用户名: 密码: 验证码:
海床—管道原位检测及水动力响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油气资源的快速开发,海底管道被广泛地用来输运油气、输水和排污等,成为重要的海上生命线工程。由于海洋环境复杂多变和人类海上活动日益频繁,海底管道的破坏屡有发生,海底管道的安全性受到人们的重视。本文在国家自然科学基金“海浪荷载作用下海底粉质土力学特性的试验研究及应用(10372089)”的资助下,结合杭州湾海底管道工程,对海底管道的原位检测技术,以及海床-管道系统对水动力的响应等方面进行了研究。
     系统分析了单波束测深、多波束测深、浅地层剖面仪和侧扫声纳等声学探测技术在海底管道原位检测中的应用,探讨了水深和设备技术指标等因素对管道的现场检测能力的影响。结合多波束测深系统特点,提出基于海底微地貌和管道特征的改进IDW算法,能够构建更高精度的DTM,为运用多波束技术检测海底管道奠定基础。针对仪器设备的不同工作原理,开发了海底管道检测数据处理集成技术,极大提高了工作效率和综合利用多种检测技术的能力,并已多次成功运用于我国大型海底管道检测工程。
     在分析海底管道冲刷-自埋机理基础上,采用数值模拟方法对其中几个关键状态进行分析,利用海底管道现场检测技术,查明杭州湾海底管道敷设至完全掩埋各个阶段的原位状态,首次用现场资料验证了海底管道冲刷至掩埋的演变过程,完善了冲刷至掩埋的演变机制。
     建立基于采用有限体积法的分离算法求解波浪作用下海床弹性响应的数值模型,并和解析解对比。数值结果和解析解吻合,为进一步研究有管道海床的弹性响应以及液化问题奠定了基础。
     采用HX-100动三轴系统对杭州湾海底管道路由区结构性海洋粘性土原状样进行了室内试验,试验中采用低循环剪应力比和大振次的方法来模拟波浪荷载,通过对试验数据的分析建立了结构性海洋粘性土孔压发展模型。在海底土孔压发展模型的基础上,结合能反映孔压累积和消散的固结方程,获得了波浪作用下一维海洋粘性土中孔压发展的解析解。分析了波浪参数和土性参数对一维海床中长期累积孔压发展的影响,认识到由于波浪荷载特性和海底表层的完全排水作用,累积孔压会在海底土体的浅部形成峰值,峰值大小和位置随着时间和土体的排水特性的变化而变化。
     结合波浪场产生的底压力边界条件,通过求解基于Biot固结理论的孔压累积消散方程,能模拟二维有管道海床中瞬态孔压的振荡累积过程。通过对基于Biot固结理论和Terzaghi固结理论获得的孔压累积消散方程的比较,发现由二者计算得到的长期累积孔压非常接近,但后者求解方便,更适合工程应用,因此在后者的基础上探讨了成层海床、含充填河谷海床以及有管道海床中的长期累积孔压特性和液化特征。研究表明,波浪荷载作用下,由海洋粘性土组成的海床上部如果夹有砂质夹层,或砂质海床上部有薄层海洋粘性土覆盖层,砂质土层中的累积孔压会急剧上升,容易导致液化的产生;相反,风暴作用停止后,与砂类土相比,海洋粘性土中的残余孔压消散较慢,CPT实测结果也证明了这一结论。含充填河谷海床以及有管道海床因土性的差异而造成累积孔压发展规律和液化特征与均质海床有较大区别,如果管道槽中的回淤土为砂类土,而原始海床为海洋粘性土,则管道槽周围不易发生液化;如果管道槽中的回淤土为海洋粘性土,而原始海床为砂类土,则在管道槽的两侧和槽底等两类土的界面处易发生液化。
The rapid development of offshore oil fields has increased the construction of submarine pipeline for transport of crude oil to onshore refineries, and the submarine pipeline has become one of the lifeline of marine resources. Failure of submarine pipeline will inevitably lead to financial losses and adverse environmental problems, so people pay more and more attentions on the pipeline securities. According to the program supported by NSFC, testing research on the engineering properties of submarine silty clay under wave-induced load and its applications (No. 10372089), this thesis analyses the methods of pipeline inspection, responses of seabed-pipeline system under wave-induced load based on the Hangzhou Bay Pipeline Crossing Project.
