用户名: 密码: 验证码:
被动声学测波新方法的实验研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海浪是海洋中最常见的现象之一,是岸滩演变的重要动力和海岸工程结构物设计施工的主要考虑因素,对海洋经济、海洋资源的开发利用,海上军事活动,海洋工程的选址、规划、设计、施工和日常营运等均有重大影响。海浪的观测与计算不仅有助于了解海浪的生成、生长机制,搞清海浪的内部结构和外在特征,还可为港口与桥梁的设计及海洋石油平台的建造等海洋工程提供所必需的海浪参数。随着科技的不断发展,以及海洋环境的特殊性,对测波仪器的性能提出了更高的要求。
     根据传统测波方法的现状和现场监测的需要,基于水听器和同步压力传感器在波浪频率范围内带通滤波后的信号一致这一观测事实,本文提出了一种简便快捷和经济实用的被动声学测波方法。该方法通过对滤波后的声学信号进行谱估计,得到的声压谱经传递函数和补偿因子修正后,即可得到表面波谱,进而计算统计波浪要素。基于该原理,借助于虚拟仪器开发平台,通过软硬件的合理结合,设计开发出了一套准确高效、界面友好的便携式声学测波系统。在实验室初步验证后,先后两次分别将该系统应用于莱州湾及芝罘岛的海上监测,并对比压力测波法同步测量数据,表明被动声学测波方法所测的波浪要素是合理可靠的。
     该系统具有较强的可扩展移植性,满足海洋观测任务多样性的需求。结合水听器测量波面破碎的原理,本文扩展了该被动声学测波系统,使之可同时获得波面破碎和波群信息;根据现有观测资料,对前人提出的破碎和群性之间的定性关系进行了验证。由于破碎和波群信息均由同一个水听器获得,保证了测量信息的同步性,使二者关系的分析更加可靠,结果更加可信。
     基于风浪破碎统计特征的理论模式,结合水听器测量波浪破碎的原理,本文进一步将该被动声学测波系统应用至海面天气的探测。通过水听器测量平均周期和破碎率等参数,合理的反演出海面局地风速;通过水听器信号的方差分析,估计海面的降雨信息。该系统充分发挥了其水下无接触测量的优势,具有安全、隐蔽和易于移动的优越性,尤其适合于海洋军事的需要。
Surface waves are one of the most common phenomena in the sea, which act as important dynamics in beach evolution and must be properly addressed in both design and construction of coastal structures. It also plays a principle role in marine economy, marine resources exploitation and utilization, marine military affairs, as well as location, planning, designing, construction and daily operations of ocean engineering. The observation and computation of ocean waves not only helps to understand its formation and growth mechanism, find out its internal structures and external characteristics, but provides essential parameters for ocean engineering, such as designing of ports & bridges, construction of oil platforms, etc. Nowadays, the developing of science & technology and particularity of marine environments give rise to higher aspiration for the performance of wave measurement instruments.
     Based on the current development of wave measurements and requirements of in situ observations, as well as the truth that a hydrophone has unanimous signals with a simultaneous pressure sensor after bandpass filtering with the passband of wave frequency, a new wave measurement using underwater passive acoustics is proposed, which is quick, convenient, economic, and practical. It estimates the spectrum of filtered signals, and amend it with a transfer function and a compensation factor to get the surface spectrum, then obtain statistical wave parameters like significant wave height and period. A portable wave measurement system is then specially designed and developed by use of virtual instrumentation, which is efficient and user friendly. After the laboratory validation, the system is used in field measurements in Laizhou Bay and Zhifu Island, respectively. It shows a good result comparing to the simultaneous pressure sensor data.
     The system is easily extendable, which meets the variability of ocean measurements. It is then extended to explore the relation between wave breaking and groupiness, since it can get breaking events and envelopes simultaneously by using only one hydrophone, which makes the results more reliable and reasonable.
