用户名: 密码: 验证码:
基于格林函数的近场声全息技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
格林函数作为声场逆问题中反映声场逆向传递的特征函数,在近场声全息技术发展过程中扮演着重要角色,是建立从声场到声源反演模型的理想函数。近场声全息技术作为近些年来比较热门的噪声源识别技术,能够根据已知的声场分布信息,有效地重建声源和预报其声场的相关特性,并在实际工程应用中具有较好可操作性和工程实现性。本文以格林函数为研究基础,给出了适用于不同类型声场重建的格林函数,并通过优化格林函数算法的方法对现有近场声全息技术中存在的问题进行了系统、深入的研究。
     本文首先系统的总结和推导了运动流体介质下平面近场声全息技术的基本理论,建立和讨论了运动流体介质中波动方程、Helmholtz-Kirchhoff积分方程、空间声场变换之间的内在关系。给出了运动流体介质下适用于两种典型边界条件声场重建的格林函数(Dirichlet边界条件、Neumann边界条件)及波数域滤波器,并通过数值仿真对比分析了运动和静止介质下两种格林函数的空间分布特点,说明了运动介质对声场波数空间的影响。通过仿真计算验证了利用这两个典型边界条件下格林函数对声场重建的有效性和可行性,并通过对采样点数(或采样间隔)、测量距离、重建距离以及马赫数的计算参数的讨论分析,给出一些有利于今后工程应用值得参考的测量范围。
     针对静止介质中Neumann边界条件下基于振速测量的格林函数辐射圆周存在的奇异性,给出了两种与K-空间抽样格林函数不同的格林函数有限离散化算法:K-空间积分格林函数法和实空间积分格林函数法。通过数值仿真分析了三种格林函数算法分别在波数空间和实空间的分布特点,讨论不同的计算参数对这两种格林函数分布的影响,给出了两种格林函数优化算法相对于K-空间抽样格林函数辐射圆周上奇异性作出的改进。利用这三种格林函数有限离散化方法对不同类型声源的声场进行重建,以考查作为优化算法的两种格林函数对该条件下改善重建精度以及重建分辨率的贡献。
     根据柱面近场声全息技术现阶段存在的两个问题,给出了相应的公式推导和仿真运算。一个是针对Neumann边界条件下的声场应用柱面近场声全息技术,另一个针对的是基于柱面声场测量时,声场存在相干声源时,如何应用两种测量方法分离目标声源并对其进行声场重建。首先,利用数学物理方法中的相关定理计算得到Neumann边界条件下基于法向质点振速测量和基于声压测量格林函数的渐进表达式,通过仿真计算验证该表达式的正确性,并通过仿真分析对比了这两种测量方法的优劣性。其次,研究了柱面相干声源的分离技术。通过基于声压联合振速测量的单全息面方法和基于声压、振速测量的双全息面方法,仿真计算了相干声源分别在完全对称、不完全对称以及完全不对称的条件下,干扰源不同强度对目标声源重建精度的影响,对比了两种测量方法的优劣性。
     针对声场中存在的瞬态声场,给出了基于三种格林函数算法的时域近场声全息技术。通过对这三种格林函数空间分布特点的分析,给出了这三种格林函数可能在重建过程中对重建精度产生影响的因素,并根据这三种格林函数的计算特点,计算了每个格林函数在一定参数条件下的运行时间,分析了其对声场重建效率的影响。以单极子源伴随缓慢变化的空间复包络振荡和整体波动的辐射声场为例,利用这三种格林函数对该声场进行重建,并通过计算给出了对空间复包络进行调制的方法,通过计算参数对三种算法下的重建精度进行讨论。通过对三种格林函数声场重建特点的分析,采用基于FFT变换算法的K-空间格林函对无限大刚性障板上圆形活塞产生的瞬态声场进行重建,分析各个计算参数对声场重建精度的影响。
     最后,开展针对水下噪声源利用平面近场声全息技术的实验研究,探讨基于本文算法的近场声全息技术的可行性和准确性,考查基于声压测量和基于振速测量方法对声场重建精度的影响,以及两种测量方法下不同算法对重建精度的影响。理论分析结果和实验数据处理结果基本一致,为其下一步的实际工程应用提供了实验基础。
As the characteristic function reflecting the reverse transmission of the sound field in thesound field inverse problem, Green's function played an important role in the developmentprocess of the near-field acoustic holography (NAH) technology, which is the ideal functionfor establishing the inversion model from the sound field to the sound source. As the morepopular noise source identification technology in recent years, NAH technology caneffectively reconstruct the sound source and forecast the relevant characteristics of the soundfield according to the distribution information of the known sound field, and has a goodoperability and engineering achievability in the practical engineering application. The paperconsidered Green's function as the basic of the research, gave Green's functions which wasapplicable for different types of the sound field reconstruction, and toke the problems of thenow NAH technology in depth study by optimizing Green's function algorithms.