     The survey equipment used in pipeline inspection, such as single beam echo sounder, multi-beam echo sounder, side scan sonar and sub-bottom profiler, are analyzed. According to the features of micro-geomorphology of seabed and pipeline, a method based on inverse distance weighted (IDW) algorithm to construct seafloor digital terrain model (DTM) using multi-beam soundings, which can improve the ability of multi-beam echo sounder on pipeline inspecting. Restricted by the principle of operation, single survey equipment can just quantify one aspect of pipeline burial state. An integrating technology of multi-equipment pipeline inspecting is developed for improving the pipeline inspecting ability and efficiency, which has been verified in several pipeline inspecting projects.
     Based on the analysis of the mechanism of the self-burial, several key burial states are discussed using numerical modeling method. The in situ states of submarine pipeline in Hangzhou Bay in the processing of self-burial are inspected base on the methods discussed in this thesis. The processing self-burial of pipeline with spoiler is verified by the pipeline inspecting methods discussed in this thesis firstly and the mechanism of the self-burial processing is complemented and verified.
     A segregated solution algorithm of based on finite volume is applied to analyze the elastic response of the seabed under wave-induced load. Compared with the analytical solution, it is concluded that the numerical results are near consistent with analytical solution. The influences of the characters of wave and soil are discussed based on the numerical results.
     The cyclic triaxial testing system, HX-100, was carried out on undisturbed soil samples which are interbedded with clay and silt drilled from Hangzhou Bay. Low cyclic shear stress (CSS) and a great deal of numbers of cyclic are adopted in the testing to simulate the wave-induced load, and the pore water pressure buildup curve can be gained from analysis of the testing data. Development characteristics of the pore pressure can be evaluated based on the consolidation equation combined the model of the pore pressure gained from the testing data which can represent the process of generating and dissipating of the pore water in the seabed. An analytical solution of above equation of one dimension is gained. The effects of the soil and wave characteristics on the pore pressure buildup are analyzed under one dimension and it can be drawn that the buildup of pore water pressure displays a maximum value in the upper soils, and the position and the value of it are variable with the storm duration and drain conditions of the soil.
     The accumulation of the pore pressure with a small range fluctuations can be simulated based on the consolidation equation which can represent the process of generating and dissipating of the pore water in the seabed. The comparison of results of equations derived from the Biot consolidation theory and Terzaghi consolidation theory respectively suggested the residual pore pressure is nearly same after long wave duration. But the latter is convenient for engineering purpose. The characteristics of the residual pore pressure and the possibility of the liquefaction in the layered seabed, infilled channel and infilled pipe trench are analyzed based on the latter equation. The residual pore pressure accumulates quickly and even liquefaction can occur if the drainage is prevented by a clay layer on top of the sand or sand layer embedding clay layers. On the contrast, the dissipating of the pore water in the marine cohesive soil is slow than that in the sandy soils after the end of storm, and which is verified by CPT conducted in the Hangzhou Bay. The development of the pore pressure in the infilled channels and the infilled pipe trench is quite different from that in the homogeneous seabed. If the original seabed is composed of marine cohesive soil and the natural infilled sediment is sand, the zone around the pipeline trench is not easy to undergo liquefaction, while the original seabed is composed of sand and the natural infilled sediment is marine cohesive soil, the soils under the pipeline trench is easy to undergo liquefaction.
引文
[1] Allen B. and Cunningham. Some alternate vibrator signals, Geophysics, 1979,Vol.44, No. 12, 1901-1921.
    
    [2] API 1104. Recommend Practice: Welding of pipelines and related facilities - 20th Edition [S]. USA, American Petroleum Institute, Nov, 2005.
