用户名: 密码: 验证码:
上扬子地块西缘壳幔电性结构特征及其地质构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上扬子地块西缘属青藏高原东缘,处于中国大地构造单元的重要部位,西部与青藏高原腹地相连,东部与上扬子地块相邻,是世界上地质构造最为复杂的地区之一,其独特的松潘-甘孜地块、龙门山碰撞构造带及川西前陆坳陷带等地质构造单元,一直是地质、地球物理学家研究的热点,尤其是龙门山碰撞构造带位于松潘-甘孜地块与上扬子地块接合部位,同时又处于中国著名的南北地震带上,是资源和地质灾害等领域研究的关键部位,多年来有关上扬子地块西缘尤其是龙门山碰撞构造带深部壳幔结构等一系列关键问题受到地质、地球物理工作者的广泛重视和研究。
     本文是在国家自然科学重点基金项目(40839909)扬子西缘深部结构与油气赋存背景研究和深部探测技术与实验研究专项(201011043-02)支持下,采用MT+LMT探测模式,在上扬子地块西缘布设了两条长周期大地电磁测深剖面结合地表地质和区域构造地质从中上地壳和岩石圈两个不同分辨尺度上对上扬子地块西缘深部壳幔电性结构进行了的深入研究,探索电性结构所代表的地质和动力学意义。
     本文首先在场源平面波模型的假设前提下推导了层状球体介质模型LMT一维正演公式,编写了层状球体介质模型一维正演程序;通过对理论模型的计算,研究了地球曲率对长周期大地电磁电磁场响应的影响,从而为本文LMT剖面资料的资料处理和反演解释提供了理论依据。第二,本文在对若干典型地形模型MT带地形二维正演模拟的基础上,分析了起伏地形对MT资料产生的畸变影响;根据本文的研究剖面碌曲-中江和名山-广元剖面的实际地形进行了模拟,考察了目标剖面大地电磁响应受地形影响的特点,并采用MT Zohdy二维带地形反演程序对受畸变的正演数据进行了反演计算,计算结果表明,MT二维带地形反演技术可有效的消除起伏地形对MT资料产生的畸变,取得了较好的效果。在后续章节,本文分别探讨了上扬地块西缘MT剖面和LMT剖面控制区域中上地壳电性结构模型和岩石圈电性结构模型。根据上扬子地块西缘MT和LMT电性结构模型结合地表地质研究取得了以下的主要成果:○1根据碌曲-中江MT剖面反演结果结合地表地质和区域构造地质,编制了碌曲-中江MT剖面地质解释图,分析了上扬子地块西缘中上地壳电性结构特征;根据碌曲-合川LMT剖面反演结果结合地表地质和区域构造地质,编制了碌曲-合川LMT剖面地质解释图,分析了上扬子地块西缘岩石圈深部电性结构特征;根据名山-广元LMT剖面反演结果结合地表地质和区域构造地质,编制了名山-广元LMT剖面地质解释图,分析了该剖面深部壳幔电性结构特征。○2根据碌曲-中江MT剖面中上地壳电性结构特征,初步探讨了龙门山逆冲推覆构造的深部根源,推断可能是由于松潘-甘孜地块通过地壳内的低阻高导层相对于上扬子地块向南东东-南东方向运动,受到坚硬的上扬子地块阻挡而产生塑性形变,将应力传递给脆性的上地壳,因而产生一系列收敛于壳内低阻层的断裂带,并逆冲推覆于稳定上扬子地块之上,形成了上部高阻及下部高阻,中间夹低阻的逆冲断裂带独特的电性构造框架。○3根据碌曲-合川LMT剖面电性结构特征初步探讨了中新生代以来上扬子地块西北缘边界,认为地表以茂汶断裂带为界,岩石圈深部以松潘壳幔韧性剪切带为界,以东岩石圈为上扬子克拉通型岩石圈,以西的岩石圈为青藏增厚型岩石圈。○4根据碌曲-合川LMT剖面电性结构特征初步认为龙门山碰撞构造带与川西前陆坳陷带结合带岩石圈内部发育高阻楔形构造,推断龙门山及松潘-甘孜地块由于受到来自东南方向巨厚刚性的上扬子地块和西部青藏板块的双向挤压,松潘-甘孜地块中上地壳向东向上扬子地块西缘逆冲推覆,中下地壳及上地幔顶部向东向深部俯冲的态势,使得上扬子地块像一个高阻楔形体插入龙门山内部,形成的具有高阻楔形特征的构造。○5根据碌曲-合川LMT剖面电性结构特征初步提出青藏高原东缘物质除向北向南运移外,还有向深部向东南运移的态势。○6根据名山-广元LMT电性剖面初步探讨了汶川M8.0特大地震及余震分布规律:汶川特大地震发生在龙门山南段低阻(低速)带与龙门山中段高阻(高速)结合带高阻(高速)块体的内侧,这很可能是强震发生的重要深部构造背景;龙门山断裂带北段、中段和南段深部不同的电性结构(速度结构)特征是汶川地震发生的重要深部背景,龙门山断裂带南段具有低阻、低速的构造特点而不利于应力集中可能是汶川地震余震在龙门山南段分布较少、较小的基本原因之一。
The western margin of the Yangtze block which is the eastern margin ofQinghai-Tibet Plateau is an important part of tectonic units in china. It locatesbwtween the east of Qinghai-Tibet Plateau and the west of the Yangtze block, which isone of the most complex structural belts in the world. The Songpan-Garze fold belt,Longmenshan collision belt and the west Sichuan foreland basin of that area havealways been the hotspots studied by geologists and geophysicists. Especially theLongmenshan collision belt which locates between the Songpan-Ganzi block and theYangtze block (also locates on the north-south seismic belt of china), is a key part ofthe resources and geological hazards study. For many years, a series of key issuesabout the crust-mantle structure of Longmenshan collision belt and the border ofwestern margin of the Yangtze Plate attracted attention and researched by geologistsand geophysicists.