     The system is also applied to detection of surface weather from underwater, based on the theoretical model of wave breaking statistics:to predict wind speed at sea surface by measuring the mean wave period and breaking probability using a hydrophone; to predict the precipitation by analyzing the variance of sound spectrum level. Taking its advantage of operating safe and non-intrusively, the system is concealed and easy to move, especially suitable for submarines.
引文
[1]Kinsman, B. Wind waves. New Jersey:Prentice-Hall,1965
    [2]Pierson W.J., The theory and applications of ocean wave measuring systems at and below the sea surface, on the land, from aircraft and from spacecraft[R], No. NASA CR22646,1976
    [3]Tucker M.J., et al. Waves in ocean engineering [J]. Elsevier Ocean Engineering Book Series,2001
    [4]Holthuijsen L. H. Waves in oceanic and coastal waters[M]. Cambridge Uni. Press.2007.
    [5]JTJ/T 27722006,:水运工程波浪观测和分析技术规程,2006,北京:人民交通出版社[S]
    [6]张俊涛.关于岸用光学测波仪大波高观测误差的研究[J].气象水文海洋仪器,1994,4:1-7.
    [7]古万才.岸用光学测波仪在大浪测波中的存在问题和初步解决方法[J].海洋技术,1996,15(1):54-55.
    [8]左其华.现场波浪观测技术发展和应用[J].海洋工程,2008,26(2):124-139.
    [9]袁新,王景田.船型海洋资料浮标的设计.黄渤海海洋2002,20(2).
    [10]李民,盛言峰等.国内大型海洋水文气象资料浮标的现状及发展方向.气象水文海洋仪器.2002(2):1-4.
    [11]唐原广,李琛.多功能波浪浮标的研制.气象水文海洋仪器,2004(3).
    [12]Koterayama, W. Model and field experiments on a wave observation buoy [J]. International Journal of Offshore and Polar Engineers,2003,13(1):21-28.
    [13]Cartwright, D. E. Buoy techniques for obtaining directional wave spectra[A]. Trans of Buoy Technology Symposium. Wasington,1964.
    [14]Krogstad, H. E. Some recent developments in wave buoy measurement technology [J]. Coastal Engineering,1999,37:309-329.
    [15]Barstow S F., et al. A field validation of a directional waverider in a seawatch buoy[A]. Proc.Ocean'94,1994.13-16
    [16]Skey S.G.P., Berger-North K., Swail V. R. Detailed measurements of winds and waves in high seastates from a moored NOMAD weather buoy. [A]. Proc.4th International Workshop on Wave Hindcasting and Forecasting,1995.
    [17]Cavalevic L. Wave measurement using pressure transducer [J]. Oceanologica Acta,1980, 3(3):339-346.
    [18]于学仁,徐来声.压力波换算表面波之补正系数的讨论[J].海洋研究,1979,1:13-25.
    [19]Harris D. L. The analysis of wave records[A].12th Coastal Engineering Conference, 1970.85-100.
    [20]蔡树群,张文静,王盛安.海洋环境观测技术研究进展.热带海洋学报2007,26(3)
    [21]SBY1-1型压力式波浪仪使用说明书.厦门海天高新技术研究所.2005.5.
    [22]南京水利科学研究院,《水运工程波浪观测和分析技术规程》调研报告[R],2006
    [23]孙强,孙军.SBY2-1型空气超声波浪仪.海洋技术.2007,26(4).
    [24]SBY2-1型声学波浪仪使用说明书.厦门海天高新技术研究所.2004.5.
    [25]刘瀛.近海海水深度和浪高的测量[J].渤海大学学报(自然科学版),2005,26(2).
    [26]ADCP课题组.坐底式波流测量仪[J].海洋技术,2001,20(1).
    [27]Gordon L., Aquadopp and vector wave measurement near Scripps Pier[R],1999.
    [28]Cotel J. The directional spectrum of wind 2generated sea as determined from data of stereo wave observation project[R], Meteor Paper New York Uni., College of Engrg.,1960
    [29]王岩峰,丁永耀.光学观测小波方法的比较研究[J].黄渤海海洋,1999,17(1).