    [3] API 570. Pipeline Inspection Code: inspection, Repair, Alternation, and re-rating of in-service Pipeline system [R]. USA, American Petroleum Institute, Dec, 2001.
    [4] Beek F. A. and Wind H. G. Numerical modeling of erosion and Sedimentation around off shore pipelines. Coastal Engineering, 1990, 14:107-128.
    
    [5] Bijker R. et al. Stimulated self-lowering of submarine pipeline [A], OFT Conf[C], 1995.
    [6] Bijker, E.W. and Leeuwestein, W. Interaction Between pipelines and the seabed under the influence of waves and currents, seabed mechanics, proc. Symp. IUTAM/IUGG, Newcastle Upon Tyne, England, December, 1984.
    [7] Br(?)rs B. Numerical Modeling of Flow and Scour at Pipelines, Journal of Hydrologic Engineering, ASCE, 1999, 125(5): 511-523.
    
    [8] Calladine, C. R. The yielding of clay. Correspondence, Geotechnique, 1963, 13, 250-55.
    [9] Catano-Lopera Y. Burial of Short Cylinders Induced by Local Scour and Bedform Migration Under Waves Plus Currents. PhD thesis, University of Illinois at Urbana and Champaign, 2005.
    [10] Chen Yunmin, Ji Meixu and Huang Bo. Effect of cyclic loading frequency on undrained behavior of undisturbed marine clay. China Ocean Engineering, 2005, 18 (4): 663-651.
    
    [11] Chen Yunmin, Lai Xianghua, et al. Wave-induced pore water pressure in marine cohesive soils. Acta Oceanologica Sinica. 2005, Vol. 24, No.4, 138-145.
    
    [ 12] Cheng L. et al. Modeling of flow mound a near-bed pipeline with a spoiler, Ocean Engineering, 2003, 30.
    [13] Cheng, A. H. D. and Liu, P. L. F. Seepage force on a pipeline buried in a poroelastic seabed under wave loading. Applied Ocean Research, 1986, 8(1), 22-32.
    [14] Chesterman W. D. et al. Sonographs of the sea floor. Elsevier Pub. Co. Amsterdam, London, New York, 1972.
    [15] Chiew Y. M. Mechanics of local scour around submarine pipeline. J. Hydraulic, ASCE, 1989, 116 (4):515-529.
    [16] Chiew Y. M. Prediction of maximum scour depth at submarine pipelines. J. Hydraulic, ASCE, 1991, 117(4):452-466.
    [17] Chiew Y.M. Effect of spoilers on scour at submarine pipeline. J. Hydraulic, ASCE, 1992, 118 (9):1311-1317,
    
    [18] Chiew Y. M. Local Scour around a submarine pipeline with a spoiler attachment [A], Proc. 3rd International Of shore and Polar Engineering Conf[C], Singapore, 1993.
    [19] Christian J. T., Taylor P. K., Yen J. K. and Erali D. R. Large diameter pipeline for nuclear plant designed against soil liquefaction. OTC 2094, 1974.
    [20] Dafalias, Y. F. and Hermann, L. R., 1982. Bounding surface formation of soil plasticity. In: Pande, G. N. and Zienkiewicz O. C. eds. Soil mechanics-transient and cyclic loading. John Wiley and Son, 1982.
    [21] Damgaard J. S., Sumer B. M., The T. C, et al. Guidelines for pipeline on-bottom stability on liquefied noncohesive seabeds. Journal of Waterway, Port, Coastal, and Ocean Engineering. 2006, 132(4):300-309.
    [22] De Groot M. B., Bolton M. D., Foray P., et al. Physics of liquefaction phenomena around marine structures. J. Waterway, Port, Coastal and Ocean Engineering, ASCE, 2006, 132, (4): 227-243.
    [23] Demirdzic I., Muzaferija S. and M. Peric. Finite volume method for stress analysis in complex domains. International Journal For Numerical Methods In Engineering, 1994, 37:3751-3766.
    [24] Demirdzic I., Muzaferija S., and Peric M. Benchmark solutions of some structural analysis problems using finite-volume method and multigrid acceleration. International Journal For Numerical Methods In Engineering, 1997,40:1893-1908.
