等.河南登封-鲁山地区地表出露剖面岩石高压条件下地震波
    
    速特征的实验研究.地球科学,1994,19(1):109~112
    166.刘国栋,史书林,王宝钧.华北壳内高导层及其与地壳构造活动性的关系.中国科学,B辑,1984,9:839-848.
    167.刘再华 袁道先 何师意 等.地热CO_2-水-碳酸盐岩系统的地球化学特征及其CO_2来源—以四川黄龙沟、康定和云南中甸下给为例.中国科学(D),2000,30(2):209-214.
    168.刘巍、杜建国、白利平.浅谈超临界流体在地震孕育过程中的作用.地震地质,2000,22(4):439-444.
    169.江成民.中国地震地下水动态观测网.北京:地震出版社,1990.
    170.石绍先,曹刻.前兆群体非均匀度异常与地震短临预报.地震,1999,19(1):59-64.
    171.朱凤鸣,吴戈.一九七五年海城地震.北京:地震出版社,1982,42-91.
    172.朱鹏.西藏当雄地堑温泉气的同位素地球化学特征.硕士论文,1993,兰州:中国科学院兰州地质研究所.
    173.朱茂旭,谢鸿森,郭捷,高温高压下蛇纹石电导率实验研究,科学通报,1999,44(11):1198-1201.
    174.邢玉安,王吉易.水氡预报地震的动态图象新方法.地震,2000(4):360-365.
    175.杜乐天.地幔流体与玄武岩及碱性岩岩浆成因.地学前缘,1998,5(3):145—157.
    176.杜乐天、刘若新、邓晋福.地幔流体与软流层(体)地球化学,地质出版社,北京,1996.
    177.杜建国.轻稀有气体地球化学.地质地球化学,1989,(4):56~59.
    178.杜建国,中国高含二氧化碳天然气研究.天然气地球科学,1991,2(5):203-208.
    179.杜建国,刘文汇.三水盆地非烃天然气地球化学.地球化学,1993,(1):28-34.
    180.杜建国,刘连柱,康春丽.地震活动中地壳深部流体的作用研究进展.地球科学进展,1997,12(5):416-421.
    181.杜建国 等,大别山榴辉岩的氦同位素组成及其地质意义.科学通报,1998,43(4):431-434.
    182.杜建国,宇文欣,李圣强 等.八宝山断裂带逸出氡的地球化学特征及其映震效能.地震,1998,18(2):155-162.
    183.杜建国.揭示地震奥秘的必由之路——研究地球深部物质运动.见:中国地震局人事教育司,面向21世纪的地震科学技术——青年科学论坛,北京:地震出版社,2000,44-49.
    184.杜建国,康春丽.强地震前兆异常特征与深部流体作用探讨.地震,2000,20(3):95-101.
    185.张友南,李彪.山西裂谷带地壳岩石波速研究.地球物理学进展,1993,8(4):206-213.
    186.张炜,王吉易,鄂秀满,等.水文地球化学预报地震的原理与方法.北京:教育科学出版社,1988,1-272.
    187.张炜,邢玉安,王吉易.水化测报区和水预报指标的讨论.见:国家地震局科技监测司.地震预报方法实用化研究文集:水位水化专辑,北京:地震出版社,1990,289-295.
    188.苏根利,谢鸿森,丁东业,等.超临界水的物理化学性质及意义.地质地球化学,1998,26(2):83-89.
    189.吴开统,岳明生,武官英,等.海城地震序列的特征.地球物理学报,1976,9(2):95-109.
    190.余兆康,蔡诗凰,林家涛.爆破水文地球化学效应试验综述.见:国家地震局科技监测司.地震监测与预报方法清理成果汇编:地下水分册.北京:地震出版社,1988,145-148.
    