    [30]Holthuijsen L.H. Stereophotography of ocean waves [J]. Appl Ocean Res,1983,5(4):204-209.
    [31]Banner M. L., et al. Wavenumber spectra of short gravity waves [J]. J of Fluid Mech, 1989,198:321-344.
    [32]Sante F., et al. Stereoscopic 3D2image analysis of sea surface [A]. Proc. of ISPRS commission V Sym. Istanbul,2004.708-712
    [33]Perlin M., et al. On parasitic cap illary waves generated by steep gravity waves:an experimental investigation with spatial and temporal measurements [J]. J Fluid Mech, 1993,255:597-620.
    [34]Zhang X., et al. Measuring the two dimensional structure of a wavy water surface op typically:a surface gradient detector [J]. Experiments in Fluids,1994,17:225-237.
    [35]Benetazzo A. Measurements of short water waves using stereo match image sequences [J]. Coastal Engineering,2006,53(12):1013-1032.
    [36]Tober G., et al. Laser instrument for detecting water ripple slopes [J]. Appl optics,1973, 12(4):788-794.
    [37]Stilwell D. Directional spectra of surface waves from photographs [J]. J G R,1974,79(9): 1277-1284.
    [38]王军成,侯广利,刘岩蒋慧略.船基激光法波浪测量仪器的研究[J].海洋技术,2004,23(4).
    [39]Kawai K., Hirano H., Kondo M. Ocean wave observation by a MMW doppler radar with narrow beam-ocean wave observation in the calm [J]. IEIC Technical Report 2001,101(96): 17-22.
    [40]任福安,邵秘华,孙延维.船载雷达观测海浪的研究[J].海洋学报,2006,28(5).
    [41]王福友,袁赣南,卢志忠郝燕玲.X波段导航雷达浪高实时测量研究[J]海洋工程,2007,25(4):84-87.
    [42]Buckley J R. Properties of marine radar imagery of t he sea surface [J]. IEEE,1988,36(1): 286-294.
    [43]Ziemer F. Directional spectra from shipboard navigation radar directional ocean wave spectra[M]. Baltimore:Johns Hopkins University Press.1991.
    [44]徐产兴,海用超视距雷达的发展[R],信息产业部电子14所,2001
    [45]Hasselmann K., Raney R., Plant W. Theory of Synthetic Aperture Radar Ocean Imaging:A MARSEN View [J]. Journal of Geophysical Research,1985,90(4596-4686).
    [46]Kalra R., Deo M. C. Derivation of coastal wind and wave parameters fromoffshore measurements of TOPEX satellite using ANN [J]. Coastal Engineering,2007,54(3): 187-196.
    [47]吴中鼎,李占桥.星载SAR遥感在海洋水文观测中的应用探讨[J].海洋测绘,2001,2:48-51.
    [48]黄韦艮,高曼娜,周长宝等.我国近海海洋现象的星载SAR观测[J].遥感技术与应用,1996,11(2):9-14.
    [49]杨劲松,黄韦艮,周长宝.星载合成孔径雷达海浪图像谱仿真研究[J].东海海洋,1999,17(4):39-46.
    [50]何宜军,谢涛.极化合成孔径雷达测量海浪的研究[J].遥感技术与应用,2003,18(4):202-205.
    [51]赵栋梁,叶钦.高度计风速反演算法比较及波浪周期反演初探[J].海洋学报,2004,26(5):1-11.
    [52]梅大为.海洋合成孔径雷达镜象问题[D].中国科学院研究生院(电子学研究所),2006
    [53]罗亮,杨东凯,徐正,王.基于单频GPS的单点测浪方法的研究[J].遥测遥控,2007,28(1).
    [54]Pedersen T., Nylund S., A., D. Wave height measurements using acoustic surface tracking [J]. Oceans'02 MTS/IEEE,2002,3:1747-1754.