    
    [25] DNA RP-F-101. Corrosion pipelines [S], Norway, Det Norske Veritas, Oct, 2004.
    [26] Edelman H.A.K.. The encoded sweep technique for vibroseis, Geophysics, 1982,Vol.47, No.5, 809-818.
    
    [27] Fang C. L. Digital Chirp Sonar System Software, Sea Technology, Oct. 1998, P. 71-75.
    [28] Fang J. L. and Cheng L. Prediction of lee-wake scouring of pipelines in currents. J. Waterway, Port, Coastal and Ocean Engineering, ASCE, 2001, 127, (2): 106-111.
    [29] Fish J. P. and Carr H. A. Advanced applications of side scan sonar. Lower Cape Publishing, Orleans, MA, 2001.
    [30] Finn, W. D. L., Lee, K. W. and Martin, G. R. An effective stress model for liquefaction. J Geotech Engng Div, ASCE, 1977, 103(GT6):517-533.
    [31] Herbich J. B., Schiller R. E. Dunlap W. A., et al. Seafloor scour, design guide-lines for ocean-founded structures. Marcel Dekker INC, New York, 1984.
    [32] Hirt C. W. and Nichols B. D. Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39: 201-225, 1981.
    [33] Hight D. W., Gens A. and Symes M. J., Development of a New Hollow Cylinder Apparatus for Investigating the Effects of Principal Stress Rotation in Soils. Geotechnique, 1983, Vol.33, 4:355-383.
    [34] Hsu, J. R. C. and Jeng, D. S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11),785-807.
    [35] Hulsbergen C. H .et al. Spoilers for stimulated burial of submarine pipeline [A], Paper OTC 5339, Proc. 18th Offshore Technology Conf, Houston, USA, 1986.
    [36] Hulsbergen C. H. et al. Effect of spoilers on submarine pipeline stability[A], Paper OTC 6154, Proc. 21st Of shore Technology Conf[C], Houston, USA, 1989.
    [37] Hughes C. Shallow-water imaging multibeam sonars: a new tool for investigating seafloor processes in the coastal zone and on the continental shelf. Marine Geophysical Researches, 1996,18: 607-629.
    [38] IHO. Manual on hydrograph, Publication-M13[M]. International Hydrographic bureau. 4, Quai Antoine 1er, B.P. 445 - MC 98011 MONACO Cedex. 2005.
    [39] Ishihara K. and Towhata I. Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils and foundations, 1983, Vol.23, No.4, 11-26.
    [40] Ishihara K. and Yamazaki A. Analysis of wave-induced liquefaction in seabed deposits of sand. Soils and foundations, 1984, Vol.24, No.3, 85-100.
    [41] Jasak, H. Error analysis and estimation in the Finite Volume method with applications to fluid flows, PhD thesis, Imperial College, University of London, 1996.
    [42] Jasak H. and Weller H. Application of the finite volume method and unstructured meshes to linear elasticity.International Journal For Numerical Methods In Engineering,2000,48:267-287.
    [43]Jeng D S.Soil response in eros anisotropic seabed due to standing waves.Journal of Geotechnical and Geoenvironmental Engineering,1997,ASCE,123(1):9-19.
    [44]Jeng D.S.and Cheng,L.Wave-induced seabed instability around a burial pipeline in a poro-elastic seabed.Ocean Eng.2000,27(2),127-146.
    [45]Jeng,D.-S.and Hsu,J.R.C.Wave-induced soil response in a nearly saturated seabed of finite thickness.Geotechnique,1996,46(3),427-440.
    [46]Jeng,D.-S.and Lee,T.L.Dynamic response of porous seabed to ocean waves.Computers and Geotechnics,2001,28(2),99-128.
    [47]Jeng,D.-S.and Lin,Y.S.Wave-induced pore pressure in a cross-anisotropic seabed with variable soil characteristics.The 8th(1998) International Offshore and Polar Engineering Conference (ISOPE98),I,1998,598-604.