     This thesis is supported by the National Natural Science Foundation (Project Number:40839909) and SinoProbe Deep Exploration in china (Project Number:201011043-02). Using the MT+LMT exploration mode assisted with surface geologyand regional tectonic to study the deep electrical structure of crust and mantle in thewestern margin of the Yangtze block from the two different scales (upper crust andlithosphere).It’s purpose is to explore the electrical structure of the western margin ofthe Yangtze block and study the dynamics of the geological and geodynamic.Firstly, this thesis discusses LMT one-dimensional forward modeling in a layeredsphere model under the assumption of plane wave model and study the impact of theearth's curvature on the LMT electromagnetic response with a series of theoreticalmodel. Secondly, on the basis of two-dimensional MT forward modeling with theterrain, we focuse on the impact of topography on magnetotelluric, and prepared twomodels with the real topography on the study profiles,we analyzed the topographyeffect on MT data on this two profiles;Theoretical calculations show that the two-dimensional MT inversion code with topography can effectively eliminate thedistortion on MT data which produced by rugged terrain. Finally, we get thetwo-dimensional electrical structure model of the upper crust and the electricalstructural model of Lithosphere with the MT2d inversion code. According to MT2Delectrical section on the western margin of the Yangtze block assisted with the surfacegeology we get the following main conclusions:(1) According to electrical structure ofLuqu-Zhongjiang MT profile, we prepared the geological interpretation section map ofof the upper crust; According to electrical structure of Luqu-Hechuan LMT profile weprepared the geological interpretation section map of of the Lithosphere; According toelectrical structure of Mingshan-Guangyuan LMT profile we prepared the geologicalinterpretation section map of of the Lithosphere along the Longmenshan collision belt.(2)Initially speculated that the formation of Longmenshan collision belt is probably dueto the movement of the Songpan-Ganzi block to the South East East-South Eastdirection relative to the Yangtze Block through the low resistancelayer(High-conductivity layer)in the crust but blocked by the high speed and highresistance Yangtze Block. And the plastic deformation transfer the stress to the brittleupper crust, this leads to a series of fault thrusting on top of the Yangtze block, whichforming the unique tectonic framework of high resistance on the top and bottom withthe low resistivity on the middle.