    [55]Lemon D.D., Farmer D.M., D.R., W. Acoustic measurements of wind speed and precipitation over a continental shelf [J]. J Geophys, Res,1984,89(C3):3462-3472.
    [56]Farmer D.M., Vagle S. On the determination of breaking surface wave distributions using ambient sound [J]. J Geophys, Res,1988,93(C4):3591-3600.
    [57]文圣常,余宙文.海浪理论与计算原理[M]. 北京:科学出版社.1984.
    [58]王以谋,吴永成.海面波浪与水下压力波的关系[J].海洋湖沼通报,1984(2):7-14.
    [59]徐德伦,于定勇.随机海浪理论[M].高等教育出版社.2001.
    [60]李陆平,黄培基,陈雪英.深海压力式测波仪资料处理[J]黄渤海海洋,2000,18(2):67-72.
    [61]Toba, Y.. Local balance in the air-sea boundary processes III. on the spectrum of wind waves. Journal of the Oceanographical Society of Japan,1973,29:209-220.
    [62]Goda Y., Nagai K.. Investigation of the statistical properties of sea waves with fields and simulated data. Rept Port Harbor Res Inst.1974,13:3-37 (in Japanese)
    [63]Wen S C, Zhang D C, Guo P F, et al, Parameters in wind-wave frequency spectra and their bearing on spectrum forms and growth. Acta Oceanol. Sinica.1989,8(1):15-39
    [64]李瑞丽.海浪周期关系的研究.海洋湖沼通报,2007,2:13-18
    [65]Vagle, S., Large W.G., Farmer D.M. An evaluation of the WOTAN technique of inferring oceanic winds from underwater ambient sound [J]. Journal of Atmospheric and Oceanic Technology,1990,7:576-595
    [66]Nystuen J.A., Farmer D.M. Precipitation in the Canadian Atlantic Storms Program: Measurements of the acoustic signature [J]. Atmosphere-Ocean,1989,27:237-257.
    [67]俞聿修.随机波浪及其工程应用.大连.大连理工大学出版社,2000.
    [68]高频贤.趋势项对时域参数识别的影响及消除.振动、测试与诊断,1994(6):8-10.
    [69]王广斌,刘义伦,金晓红等.基于最小二乘原理的趋势项处理及其MATLAB实现.有色金属设备,2004(5):4-8.
    [70]任春平.沿岸流不稳定运动的实验研究及理论分析[D],大连.大连理工大学,2009.
    [71]骆少泽,阎诗武.水流信号的最大熵谱估计程序及其应用.水利水运科学研究,1992(3):245-254.
    [72]高频贤.趋势项对时域参数识别的影响及消除.振动、测试与诊断,1994,14(2):20-26.
    [73]黄文海,熊桂林,杨勇.信号分析与处理.长沙:国防科技大学出版社,2000.
    [74]Xu D., Liu X., Yu D. Probability of wave breaking and whitecap coverage in a fetchlimited sea [J]. J Geophys Res,2000,105(C6):14253-14259.
    [75]张立振.信号快速带通滤波方法在海洋信号分析中的应用[J].海洋科学进展,2008,26(1).
    [76]杨乐平等.虚拟仪器技术概论[M]. 电子工业出版社.2003.
    [77]张毅,周绍磊.虚拟仪器技术分析与应用[M]. 北京:机械工业出版社.2004.
    [78]王敬喜,李裕能,牛玉新.基于LabWindows/CVI的网络化虚拟仪器[J].仪器仪表与 分析监测,2003,4.
    [79]杨乐平,李海涛,赵勇.Lab VIEW高级程序设计[M].北京:清华大学出版社.2003.
    [80]朱治国,郑建荣,刘小平.虚拟仪器及其常用开发软件[J].现代仪器,2004,1.
    [81]Bortkovskii, R. S. Air-Sea Exchange of Heat and Moisture during Storms[M]. Kluwer Academic.1987.
    [82]Hwang P. A., Xu D., Wu J. Breaking of Wind-generated Waves:Measurements and Characteristics [J]. J Fuid Mech,1989,202:177-200.