    [48]Jeng,D.-S.and Rahman,M.S.Wave-induced pore pressure and effective stresses in a porous seabed of finite thickness.GeoEng2000,paper No:2000,CINA462(CD ROM).
    [49]Jeng,D.-S.and Cheng,L.Wave-induced seabed instability around a buried pipe in a poroelastic seabed.Ocean Engineering,27(2),2000,127-146.
    [50]Jeng D S.Soil response in eros anisotropic seabed due to standing waves.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1997,123(1):9-19.
    [51]Klein Associates,Inc.Side scan sonar training Manual[M].1985.
    [52]Leenhardt O.Side scan sonar-A theoretical study.International Hydrographic Review,1974,Vol.50,No.1-2,61-80.
    [53]Liang,D.F.and Cheng L.Numerical modeling of flow and scour below a pipeline in currents Part 1.Flow simulation.Coastal Engineering,52,25-42,2005.
    [54]Liang,D.F.,Cheng L.,and Li F.J.Numerical modeling of flow and scour below a Pipeline in current Part 11.scour simulation,Costal Engineering,52(1),43-62,2005.
    [55]Liang,D.F.and Cheng L.Numerical model for wave-induced scour below a submarine pipeline,J.Waterway,Port,Coastal and Ocean Engineering,ASCE,2005,131(5):193-202.
    [56]Liu X.and Garcia M.Numerical investigation of seabed respone under waves with free-surface water flow.International Journal of Offshore and Polar Engineering,2007,17(2):97-104.
    [57]Madsen,O.S.Wave-induced pore pressures and effective stresses in a porous bed.Geotechnique,1978,Vol.28,No.4,377-393.
    [58]Maeno S.,Magda W.,and Nago H.Floatation of buried pipeline under cyclic loading of water pressure.Proc.,9th Int.Offshore and Polar Engineering Conf.and Exhibition,Brest,France,1999.
    [59]Magda.W.Wave-induced uplift force acting on a submarine buffed pipeline:Finite element formulation and verification of computations.Comput.Geotech.1996,19(1),47-73.
    [60]Magda.W.Wave-induced uplift force on a submarine pipeline buffed in a compressible seabed.Ocean Eng.1997,24(6),551-576.
    [61]Madga,W.Wave-induced cyclic pore-pressure perturbation effects in hydrodynamic uplift force acting on submarine pipeline buried in seabed sediments.Coastal Engineering,2000,39,243-272.
    [62]Mallard,W.W.and Dalrymple,R.A.Water waves propagating over a deformable bottom.Proceedings 9th Annual Offshore Technology Conference,141-145,1977.
    [63]Mao Y.Sea bed sour under pipeline,Proc.7th international Conf.on offshore and Arctic Engineering,Houston,Texas,February 7-12.33-38.1988
    [64]Martin A.et al.Development of an optical monitoring system for flexible risers[C],NKT Flexibles, OTC 13201,2001.
    [65] McDougal WG, Tsai YT, Liu PL-F, Clukey EC. Wave-induced pore water pressure accumulation in marine soils. Journal of Offshore Mechanics and Arctic Engineering (ASME) 1989; 111(1): 1-11.
    [66] Mei, C. C. and Foda, M. A. Wave-induced response in a fluid-filled poro-elastic solid with a free surface-a boundary layer theory. Geophysical Journal of the Royal Astronomical Society, 1981, 66, 597-631.
    [67] Naumovich, A. Efficient numerical methods for the Biot poroelasticity system in multilayered domains. PhD thesis, University of Kaiserslautern, 2007.
    [68] Okusa, S. Wave-induced stress in unsaturated submarine sediments. Geotechnique, 1985a, 35(4), 517-532.
    
    [69] Patankar S.V. Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, 1980.
    [70] Rahman, M. S., Seed, H. B. & Booker, J. R. Pore pressure development under offshore gravity structures. J. Geotech. Eng. Div., Proc. ASCE, 1977, Vol. 103 No. GT12.