     Firstly, the paper systematically summarized and derived the basic theory of NAHtechnology in moving fluid medium, established and discussed the inherent relationship of thewave equation, Helmholtz-Kirchhoff integral equation, and space transformation sound fieldin the moving fluid medium.This paper gave the Green's functions (Dirichlet and Neumann)and the wave number filter for reconstructing the sound field at the two typical boundaryconditons in a moving fluid medium, and compared the space distribution of the two Green'sfunction in moving and static medium through the numerical simulation which explained theaffection of the moving medium on the wave number space of the sound field, especially itcan not be ignored when the Mach number is large. Through the simulation verified theeffectiveness and feasibility of the use of these two typical boundary Green's function forreconstructing the sound field,and gave the dynamic range for the future engineeringapplication through discussing and analyzing the calculation parameters like samplingpoints(or sampling interval), measurement distances, reconstructive distances and Machnumber.
     For the velocity measured Green's function's singularity at the radiation circumference inNeumann boundary, this article gave two different finite discretization algorithms for Green'sfunction: K-space integral Green's function and real-space integral Green's function, whichare different from K-space sampling Green's function. Analyze the distribution characteristicsof three Green's function algorithms in wave number space and real space through thesimulations, discuss the affection of different calculation parameters on the distributions of the two optimized Green's function, and give the change of the two optimized Green'sfunction from the K-space sampling Green's function's singularity at the radiationcircumference. Reconstructing different types of sound sources by using these three finitediscretization algorithms, examined the contribution of the two optimized Green's function forthe reconstructive accuracy and resolution.
     According to the two problems in the cylindrical NAH technology at the present, thepaper gave the formula derivation and simulation operations for these problems. Ons is usedfor cylindrical NAH in Neumann boundary condition, the other is for separating andreconstructing the aim source based on two measurements when there existed coherent sourcein cylindrical sound field measurement. Firstly, through the calculation based on themathematical physics theorem received the progressive expression of the Green's functionsbased on the normal velocity measurement and the pressure measurement in Neumannboundary condition, verified the formula's correctness and compared the advantages anddisadvantages of these two measurement method through the simulations. Secondly, the papergave the study for the sound field separation technology of cylindrical NAH. Through thesingle hologram method based on sound pressure-velocity measurement and the doubleholograms method based on sound pressure and velocity measurement simulated the affectionof different intensities of interference source on the reconstructive accuracy of the aim source,and compared the advantages and disadvantages of these two measurement method when thecoherent sources are located at completely symmetrical, not completely symmetrical andabsolutely asymmetrical position.
     For the transient sound field existing in the acoustic field, this article gave thetime-domain NAH technology (TDNAH) based on three Green's function algorithms.Through analyzing the space distribution characteristics of these three Green's functions, gavethe factors which may have impacts on the reconstructive accuracy in the reconstructionprocess, calculated the running time of every Green's function according to their calculationcharacteristics and analyzed their affection on the reconstructive efficiency. As an example ofthe monopole source accompanied by a slowly varying radiation, reconstructed its transientfield by these three Green's functions, modulated its space complex envelope by calculationsand discussed the affection of calculation parameters on the reconstructive accuracy by thesethree Green's functions. Through analyzing the characteristics of sound field reconstructionbased on the three Green's functions, taken the K-space Green's function based on FFTtransformation into reconstructing the transient sound field produced by an infinite rigidbaffled piston and analyzed the affections of the calculated parameters on the sound field reconstruction accuracy.