    [83]Thorpe, S. A., Humphries, P. N. Bubbles and breaking waves [J]. Nature,1980,283: 463-465.
    [84]袁业立,华锋,潘增弟等.破碎波统计及其在上层大洋动力学中的应用[J].中国科学B辑,1988:1084-1091.
    [85]徐德伦.破碎与海面粗糙长度的关系[J].海洋与湖沼,1987,18(5):477-486.
    [86]Donelan, M., Longuet-higins, M. S., Turner, J. S. Periodicity in whitecaps [J]. Nature,1972, 239(5373):255-261.
    [87]Longuet-Higgins, M. S., Fox, M. J. H. Theory of the almost-highest wave:the Inner Solution [J]. J of Fluid Mech,1977,80:721-741.
    [88]Banner, M. L., Gemmrich, J. R., Farmer, D. M. Multi-Scale Measurements of Ocean Wave Breaking Probability [J]. J Phys Oceanogr 2002,32:3364-3375.
    [89]李晶.风浪破碎和波群统计特征的研究[D],青岛.中国海洋大学,2008
    [90]Longuet-Higgins, M. S. Statistical Properties of Wave Groups in a Random Sea State [J]. Phil Trans R Soc Lond A 1512,1984,312:219-250.
    [91]Knudsen V.O., Alford R.S., Emling J.W. Underwater ambient noise [J]. J Mar Res,,1948, 7:410-429.
    [92]Shaw P.T., Watts D.R., Rossly H.T. On the estimation of oceanic wind speed and stress from ambient noise measurements [J]. Deep-sea Research,1978,25:1225-1233.
    [93]Evans D.L., Watts D.R., Halpern D. and Bourass S. Oceanic winds measured from the seafloor [J]. J Geophys Res,1984,89:3457-3461.
    [94]Vagle, S., Large W.G., Fanner D.M. An evaluation of the WOTAN technique of inferring oceanic winds from underwater ambient sound [J]. Journal of Atmospheric and Oceanic Technology,1990,7:576-595.
    [95]Nystuen J.A., Fanner D.M. Precipitation in the Canadian Atlantic Storms Program: Measurements of the acoustic signature [J]. Atmosphere-Ocean,1989,27:237-257.
    [96]林建恒,马力.海洋环境噪声反演估计海面风速[J].声学学报,2001,26(3):217-221.
    [97]林建恒,蒋国健,苑泉乐衣雪娟.一种海洋环境噪声估计风速的修正法[J].声学学报,2006,31(3):276-280.
    [98]Li J., Yu D, Liu H. Parameterization of Wave Breaking Probability-and Whitecap Coverage [J]. China Ocean Engineering,2006,20(3):411-418.
    [99]Urick, R. J. Principles of underwater Sound[M]. McGraw-Hill 3rd, Ed.1983.
    [100]Zhao D., Toba Y. Dependence of whitecap coverage on wind and wind-wave properties [J]. J Oceanogr,2001,57:605-616.
    [101]Lafon, C., Piazzola, J., Forget, P. et.al. Analysis of the variations of the whitecap fraction as measured in coastal zone during the FETCH experiment [J]. Boundary Layer Meteorology, 2004,111:339-360.
    [102]Franz G. J. Splashes as sourced of sound in liquids [J]. J Acoust Soc Am,1959,45.
    [103]Scrimger J.A., Evans D.J., Yee W. Underwater noise due to rain-Open ocean measurements [J].J Acoust Soc Am 1989,85:726-731.
    [104]Nystuen J. A. Rainfall measurements using underwater ambient noise [J]. J Acoust Soc Am, 1986,82:270-274.
    [105]Snyder R L. A field study of wave induced pressure fluctuation above surface gravity waves. J. Mar. Res.1974,32(3):497-531.
    [106]Glazman R E. Statistical characterization of sea surface geometry for a wave slope field discontinuous in the mean square. J. Geophys. Res.1986,91(C5):6629-6641.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700