    [71] Sassa, S. & Sckiguchi. H. Wave-induced liquefaction of beds of sand in a centrifuge. Geotechnique, 1999, 49. No.5, 621-638.
    [72] Sassa, S., Fundamental studies of wave-induced liquefaction of sand beds. PhD Thesis, Kyoto university, Japan, 2000.
    [73] Sassa, S. & Sckiguchi. H. Analysis of wave-induced liquefaction of sand beds. Geotechnique, 2001, 51.No.2, 115-126.
    [74] Sassa, S., Sckiguchi. H. and Miyamoto. J. Analysis of progressive liquefaction as a moving-boundary problem. Geotechnique, 2001, 51. No. 10, 846-857.
    [75] Seed, H. B., Murarka, R., Lysmer, J. and Idriss I. M., Relationships between maximum acceleration, maximum velocity, distance from source and local site conditions for modetately strong earthquakes. Bull. Seismol. Soc.Am. 1976,66(4), 1323-42.
    [76] Seed, H. B. and Booker J. Wave-induced pore pressure in relation to ocean floor stability of cohesionless soil. Marine Geotechnology, 1978, 3(2): 123-150.
    [77] Seed, H. B., Martin, P. P. and Lysmer, J. The generation and dissipation of pore water pressure during soil liquefaction. Report No. EERC 75-26, Earthquake Engineering Research Center, University of California at Berkeley, USA, 1975.
    [78] Stability and cost saving aspects of spoilers on submarine pipelines[R], Report No. PBIJVIOO, SPS(USA), Inc., 2004.
    [79] Sumer B. M. and Freds(?)e J. Onset of scour below a pipeline exposed to waves. International J. off shore and polar engineering, 1991, 1 (3):189-194.
    [80] Sumer B. M. and Freds(?)e J. Wave scour around structures. Advances in Coastal and Ocean Engineering, 1997 (4): 191 -248.
    [81] Sumer B. M. and Freds(?)e J. Scour below pipelines in waves. J. Waterway, Port, Coastal and Ocean Engineering, ASCE, 1990, 116 (3):307 - 323.
    [82] Sumer B. M. and Freds(?)e J. Onset of scour below a pipeline exposed to waves. International J. off shore and polar engineering, 1991, 1 (3):189—194.
    [83] Sumer B. M. and Fredsoe J. The Mechanics of Scour in the Marine Environment. World Scientific: Singapore, 536. 2002.
    [84] Sumer B. M., Jensen H. R. and Mao Y. et al. Effect of lee - wake on scour below pipelines in current. J. Waterway, Port, Coastal and Ocean Engineering. 1988, ASCE, 114 (5): 599 - 614.
    [85]Sumer B.M.,Truelsen C.,Sichmann T.and Fredsce J.Onset of scour below pipelines and selfburial.Coastal Engineering,2001,42:313-335.
    [86]Sumer B.M.,Truelsen C.and Fredsoe J.Liquefaction around Pipelines under Waves.J.Waterway,Port,Coastal and Ocean Engineering,ASCE,2006,132(4):266-275.
    [87]Sumer B.M.et al.,Scour around coastal structures:a summary of recent research.Coastal Engineering,2001,44:153-190.
    [88]Sumer B.M.et al.Onset of scour below pipelines and self-burial.Coastal Engineering,2001,42:313-335.
    [89]Terzaghi K.Varieties of submarine slope failure.Publ.no.25,1-16.Oslo:NGL.1956.
    [90]Trabant,P.K.Applied high-resolution geophysical methods[M],IHRDC,Boston,1984.
    [91]Truelsen C.,Sumer B.M.,and FredsCe J.Scour around spherical bodies and self-burial.J.Waterway,Port,Coastal and Ocean Engineering,ASCE,2005,131(1):1-13.
    [92]Tsai,C.P.and Lee,T.L.Standing wave induced pore pressure in a porous seabed.Ocean Engineering,1995,22(6),505-517.
    [93]USACE.Engineering and design hydrographic survey[M].U.S.Arm corps of engineering,Washington,DC 20314-1000.2004.