     Finally, this article carried out the experimental study for the under-water noise sourceby using planar NAH technology, explored the feasibility and accuracy of planar NAHtechnology based on this paper algorithms, and examined the affections of the methods basedon the sound pressure measurement and the velocity measurement on the reconstructionaccuracy, as well as different algorithms based on the two measurement methods. The resultsof theoretical analysis and experimental data processing results are basically the consistency,which provided the experimental basis for the next practical engineering applications.
引文
[1] Maynard J.D,Williams E.G,and Y.Lee.Nearfiled acoustic holography I.Theoryof generalized holography and development to NAH.J.Acoust.Soc.Am,1985,78(4):1395-1413P
    [2] Veronesi W.A,Maynard J.D.Nearfiled acoustic holography (NAH) II.Holographicreconstruction algorithms and computer implementation.J.Acoust.Soc.Am.1987,81(5):1307-1322P
    [3]陈晓东.近场平面声全息的测量和重建误差研究.合肥工业大学博士学位论文,2004
    [4]金莉萍.基于格林函数的典型声场反演技术.哈尔滨工程大学硕士学位论文.2008
    [5]何元安,何祚镛,商德江.基于平面声全息的全空间场变换:II.水下大面积平面发射声基阵的近场声全息实验,2003,28(1),46~51
    [6]何元安,何祚镛,基于平面声全息的全空间场变换:I.原理与算法,2002,27(6),507~512
    [7] Williams E G,Dardy H D,Generlalized nearfield acoustical holography forcylindrical geometry: Theory and experiment [J].J.Acoust.Soc.Am,1987,81(2):389~407
    [8]何元安.大型水下结构近场声全息的理论与实验研究.哈尔滨工程大学博士学位论文.2000
    [9] Soon-Hong Park, Yang-Hann Kim. An improved moving frame acoustic holographyfor coherent bandlimited noise. J. Acoust. Soc. Am,1998;104(6):3179-3189
    [10] Kook H, Moebs G B, Davies P, Bolton J S. An efficient procedure for visualizing thesound field radiated by vehicles during standardized passby test. J. Sound andVibration,2000;233(1):137-156
    [11] Park S H, Kim Y H. Effects of the moving noise sources on the sound visualizationby means of moving frame acoustic holography. J. Acoust. Soc.Am.,2000,108(6):2719-2728P
    [12] Park S H, Kim Y H. Visualization of pass-by noise by means of moving frameacoustic holography. J. Acoust. Soc. Am.,2000,110(5):2326-2339P
    [13] Kim.Yang-Hann and Park.Soon-Hong. Moving frame acoustic holography for thevisualization of pass-by noise.Proceedings of National Conference on Noise ControlEnginering,1998:655-660P
    [14]罗禹贡,杨殿阁,郑四发,毛晓群,李克强,连小珉.基于近场声全息理论的运动声源动态识别方法.声学学报,2004,29(3):226-230
    [15]杨殿阁,郑四发,郑凯,连小珉,蒋孝煜.利用声全息方法研究汽车噪声空间传播.中国机械工程,2001,12(10):1148-1150
    [16]杨殿阁等.运动声源的声全息识别方法.声学学报,2002,27(4):357-362
    [17]杨殿阁,刘峰等.声全息方法识别汽车运动噪声.汽车工程.2001,5(23):329-331页
    [18]孙玉.基于声全息技术的噪声源识别方法研究.哈尔滨工程大学硕士论文.2007
    [19] Ruhala R J, Swanson D C. Planar near-field acoustical holography in a movingmedium. J. Acoust. Soc. Am.,2002,112(2):420-429P
    [20] Hyu-Sang Kwon, Yaying Niu,and Yong-Joe Kim, Planar nearfield acousticalholography in moving fluid medium at subsonic and uniform velocity. J. Acoust. Soc.Am.2010,128.1823-1832.
    [21] Forbes M, Letcher S V, Stepanishen P R. A wave vector, time domain method offorward projecting time-dependent pressure field. J. Acoust. Soc. Am.1991,90(5):2782-2793
    [22] Grulier V, Paillasseurps, Thomas J H. Forward propagation of time evolving acousticpressure: Formulation and investigation of the impulse response in time-wavenumberdomain. J. Acoust. Soc. Am.2009,126(5):2367-2378.