(3) Initially confirm the boundary of the westernmargin of the Yangtze Plate: the surface is bounded by Mao-wen Fault, and thelithosphere is bounded by Song-pan mantle shear zone, on the east of the Song-panmantle shear zone is the Yangtze craton lithospheric and the west of the Song-panmantle shear zone is the Qinghai-Tibet thickening lithosphere.(4)As a result of thetwo-way squeeze on the Yangtze Block and Qinghai-Tibet Plate the upper crust ofSongpan-Ganzi block thrusting on to the western margin of the Yangtze block on theeast direction, the lower crust and upper mantle to the east to the deep subductiondirection, which leads to Yangtze block wedge into the internal lithosphere of Longmenmountain, the two formed a "wedge " structural characteristics.(5) According to LMTprofile, the substance of the Qinghai-Tibet Plateau eastern edge has both the north andsouth migration direction and deep southeast migration direction.(6) According toGuangyuan-Mingshan LMT profile,we preliminary study the relationship betweenearthquake activity regular pattern and the deep structure: Wenchuan earthquake offenoccurred in the transition zone between the low resistance (low speed) and highresistance (high speed) inside the high resistance (high speed) side. This is probablythe deep background of strong earthquakes.The different electrical structure ofNorthern Section, Middle Section and Southern Section in Longmen Mountain hrustbelt is the most basic reason why the distribution of aftershocks in the southernsection of Longmen Mountain less than the other section.
引文
[1]陈乐寿,王光锷.大地电磁测深法[M].北京:地质出版社,1990.
    [2]陈乐寿,刘任,王天生.大地电磁测深资料处理与解释[M].北京:石油工业出版社,1989.
    [3]王家映.我国大地电磁测深研究新进展[J].地球物理学报,40(增刊):206-216,1997.
    [4]刘国栋.我国大地电磁测深的发展[J].地球物理学报,37(增刊):301-310,1994.
    [5]魏文博,金胜,叶高峰,等.大陆岩石圈导电性的研究方法[J].地学前缘,2003,10(1):15-23.
    [6]魏文博.我国大地电磁测深新进展及展望[J].地球物理学进展,17(2):245-254,2002.
    [7]李立,金国元.攀西裂谷带及龙门山断裂带地壳上地幔的大地电磁测深研究[J],物探与化探.1987,11(3):161-169.
    [8]张洪荣.川西北龙门山-邛崃山地壳-上地幔的结构构造特征[J].四川地质学报,1990,10(2):73-84.
    [9]王绪本,朱迎堂,赵锡奎,等.青藏高原东缘龙门山逆冲构造深部电性结构特征[J].地球物理学报,2009,52(2):564-571.
    [10]王绪本,贾进斗,赵锡奎,等.松潘-利川-邵阳地质地球物理大剖面综合研究报告
    [R].1999-2000,石油天然气集团公司项目,2000.
    [11]王绪本,李永年,高永才.大地电磁测深二维地形影响及其校正方法研究[J].物探化探计算技术,1999,21(4):328-332.
    [12]王绪本,余年,朱迎堂,等.龙门山逆冲构造带大地电磁测深初步成果[J].成都理工大学学报(自然科学版),2008,35(4):398-403.
    [13]王运生,王绪本,苟量,等.松潘-邵阳大地电磁剖面深、浅部典型构造的解释[J].南水北调与水利科技,2007,5(2):70-77.
    [14]简兴祥.大地电磁二三维建模及正演数值模拟[D].成都:成都理工大学,2009.
    [15]朱迎堂,王绪本,余年,等.龙门山大地电磁深部结构及汶川地震(M_S8.0)[J].地质学报,2008,82(12):1769-1777.
    [16]肖鹏飞,白登海, IM Varentsov,等.长周期大地电磁测深研究——青藏高原东部LMT响应函数及应用[J].地震地质,2010,32(1):38-50.
    [17]孙洁,晋光文,白登海,等.青藏高原东缘地壳上地幔电性结构探测及其构造意义[J].中国科学(D辑),2003,33(增刊):173-180.