    [94]Wright S.G.,Analyses for wave induced sea-floor movements.Proc.8th annual OTC,Houston,Paper OTC 2427,1976
    [95]Yamamoto,T.Wave induced instability seabeds.Proceedings A.S.C.E.Special Conference,Coastal Sediments 77,Charleston,SC.,1977,898-913.
    [96]Yamamoto,O.S.Seabed instability from waves.Proc.10th annual offshore technology conference,Houston,Texas,1978,Vol.1,1819-1824.
    [97]Zen,K.and Yamazaki,H.Mechanism of wave-induced liquefaction and densification in seabed.Soil and Foundations;1990a,30(4),90-104.
    [98]蔡春麟,张异彪,顾兆峰.参量阵浅地层剖面技术在海底管道检测中的应用,海洋地质动态,2007.23(4):38-42.
    [99]蔡元忠,宋波,顾斌超,王佳欣.海底输油管道掩埋状况调查研究.海洋工程,2000,18(3):91-96.
    [100]陈国祥,李春,唐海燕.采用扰流板的海底管道自埋技术,中国造船,2005,Vol.46增刊,365-370.
    [101]陈士荫,顾家龙,吴宋仁合编.海岸动力学.北京:人民交通出版社.1988.
    [102]崔征科.海底输油气管道维护性检测中的工程物探技术.海洋石油.2006,26(02):104-107.
    [103]丁维凤,冯霞;来向华等.Chirp技术及其在海底浅层勘探中的应用.海洋技术,2006,Vol.25,No.2,10-14.
    [104]冯秀丽,庄振业,林霖等.现代黄河水下三角洲软土稳定性定量分析,海岸工程,2000,19(1),50-53.
    [105]黄博,陈云敏,姬美秀.海浪循环荷载下海洋土的液化,中国土木工程学会第九界土力学及岩土工程学术会议论文集,091-1094,2003.。
    [106]姬美秀.压电陶瓷弯曲元剪切波速测试及饱和海洋软土动力特性研究,博士论文,浙江大学,2005.
    [107]来向华,潘国富,傅晓明等.单波束在海底管道检测中的应用.2007,海洋工程,Vol.25,NO.4.66-72.
    [108]来向华,马建林,潘国富等.多波束测深技术在海底管道检测中的应用研究,海洋工程,2006,Vol.24,No.3,68-73.
    [109]李家彪.多波束勘测原理技术与方法[M].北京:海洋出版社,1999.
    [110]李文杰,胡平,肖都,刘春雷.多波束测深在海洋工程勘察中的应用.物探与化探,2001,28(4):372-375.
    [111]李相崧,明海燕.旋转剪切对水平地层地震响应的影响。见:栾茂田主编。第五届全国土动力学学术会议论文集。大连:大连理工大学出版社,1998,53-64.
    [112]刘方兰,张志荣,余平.多波束系统横摇、纵倾参数的校正方法.吉林大学学报(地球科学版)2002,34(4):622-624.
    [113]吕林,李玉成.海底管道附近底床侵蚀稳定性的湍流数值模拟判别.中国造船,2003,44(特刊):340-348.
    [114]栾茂田,曲鹏,郭莹等,波浪作用下孔隙海床一管道动力相互作用分析,海洋工程,2007,Vol.25,No.2,43-51.
    [115]栾茂田,张晨明,王栋,郭莹.波浪作用下海床孔隙水压力发展过程与液化的数值分析,水利学报,2004,No.2,94-101.
    [116]马建林,来向华,郭德方.基于多波束和ArcGIS的海底地形数据库建立.海洋学研究,2005b,23(4):66-69.
    [117]马建林,金菁,来向华.多波束测深海底数字地形模型的建立.海洋测绘,2005a,Vol.25,No.5,15-17.
    [118]马良.海底油气管道工程[M].海洋出版社,1987.