    [23] Thorkild B. Hansen, Arthur D. Yaghjian. Planar near-field Scanning in the timedomain part1: Formulation. IEEE Transactions on Antennas and Propagation.1994,42(9):1280-1291.
    [24] Thorkild B. Hansen, Arthur D. Yaghjian. Planar near-field Scanning in the timedomain part2: sampling theorems and computation schemes. IEEE Transactions onAntennas and Propagation.1994,42(9):1292-1300.
    [25] J. Hald. Non-stationary STSF. Bruel&Kj r technical Review.2000, No.1:1-36.
    [26] J. Hald. Time domain acoustical holography and its applications. Sound andVibration,2001,35:312-3128.
    [27] Ombeline de La Rochefoucauld, Manuel Melon, Alexandre Garcia. Time domainholography: forward projection of simulated and measured sound pressure fields. J.Acoust. Soc. Am.2004,116(1):142-153.
    [28] Choon-Su Park, Yang-Hann Kim. Time domain visualization using acousticholography implemented by temporal and spatial complex envelope. J. Acoust. Soc.Am.2009,126(4):1659-1662.
    [29] Choon-Su Park, Yang-Hann Kim. Space domain complex envelopes: definition and aspatial modulation method. J. Acoust. Soc. Am.2009,125(1):206-211
    [30] Grulier V, Paillasseurps, Thomas J H, J.-c. Pascal, and J.-c. Le Roux. Forwardpropagation of time evolving acoustic pressure: Formulation and investigation of theimpulse response in time-wavenumber domain. J. Acoust. Soc. Am.2009,126(5):2367-2378.
    [31] J-H. Thomas, V.Grulier, S.Paillasseur, J.-C. Pascal. Real-time near-field acousticholography for continuously visualizing nonstationary acoustic fields. J. Acoust. Soc.Am.2010,128(6):3554-3567.
    [32] S.Paillasseur, J-H. Thomas, J.-C. Pascal. Regularization method applied to thedetermination of the inverse filter of Real-time Nearfield acoustic holography.Proceedings of Inter-Noise2009.
    [33] Sebastien Paillasseur, Jean-Hugh Tomas, Jean-Claude Pascal. Regularization forimproving the deconvolution in real-time near-field acoustic holography. J. Acoust.Soc. Am.2011,129(6):3777-3787.
    [34] W. A. Veronesi, J. D. Maynard. Digital holographic reconstruction of source witharbitrarily shaped surfaces. J. Acoust. Soc. Am.,1989,85(2):588-598
    [35] M R. Bai. Application of BEM (boundary element method)-based acousticholography to radiation analysis of sound sources with arbitrarily shaped geometries.J. Acoust. Soc. Am.,1992,92(2):533-549
    [36] A. Sarkissian. Reconstruction of the surface acoustic field on radiating structures. J.Acoust. Soc. Am.,1992,92(2):825-830
    [37] Photiads D M. The relationship of singular value decomposition to wave-vectorfiltering in sound radiation problems. J. Acoust. Soc. Am.,1990,88(2):1152-1159
    [38] Borgiotti G V. The power radiated by a vibrating body in an acoustic field and itsdetermination from boundary measurements. J. Acoust. Soc.Am.,1990,88(4):1884-1893
    [39] Kim B K, Ih J G.. On the reconstruction of the vibro-acoustic field over the surfaceenclosing an interior space using the boundary element method. J. Acoust. Soc.Am.,1996,105(5):3003-3016
    [40] Kim B K, Ih J G. Design of an optimal wave-vector filter for enhancing the resolutionof reconstructed source field by near-field acoustical holography(NAH). J. Acoust.Soc. Am.,2000,107(6):3289-3297
    [41] Kang S C, Ih J G. The use of partially measured source data in near-field acousticalholography based on BEM. J.Acoust.Soc.Am.,2000,107(5):2472-2479
    [42] Kang S C, Ih J G.. Use of nonsingular boundary integral formulation for reducingerrors due to near-field measurements in the boundary element method basednear-field acoustic holography. J. Acoust. Soc. Am.,2001,109(4):1320-1328
    [43] Nelson P A, Yoon S H. Estimation of acoustic source strength by inverse methods:Part conditioning of the inverse problem. Journal of Sound andVibration,2000,233:643-668
    [44] Yoon S, Nelson P. Estimation of acoustic source strength by inverse methods: Part2,experimental investigation of methods for choosing regularization parameters.Journal of Sound and Vibration,2000,33:669-705P
    [45] Schuhmacher A. Sound source reconstruction using inverse sound field calculations.Ph.D. Thesis, Technical University of Denmark,2000.