    [18]朱介寿,曹家敏,李显贵,周兵.中国及其邻区地球三维结构初始模型的建立[J].地球物理学报,1997,40(05):627-648
    [19]朱介寿,曹家敏,蔡学林,严忠琼.东亚及西太平洋边缘海高分辨率面波层析成像[J].地球物理学报,2002,45(5):646-664.
    [20]朱介寿,曹家敏,蔡学林,严忠琼.中国及地近陆域海域地球内部三维结构及动力学研究[J].地球科学进展,2003,18(4):497-503.
    [21]朱介寿,蔡学林,曹家敏,等.中国华南及东海地区岩石圈三维结构及演化[M].北京:地质出版社,2005.
    [22]朱介寿.汶川地震的岩石圈深部结构与动力学背景[J].成都理工大学(自然科学版),2008,35(4):348-356.
    [23]崔作舟,陈纪平,吴苓.花石峡-邵阳深部地壳的结构和构造[M].北京:地质出版社,1996.
    [24]曹家敏,王有学.阿尔泰—台湾剖面茂汶—邵阳段地壳结构,阿尔泰—台湾地学断面论文集[C].武汉:中国地质大学出版社.1997:82-86.
    [25]曹家敏,董颐珍.爆炸地震研究华南地区邵阳-泉州地壳结构.阿尔泰—台湾地学断面论文集[C].北京:中国地质大学出版社,1997.
    [26]陈高,吴健生,于鹏.松潘-阿坝地区深部电性特征[J].地球科学-中国地质大学学报,2006,31(6):857-878.
    [27]蔡学林,朱介寿,曹家敏,等.四川黑水—台湾花莲断面岩石圈与软流圈结构[J].成都理工大学学报(自然科学版),2004,31(5):441-451.
    [28]蔡学林,朱介寿,曹家敏.中国及邻近陆海地区软流圈三维结构及其与岩石圈的相互作用[J].中国地质,2006,33(4):804-815.
    [29]蔡学林,曹家敏,朱介寿.新疆可可托海—四川简阳地学断面岩石圈与软流圈结构[J].中国地质,2008,35(3):375-391.
    [30]蔡学林,朱介寿,曹家敏,等.中国大陆岩石圈地壳三维结构与动力学模式[J].中国地质,2007,34(4):543~557.
    [31]蔡学林,曹家敏,朱介寿,等.龙门山岩石圈地壳三维结构及汶川大地震成因浅析[J].成都理工大学学报(自然科学版),2008,35(4):357~365.
    [32]蔡学林,王绪本,朱介寿,曹家敏,等.汶川8.0级特大地震震源断裂特征及其动力学分析[J].中国地质,2010.37(4):952-966.
    [33]林茂炳,苟宗海,王国芝,等.龙门山中段地质[M].成都:成都科技大学出版社,1996.
    [34]林茂炳,苟宗海,王国芝,等.四川龙门山造山带造山模式研究[M].成都:成都科技大学出版社,1997,133-161.
    [35]林茂炳,苟宗海,吴山,等.龙门山地质考察指南[M].成都:成都科技大学出版社,1997.
    [36]林茂炳.汶川大地震与龙门山构造带[J].成都理工大学(自然科学版),2008,35(4):366-370.
    [37]林茂炳.初论陆内造山带的造山模式[J].四川地质学报,1996,16(3):193-198.
    [38]唐荣昌,韩渭滨.四川活动断裂与地震[M].北京:地震出版社,1993.
    [39]黄汲清,陈炳蔚.中国及邻区特提斯海的演化[M].北京:地质出版社,1987.
    [40]黄汲清,任纪舜,姜春发,等.中国大地构造及其演化[M].北京:科学出版社,1980.
    [41]刘树根,罗志立,赵锡奎,等.中国西部盆山系统得耦合关系及其动力学模式—以龙门山造山带—川西前陆盆地系统为例[J].地质学报,2003,77(2):177-186.
    [42]刘树根,罗志立.四川龙门山冲断带中北段岩石圈结构研究[J].石油与天然气地质,1990,11(1):86-95.
    [43]刘树根,赵锡奎,罗志立,等.龙门山造山带—川西前陆盆地系统构造事件研究[J].成都理工学院学报,2001,28(3):221—230.