    [119]马良,王金英,刘振国。对渤海海底管道检测的探讨,中国海上油气(工程),1995,Vol.7,No.2,14-18。
    [120]苗春生.应用ROV进行海底管道铺设后调查的方法,中国造船,2005,Vol.46,增刊,31-52.
    [121]潘国富,来向华,苟诤慷,傅晓明.声学技术在海底管道工程勘察和检测中的应用.2004'浙江声学技术及海洋开发学术会议论文,2004.
    [122]邱大洪.波浪理论及其在工程上的应用.北京:高等教育出版社,1985.
    [123]沈瑞福,王洪谨.动主应力轴连续旋转下砂土的动强度。水利学报,1996,(1):27-33.
    [124]沈珠江,徐志英.1976年7月28日唐山地震时密云水库白河主坝有效应力动力分析.水利水运科学研究,1981,3:46-63.
    [125]石油大学海洋石油工程研究室.海底管道的检测、维修与安全可靠性评估指南,1997,1-80.
    [126]孙洪生,利用自埋技术铺设海底管道,石油工程建设,2005,Vol.31,No.1,12-13.
    [127]王栋.波浪作用下海床动力响应与液化的数值分析,博士论文,大连理工大学,2002.
    [128]王栋,栾茂田,郭莹.波浪作用下海床动力反应有限元数值模拟与液化分析,大连理工大学学报,2001,41(2),216-222.
    [129]王建华.饱和软粘土振动弱化破坏过程的研究,大坝观测与土工测试,1995,Vol.19,No.4,29-32.
    [130]王学超,赵建平.阻流器对海底管道自埋效果的数值模拟分析,石油机械,2007,Vol.35,No.6,8-10.
    [131]王志良.塑性力学与土的性质模拟.见:余同希,王大钧编。塑性力学和地球动力学文集。北京:北京大学出版社。
    [132]吴钰骅,金伟良,毛根海等,海底输油管道底砂床冲刷机理研究,海洋工程2006,Vol.124,NO.4,43-47。
    [133]夏于飞,顾建宁,杜晓慧等.杭州湾海底管道铺设技术,油气储运,2005,Vol.24,No.8,44-46.
    [134]许才军,周红波.不排水循环荷载作用下饱和软粘土的孔压增长模型,勘察科学技术,1998(1),3-7.
    [135]徐晓晗,刘雁春,肖付民,等.海底地形测量波束角效应改进模型.海洋测绘. 2005.25(01):10-13.
    [136]徐志英,沈珠江.土坝地震孔隙水压力产生、扩散和消散的有限单元法动力分析.华东水利学院学报,1981,4:1-16.
    [137]徐志英,沈珠江.地震液化的有效应力二维动力分析方法。华东水利学院学报,1981a,(3).
    [138]杨鲲,孙艳军,隋海琛,邢存良.田春和声纳和浅剖在渤西管道物探调查中的应用,水道港口,2003,Vol.24,No.1,15-21.
    [139]叶银灿,来向华.杭州湾粉质土动强度特性,海洋科学,2003,Vol.27,No.21,56-59.
    [140]仲德林,吴永亭,刘建立.埕岛海上石油平台周边海底管道与电缆的探测技术研究.海岸工程,2004,23(04):32-37.
    [141]张剑波,袁超红.海底管道检测与维修技术.石油矿场机械.2005,34(05):6-10.
    [142]章克凌,陶振宇.饱和粘土在循环荷载作用下的孔压预测,岩土力学,1994,Vol.15,No.3,9-17.
    [143]张兆富.SES-96参量阵测深/浅地层剖面仪的特点及其应用.由国港湾建设,2001(3):41-44.
    [144]中国海洋石油总公司所属海底管道失效损失统计.中国海洋石油工程公司,2003.
    [145]周键.循环荷载作用下饱和软粘土的孔压模型,工程勘察,2000(4),7-9.
    [146]周培德.计算几何.北京:清华大学出版社,2000.
    [147]周兴华,姜小俊,史永忠.侧扫声纳和浅地层剖面仪在杭州湾海底管道检测中的应用.海洋测绘,2007,27(4):64-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700