    [46]毕传兴,陈剑,陈心昭.分布源边界点在声场全息重建和预测中的应用。机械工程学报,2003,39(8):81-85
    [47]毕传兴,陈剑,陈心昭.基于分布源边界点法的多源声场全息重建和预测技术理论研究.中国科学(E辑),2004,34(1):111-120
    [48]毕传兴,陈剑,陈心昭.半自由场的全息重建和预测实验研究.物理学报,2004,53(12):4268-4276
    [49]李卫兵,陈剑,毕传兴.基于分布源边界点法的声散射场全息重建和预测理论.2005,23(4):384-388
    [50]毕传兴,陈心昭,毕宝庆.基于分布源边界点法的近场声全息实验研究.机械工程学报,2006,19(1):9-16
    [51] Valdivia N,Williams E G. Implicit methods of solution to integral formulations inboundary element method based nearfield acoustic holography. J. Acoust. Soc. Am.2004,116(3):1559-1572
    [52] Dumont N A, de Olivcira R. The hybrid boundary element method applied totime-dependent problems. In: Brebbia C, Rencis J, editors. Fluid flow andcomputational aspects, Boundary elements. Computational Mechanics Publications,1993.363-76
    [53] Gaul L, wenzel W. Acoustic calculations with the hybrid boundary element method intime domain. Engineering Analysis with Boundary Elements.2001,25:259-265
    [54] Rizos D.C, Zhou S. An advanced direct time domain BEM for3-D wave propagationin acoustic media. Journal of Sound and Vibration.2006,293:196-212.
    [55]张海滨.循环平稳声场的非共形面近场声全息理论与实验研究.上海交通大学博士论文.2008
    [56]张海滨,蒋伟康,万泉.边界元法循环平稳近场声全息理论研究.声学学报.2008,22(3):231-237
    [57] Chao Y C. An implicit least-square method for the inverse problem of acousticradiation. J. Acoust. Soc. Am.,1987,81(5):1288-1292
    [58] Wang Z,Wu S F. Helmholtz equation-least method for reconstructing the acousticpressure field. J.Acoust. Soc. Am.1997,102(4):2020-2032
    [59] Wu S F, Yu J.Reconstructing interior acoustic pressure fields via HelmholtzEquation-least Square method. J. Acoust. Soc. Am.,1998,104(4):2054-2060
    [60] Wu S F, Lim B D. Determination of the optimal number of expansion terms in theHELS method. J. Acoust. Soc. Am.,2000,108:2505-2513
    [61] Rayess N E., Wu S F. Experimental validations of the HELS method forreconstructing acoustic radiation from a complex vibrating structure. J. Acoust. Soc.Am.,2000,107(6):2955-2964
    [62] Wu S F, Zhao X. Combined Helmholtz equation-least method for reconstructing theacoustic radiation from arbitrarily shaped objects. J. Acoust. Soc.Am.,2002,112(1):179-188
    [63] Zhao X, Wu S F. Reconstruction of vibroacoustic fields in half space by using hybridnear-field acoustical holography. J. Acoust. Soc. Am.,2005,117(2):555-565
    [64] Semenova T, Wu S F. The Helmholtz equation least-squares method and Rayleighhypothesis in near-field acoustical holography. J. Acoust. Soc.Am.,2004,115(4):1632-1640
    [65] Semenova T, Wu S F. On the choice of expansion functions in the Helmholtzequation least-squares method. J. Acoust. Soc. Am.,2005,117(2):701-710
    [66] Huancai Lu, Sean F Wu. Reconstruction of vibroacoustic responses of a highlynonspherical structure using Helmholtz equation least-squares method. J. Acoust. Soc.Am.,2009,125(3):1538-1548
    [67] Huancai Lu. Reconstruction of vibroacoustic responses using Helmholtz equationleast-squares method. PH.D.Dissertation. Wayne State University.2007
    [68] Koopmann G H, Fahnline J. A method for computing acoustic fields based on theprinciple of wave superposition. J. Acoust. Soc. Am.1989,86(5):2433-2438