    [44]刘树根.龙门山冲断带与川西前陆盆地的形成演化[M].成都:成都科技大学出版社,1993,17-21.
    [45]滕吉文,白登海,杨辉,等.2008汶川Ms8.0地震发生的深层过程和动力学响应[J].地球物理学报,2008,51(5):1385-1402.
    [46]滕吉文,熊熊.青藏高原东缘地壳运动与深部过程的研究[J].地球物理学报,2002,45(4):507-515.
    [47]滕吉文.中国地壳与上地幔的地球物理探测[J].地球物理学报,1997,22(4):346-350
    [48]王卫民,赵连锋,李娟,等.四川汶川8.0级地震震源过程[J].地球物理学报,2008,51(5):1403-1410.
    [49]张先康,嘉世旭,赵金仁,等.西秦岭—东昆仑及邻近地区地壳结构—深地震宽角反射/折射剖面结果[J].地球物理学报,2008.51(2):439-450.
    [50]王椿镛,韩渭宾,吴建平,等.松潘-甘孜造山带地壳速度结构.地震学报,2003,25(3):229-241.
    [51]王椿墉,吴建平.川西藏东地区的地壳P波速度结构[J].中国科学(增刊),2003,33:182-189.
    [52]王椿镛,王溪莉,苏伟,等.青藏高原东缘下地壳流动的地震学证据[J].四川地震,2006,(04):2-4.
    [53]王椿镛,楼海,姚志祥,等.龙门山断裂带深部构造和地壳组分的分段特征[J].国际地震动态,2010,(6):15-16.
    [54]赵国泽,陈小斌,王立凤,等.青藏高原东边缘地壳管流层的电磁探测证据[J].科学通报,2008,53(3):345-350.
    [55]赵国泽,汤吉,詹艳,等.青藏高原东北缘地壳电性结构和地块变形关系的研究[J].中国科学(D辑),2004,34(10):908-918.
    [56]万战生,赵国泽,汤吉,等.青藏高原东边缘冕宁-宜宾剖面电性结构及其构造意义[J].地球物理学报,2010,53(3):585-594.
    [57]马晓冰,孔祥儒,刘宏兵,等.青藏高原东北部地区地壳电性结构特征[J].地球物理学报,2005,48(3):689-697.
    [58]马晓冰,孔祥儒,刘宏兵,闫永利.青藏高原东部大地电磁测深探测结果[J],中国科学D辑31(增):72-76,2001.
    [59]詹艳,赵国泽,王继军,汤吉,等.青藏高原东北缘海原弧形构造区地壳电性结构探测研究[J].地震学报,2005,27(4):431-440.
    [60]汤吉,詹艳,赵国泽,等.青藏高原东北部玛沁-兰州-靖边剖面地壳上地幔电性结构研究[J].地球物理学报,2005,48(5):1206-1216.
    [61]王二七,孟庆任,陈智樑,等.龙门山断裂带印支期左旋走滑运动及其大地构造成因[J].地学前缘,2001,8(2):375-384.
    [62]汤军.西松潘-甘孜弧前盆地的形成及演化.沉积与特提斯地质,2002,22(3):53-59.
    [63]许志琴,侯立玮,王宗秀,等.中国松潘-甘孜造山带的造山过程[M].北京:地质出版社,1992.
    [64]许志琴,王宗秀,候立玮.松潘-甘孜造山带构造研究新进展[J].中国地质,1991,12:14-16.
    [65]许志琴,杨经绥,姜枚,等.大陆俯冲作用及青藏高原周缘造山带的崛起[J].地学前缘,1999,6(3):139-151.
    [66]许志琴,杨经绥,李海兵,等.青藏高原与大陆动力学-地体拼合、碰撞造山及高原隆升的深部驱动力[J].中国地质,2006,33(2):221-238.
    [67]许志琴,张建新,徐惠芬,等.中国主要大陆山链韧性剪切带及动力学[M].北京:地质出版社,1997.
    [68]李景明,刘树根,李本亮,等.中国西部C-型前陆盆地形成与油气聚集[M].北京:石油工业出版社,2006.
    [69]任纪舜,肖黎薇.1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱[J].地质通报,2004,23(1):1-11.