    
    191.陈绍绪,蒋春花,张青荣等.地震前兆异常的信度综合.地震,1998,18(4):319-324.
    192.国家地震局科技监测司.水文地球化学地震前兆观测与预报.北京:地震出版社,1992,3-11.
    193.国家地震局科技监测司.地震监测与预报方法清理成功汇编:地下水分册.北京:地震出版社,1988.
    194.国家地震局预测预防司.地下流体地震预报方法.北京:地震出版社,1997,96-111.
    195.欧阳自远,倪集众,项仁杰.地球化学—历史、现状和发展趋势.北京:原子能出版社,1996,27-32.
    196.杨承勋(译),Mueller S.大陆地壳的新模型.地壳,地震出版社,北京,1983,25-38.
    197.郑海飞、谢鸿森、徐有生 等.0.001 molNaCl溶液的高压电导率测定.科学通报,1997.42(14):1545-1547.
    198.赵志丹,高山,骆庭川等,秦岭和华北地区地壳低速层的成因探讨.岩石高温高压实验证据,地球物理学报,1996,39(5):637-652.
    199.项仁杰,史崇周,冯昭贤.地壳和上地幔研究(八十年代进展).北京:地震出版社,1991.1-6.
    200.罗灼礼,郭大庆,张天中,杜建国(主编),中国地震局监测预报司.地震实验场短临预报新方法新技术研究,北京:地震出版社,2002,1-240.
    201.国家地震局地质研究所.现今地球动力学研究及其应用,地震出版社,北京,1994.
    202.侯渭,谢鸿森.地球壳幔的初期演化.地球科学进展,1991,12(2):180-187.
    203.姜葵.1988年云南澜沧-耿马地震.昆明:云南大学出版社,1993,165-284.
    204.贾跃明.当代地质科学前缘,中国地质大学出版社,武汉,1993,54-66
    205.贾跃明.地壳规模流体的远距离运移不断得到证实.地学前缘,1996,3(3/4):18.
    206.郭自强,施行觉,王其允.水对岩石粘滑特征的影响.地球物理学报,1989,32(增刊):307-311.
    207.钱祥麟.固体地球科学前沿研究的新挑战.地学前缘,1995.2(1/2):183-186.
    208.顾芷娟,张流,李彪,等.华北地区角闪石的脱水实验与壳内高导层.中国上地幔特征与动力学文集.北京:地震出版社,1990.178-172.
    209.顾芷娟,郭才华,李彪,等.壳内低速高导层成因初步探讨.中国科学(D辑),1995,25(1):108-112.
    210.高平,郭才华,刘若新,等.华北地壳岩石物理性质与低速高导层.现今地球动力学研究及其应用.北京:地震出版社.1994,344-357.
    211.高平,郭才华,张友南,等.高温高压下岩石相变及物理性质综合研究实验系统.见:中国矿物岩石地球化学学会地幔矿物岩石地球化学委员会编,中国上地幔特征与动力学文集,北京:地震出版社,1990,170-177.
    212.高山,赵志丹,骆庭川等.东秦岭河南伊川-湖北宜昌地学断面地表岩石组成、化学成分及形成机制,岩石学报,1994,19(1):109-112.
    213.高山,金振民,Kern H,等.大别超高压榴辉岩高温高压下地震波速和密度的初步研究—对造山带地壳深部组成和莫霍面性质的启示.科学通报,1997,42(8):862-866.
    214.唐荣昌,韩渭宾.四川活动断裂与地震.北京:地震出版社,1993,7-272.
    215.徐永昌,沈平,刘文汇,陶明信,孙明良,杜建国.天然气中稀有气体地球化学.北京:科学出版社,1998.
    216.徐永昌等.天然气成因理论及应用,北京:科学出版社,1994,270-316.
    217.徐常芳,赵国泽,詹燕.壳内低阻层的形成及其与地震的关系.现今地球动力学研究及其应用.北京:地震出版社,1994,100-107.
    
    
    218.徐学纯.麻粒岩相变质流体和流体—岩石相互作用.地学前缘,1998,5(4):284-290.
    219.黄尚瑶,胡素敏,马兰.火山温泉地热能.北京:地震出版社,1986,67-105.
    220.路凤香.深部地幔及深部流体.地学前缘,1996,3(3/4):181-186.
    221.韩庆军,邵济安.地幔中水的研究进展.岩矿测试,1999,(1):
    222.谢鸿森,张月明,徐惠刚 等.高温超高压下测量岩石矿物弹性波速的新方法及其地学意义,中国科学,1993,23(8):861-864
    223.谢鸿森等(译),Prewitt C T等著.地球物质研究.西安:西北大学出版社,1991.
    224.谢鸿森.地球深部物质科学导轮,北京:科学出版社,1997,215-244.
    225.谢鸿森,侯渭,张月明.超高压含水体系的其些实验结果与水在岩石圈演化中的意义.李继亮(主编).中国东南海陆岩石圈结构与演化研究.北京:中国科学技术出版社,1992,218-227.
    226.梅世蓉.地震前兆和预报方法的系统研究.国家地震局分析预报中心.地震预报研究(4).北京:地震出版社,1992,3-34.
    227.梅世蓉,冯德益,张国民 等.中国地震预报概论.北京:地震出版社,1993,175-189.
    228.戴金星,宋岩,戴春森 等.中国东部无机成因气及其气藏形成条件,北京:科学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700