    [69] Song L, Koopmann G H, Fahnline J. Numerical errors associated with the method ofsuperposition for computing acoustic fields. J. Acoust. Soc.Am.1991,89(6):2625-2633
    [70] Jeans R, Mathews I C. The wave superposition method as a robust technique forcomputing acoustic fields. J. Acoust. Soc. Am.1992,92,1156-1166
    [71] Heckl M. Remarks on the calculation of sound radiation using the method ofspherical wave synthesis. Acustica,1989,68:251-257
    [72] Cemer L, Wang M. Sycthesis of spherical wave fields to generate the sound radiatedfrom bodies of arbitrary shape, its realization by calculation and experiment. Acustica,1988,65:53-74
    [73] Miller R D, Thomas E T, Huang H,et al. A comparison Between the boundaryelement method and the wave superposition approach for the analysis of the scatteredfields from rigid bodies and elastic shells. J. Acoust. Soc. Am.1991,89(5):2185-2196
    [74] J. B. Fahnline, G. H. Koopmann. A numerical solution for the general radiationproblem based on the combined methods of superposition and singular-valuedecomposition. J. Acoust. Soc. Am.1991,90(5):2808-2819
    [75]于飞,陈剑,李卫兵.一种稳健的全波数空间声场重建技术.中国科学(E辑),2004,34(9):1069-1080
    [76]于飞,陈剑,李卫兵.腔体内三维声场重建和预测的波叠加方法.自然科学进展,2005,15(1):90-96
    [77]张海滨,蒋伟康,万泉.适用于循环平稳声场的基于波叠加法的近场声全息技术.物理学报,2008,57(1):314-321
    [78]张永斌.基于等效源法和质点振速测量的近场声全息技术.2010
    [79] Mingsian R. Bai, Ching-cheng Chen. On optimal retreat distance for the equivalentsource method-based nearfield acoustical holography. J. Acoust. Soc. Am.2011,129(3):1407-1416
    [80] Williams E G,Houston B H, Herdic P C. Fast Fourier transform and singular valuedecomposition formulations for patch nearfield acoustical holography. J. Acoust. Soc.Am.2003,114(3):1322-1333
    [81] Williams E G. Continuation of acoustic of acoustic near fields. J. Acous. Soc. Am.2003,113(3):1273-1281
    [82] Williams E G. Approaches to Patch NAH. Inter-Noise2003, Jeju(Korea),2003,2187-2194
    [83] Saijyou K, Uchida H. Data extrapolation method for boundary element method-basednear-field acoustical holography. J. Acoust. Soc. Am.2004,115(2):785-796
    [84] Saijyou K, Yoshikawa S. Reduction methods of the reconstruction error forlarge-scale implementation of near-field acoustical holography. J. Acoust. Soc. Am.2001,110(4):2007-2023
    [85] Lee M Y, Bolton J S. Patch near-field acoustical holography in cylindrical geometry.J. Acoust. Soc. Am.2005,118(6):3721-3732
    [86] Lee M Y, Bolton J S. Reconstruction of source distributions from sound pressuresmeasured over discontinuous regions:Multipatch holography and interpolation. J.Acoust. Soc. Am.1992,91(1):2086-2096
    [87] Lee M Y, Bolton J S. A one-step patch near-field acoustical holography procedure. J.Acoust. Soc. Am.2007,122(3):1662-1670
    [88] Xu L, Bi C X, Chen X Z. Resolution enhancement of nearfield acoustic holographyby interpolation using band-limited signal restoration method. Chinese ScienceBulletin,2008,53(20)3142-3150
    [89] Chuan-Xing Bi, Xin-Zhao Chen, Jian Chen. Sound field separation technique basedon equivalent source method and its application in nearfield acoustic holography. J.Acoust. Soc. Am.2008,123(3):1472-1478