    [70]杜德勋,罗建宁,惠兰.巴颜喀拉三叠纪沉积盆地岩相与古地理——以阿坝-若尔盖盆地为例[J].岩相古地理,1998,(01):1-18.
    [71]杨逢清,殷鸿福,杨恒书,等.松潘甘孜地块与秦岭褶皱带、扬子地台的关系及其发展史[J].地质学报,1994,68(3):208-218.
    [72]万天丰.中国大陆早古生代构造演化[J].地学前缘,2006,13(6):30-42
    [73]王鸿祯.中国古地理图集[M].北京:地图出版社,1985:143.
    [74]殷鸿福,张克信.中央造山带的演化及其特点[J].地球科学-中国地质大学学报,1998,23(5):438-442.
    [75]罗志立,等.试解中国地质百幕大问题[J].新疆石油地质,2006,27(1).
    [76]罗志立.龙门山造山带岩石圈演化的动力学模式[J].成都地质学院学报,1991,18(1):1-7.
    [77]刘和甫,梁慧社,蔡立国.川西龙门山冲断系构造样式前陆盆地演化[J].地质学报,1994,68(2):101-117.
    [78]殷鸿福,吴顺宝,杜远生,等.华南是特提斯多岛洋体系的一部分[J].地球科学-中国地质大学学,1999,24(1):1-12.
    [79]张国伟,郭安林,姚安平.中国大陆构造中的西秦岭-松潘大陆构造结[J].地学前缘,2004,11(3):23-32.
    [80]张国伟,郭安林,姚平安.中国大陆构造中的西秦岭-松潘大陆构造结[J].地学前缘,2004,11(3):23-32.
    [81]张国伟,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001.
    [82]李月,周瑶琪,颜世永,等,龙门山造山带构造演化模式的建立[J].中国石油大学学报(自然科学版),2008,32(2):12-15,20.
    [83]袁学诚.阿尔泰—台湾地学断面论文集[C].武汉:中国地质大学出版社,2008.
    [84]张季生,高锐,李秋生,等.松潘-甘孜和西秦岭造山带地球物理特征及基底构造研究[J].地质论评,2007,53(2):261-266.
    [85]张国伟,郭安林,姚平安.中国大陆构造中的西秦岭-松潘大陆构造结[J].地学前缘,2004,11(3):23-32.
    [86]赵友年.龙门山及其地区大地构造若干问题[J],天然气工业,1983,3(4):50-56.
    [87]陈智梁,沈凤,刘宇平,等.青藏高原东部地壳运动的GPS测量[J].中国地质,1998,5:32-35.
    [88]陈智梁,张选阳,沈凤,等.中国西南地区地壳运动的GPS监测[J].科学通报,1999,44(5)::32-35.
    [89]陈智梁,刘宇平,唐文清,等.青藏高原东北缘大陆岩石圈现今变形和位移[J].地质通报,2006,25(1-2):20-28.
    [90]张培震,沈正康,王敏,等.青藏高原及周边现今构造变形的运动学[J].地震地质,2004,26(3):367-377.
    [91]张培震,王琪,马宗晋.青藏高原现今构造变形特征与GPS速度场[J].地学前缘,2008,9(2):442-450.
    [92]米萨客N纳米吉安,赵经祥译.勘查地球物理—电磁法[M].北京:地质出版社,1992.
    [93]徐建华.层状媒质中的电磁场与电磁波.北京:石油工业出版社,1997.
    [94]王家映.地球物理反演理论[M],武汉:中国地质大学出版社,1998.
    [95]陈小斌.MT二维正演计算中地形影响的研究[J].石油物探,2000,39(3):112-120.
    [96]徐世浙.地球物理中的有限单元法[M].北京:科学出版社,1994.
    [97]徐世浙,李予国,刘斌.大地电磁Hx型波二维地形改正的方法与效果[J].地球物理学报,1997,40(6):842-846.
    [98]徐世浙,刘斌.大地电磁测深一维连续介质反演的曲线对比法[J].地球物理学报,1995,(4):375~377.
    [100]阮百尧,戴世坤.模型对比法及在电阻率测深曲线解释中的应用[J].桂林工学院学报,1995,15(2):190-195.
    [101]阮百尧.二维大地电磁测深曲线的快速反演[J].桂林工学院学报,1998,(1):631-325
    [102]王若,王兴泰,等.用改进的Zohdy反演方法进行二维电阻率图像重建[J].长春科技大学学报,1998,28(3):339-344.
    [103]刘云,王绪本.自适应地形电磁场双二次变化MT二维有限元数值模拟,第九届中国国际地球电磁学术讨论会论文集[C].2009-11-27.
    [104]刘云,王绪本.大地电磁二维自适应地形有限元正演模拟[J].地震地质,2010,32(3):382-391.
    [105]史明娟,徐世浙,刘斌.大地电磁二次函数插值的有限元法正演模拟[J].地球物理学报,1997,40(3).
    [106]阮百尧,徐世浙.二维直流电阻率测深曲线的快速反演[J].物探与化探,1996,20(6):455~460.
    [107]金胜.青藏高原的壳幔电性结构特征及其动力学意义[D].北京:中国地质大学(北京),2009.
    [108]余年.龙门山构造带中段地壳电性结构研究[D].成都:成都理工大学,2008.
    [109]戴世坤.用视模型空间对比法进行地球物理反演[J].地球物理学报,1994,37(增刊2):524-533.
    [110]石应俊,刘国栋,吴广耀等.大地电磁测深法教程.北京:地.震出版社,1985.23~34.
    [111]吴建平,黄媛,张天中,明跃红,房立华.汶川Ms8.0级地震余震分布及周边区域P波三维速度结构研究[J].地球物理学报,2009,52(2):320-328.
    [112]雷建设,赵大鹏,苏金蓉等.龙门山断裂带地壳精细结构与汶川地震发震机理[J].地球物理学报,2009,52(2):339-345.
    [113] Chouteau, M and K Bouchard. Two dimensional terrain correction inmagnetotelluric surveys[J].Geophysics,1988,53(6):854-862.
    [114] Wannamaker,P E, J A Stodt and L Rijo. Two-dimensional topographic responsesin magnetotelluric modeled using finite elements[J].Geophysics,1986,51(11):2131-2144.
    [115] Oldenburg D W, Ellis R G. Inversion of geophysical data using an approximateinverse mapping[J]. Geophy J.int.,1991,105:325-353.
    [116] Zohdy A A R. A new method for the automatic inter-pretation of Schlumbergerand Wenner Sounding curves[J]. Geophysics,1989,54:245-253.
    [117] Price, A.T.. Electromagnetic induction in a semi-infinite conductor witha plane boundary[J]. Quart.J. Mech. Appl. Math,1950,9:385-410.
    [118] Cagniard,L. Basic theory of the magneto-telluric method of geophysicalprospecting[J]. Geophysics,1953,18:605-635.
    [119] Wait,J.R..Theory of magnetotellurie fields[J]. J.Res. NBS,1962,66D:509-541.
    [120] Price, A.T.. Electromagnetic induction in a semi-infinite conductor witha plane boundary[J]. Quart.J. Mech. Appl. Math,1950,9:385-410.
    [121] Madden, T.&Nelson, P., A defense of Cagniard's magnetotelluric method,Geophys. Zab. O.N.R.,Project NR, pp.371-401,1964. Massachusetts Institute ofTechnology.
    [122] Dmitriev and M.N. Berdichevsky. The fundamental model of magnetotelluricsounding[J]. In: Proc. Inst. Elect. Electron. Eng.67(1979), pp.1034–1044.
    [123] Srivastava,S.P.. Theory of the Magnetotelluric Method for a SphericalConductor[J]. Geophys.J.R.astr. Soc,1966,11:313-381.
    [124] Constable S C,Parker R L, Constable C G. Occam s inversion: A practicalalgorithm for generating amooth models form elect romagnetic sounding data [J]Geophysics,1987,52(3):289-300.
    [125] Chouteau, M and K Bouchard. Two dimensional terrain correction inmagnetotelluric surveys[J].Geophysics,1988,53(6):854-862.