    [90] Valdivia N P, Williams E G, Herdic P C. Approximations of inverse boundary elementmethods with partial measurements of the pressure field. J. Acoust. Soc. Am.2008,123(1):109-120
    [91] Frisk G V, Oppenheim A V, Martinez D R. A technique for measuring the plane-wavereflection coefficient of the ocean bottom. J. Acoust. Soc. Am.1980,68(2):602-612
    [92] Tamura M. Spatial Fourier-transform method for measuring reflection coefficients atoblique incidence. Theory and numerical examples. J. Acoust. Soc. Am.1990,88(5):2259-2264
    [93] Tamura M, Allard J F, Lafarge D. Spa ial Fourier-transform method for measuringreflection coefficients at oblique incidence: experimental results. J. Acoust. Soc. Am.1995,97(4):2293-2303
    [94] Cheng M T, Mann J A, Pate A. Wave-number domain separation of the incident andscattered sound field in Cartesian and cylindrical coordinates. J. Acoust. Soc. Am.1995,97(4):2293-2303
    [95]于飞,陈剑,李卫兵,陈心昭.双全息面声场分离技术及其在声全息中的应用.声学学报.2003,28(5):385-389
    [96]于飞,陈剑,李卫兵,陈心昭.单全息面声场分离技术及其在声全息中的应用.机械工程学报.2004,39(2):112-116
    [97]毕传兴,张永斌,徐亮,陈心昭.基于双面质点振速测量的声场分离技术.声学学报.2010,35(6):653-658
    [98]张永斌,徐亮,毕传兴,陈心昭.基于声压-振速测量的单面声场分离技术.
    [99] Hald J. Patch holography in cabin environments using a two-layer handheld arraywith an extended SONAH algorithm. Acta Acustica United with Acustica,2006,92(1): S24
    [100] Finn Jacobsen, Virginie Jaud. Statistically optimized near field acoustic holographyusing an array of pressure-velocity probes. J. Acoust. Soc. Am.2007,121(3):1550-1558
    [101] Finn Jacobsen, Xinyi Chen, Virginie Jaud. A comparison of statistically optimizednear field acoustic holography using single layer pressure-velocity measurements andusing double layer pressure measurements. J. Acoust. Soc. Am.2008,123(4):1842-1845
    [102] Harris H C, Blotter J D. Obtaining the complex pressure field at the hologram surfacefor use in near-field acoustical holography when pressure and in plane velocities aremeasure. J. Acoust. Soc. Am.2006,119(2):809-816
    [103]徐亮,陈心昭,毕传兴,陈剑,王慧.近场声全息分辨率增强的正交球面波插值方法.浙江大学学报,2009,43(10):1808-1811
    [104]毛荣富,朱海潮,张劲松.近场声全息(NAH)中减少测量点数的研究.声学技术,2009,28(3):287-294
    [105] P.M.Morse and K.U.Ingard, Theoretical Acoustics,1986
    [106]陈晓东.近场平面声全息的测量和重建误差研究.合肥工业大学博士学位论文.2004
    [107]马佳男.格林函数在平面近场声全息技术中的应用研究.哈尔滨工程大学硕士论文.2010
    [108]马佳男,杨德森,时胜国,胡博.基于Green函数的两种STSF算法的比较.振动与冲击,2012,31(6):155-159
    [109]何祚镛,赵玉芳.声学理论基础.国防工业出版社,1981
    [110]梁昆淼.数学物理方法
    [111] E. Skudrzyk. The Foundations of Acoustics.1971
    [112] Martin Greenspan. Piston radiator: Some extensions of the theory. J. Acoust. Soc. Am.1979,65:608-621
    [113] Peter R. Stepanishen. Transient radiation from pistons in an infinite planar baffle. J.Acoust. Soc. Am.1970,49(5):1629-1638
    [114] Gerald R. Harris. Review of transient field theory for a baffled planar piston. J.Acoust. Soc. Am.1981,70(1):10-20
    [115] Gerald R. Harris. Transient field of a baffled planar piston having an arbitraryvibration amplitude distribution. J. Acoust. Soc. Am.1981,70(1):186-204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700