    [126] Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the TibetanPlateau from Global Positioning System data[J]. Geology,2004,32:809-812.
    [127] Fiona Simpson and Karsten Bahr. Practical Magnetotellurics. CambridgeUniversity Press,2005.
    [128] Varentsov Iv. M., Sokolova E.Yu, Nalivaiko K.V.. System of EM field transferoperators for the BEAR array of simultaneous soundings: Methods and results[J].Izvestya, Physics of the Solid Earth, V.39, No.2, P.118-148,2003.
    [129] M. Yu. Smirnov. Magnetotelluric data processing with a robust statisticalprocedure having a high breakdown point[J]. Geophys. J. Int.(2003)152,1–7.
    [130] Larsen, Jimmy C.. Transfer function: smooth robust estimates by least-squaresand remote reference methods[J]. Geophys.J.Int.,1989,99:645-663.
    [131] Sokolova E. Yu, Varentsov Iv. M.. EMTESZ-Pomerania WG, RRMC technique fightshighly coherent EM noise in Pomerania In:21Kolloquim EM Teifenforschung(Digitaliesiertes Protokoll)[J], Wohldenberg, Germany,2005,124-136.
    [132] Smirnov M. and Varentsov Iv. M., Magnetotelluric data processing-from theoryto practice,17th EMIW India presented,2004.
    [133] Rodi, W.&Mackie, R.L. Nonlinear conjugate gradients algorithm for2-Dmagnetotelluric inversion[J]. Geophysics,,2001,25:174-187.
    [134] Gamble,T.D.,Goubau,W.M and Clarke,J. Magnetetotellurics with a remotemagnetic reference[J]. Geophys,1979,44:53-68.
    [135] Denghai Bai,Martyn J.Unsworth,Max A.Meju,Xiaobing Ma,Jiwen Teng,XiangruKong,Yi Sun,Jie Sun,Lifeng Wang,Chaosong Jiang,Ciping Zhao,Pengfei Xiao and MeiLiu. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluricimaging[J]. Nat. Geosci.,2010,3:358–362.
    [136] Royden, L.H., Burchfiel, B.C., King, R.W., Wang, E., Chen, Z., Shen, F., Liu,Y. Surface deformation and lower crustal flow in eastern Tibet[J]. Science,1997,276:788-790.
    [137] Clark, M.K., Royden, L.H. Topographic ooze: building the eastern margin ofTibet by lower crustal flow[J]. Geology,2000,28(8):703-724.
    [138] KING R W,SHEN Feng,BURCHFIEL B C,et al. Geodetic measurement of crustalmotion in Southwest China[J]. Geology,1997,25:179-182.
    [139] Chen, Z., Burchfiel., B.C., Liu, Y., King, R.E., Royden,L., Tang, W., Wang,E., Zhao, J., and Zhang, X. Global Positioning System measurements from easternTibet and their implications for India/Eurasia intercontinental deformation[J].Journal of Geophysical Research, v.105,p.16,215–16,227,2001.
    [140] Wang, Q., Zhang P.-Z., Freymueller, J., Bilham, R., Larson,K., Lai, X., You,X., Niu, Z., Wu, J., Li, Y.,Liu, J., Yang, Z., and Chen, Q. Presentday crustaldeformation in China constrained by Global Positioning System (GPS) measurements[J].Science, v.294, p.574–577,2001.
    [141] Chen, Q., Freymueller, J., Wang, Q., Yang, Z., Xu, C.,and Liu, J. A deformingblock model for the present day tectonics of Tibet[J]. Journal of GeophysicalResearch, v.109, no. B0,1403,2004.
    [142] Golub, G. H.&Van Loan, C. F., Matrix Computations[M]. The John Hopkins UniversityPress, Baltimore,1989.
    [143] G.V.Keller. Electrical study of the crust and upper mantle in the structure and physicalproperties of the earth’s crust,Am. Geophy Un Monogr.14,p.107-126.1971.
    [144] Wang Xuben,Zhi Wang,Nian Yu,Wei Zhang. Magnetotelluric imaging along the Longmenreverse-thrust strike-slip fault zone[J]. Journal of Asian Earth Science(待刊).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700