用户名: 密码: 验证码:
自然水体生物膜体系中过氧化氢的生成与十二烷基苯磺酸钠降解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昼夜变化是自然界的基本变化规律之一,光化学过程是污染物的环境行为中非常重要的一个环节。在自然水体环境中,溶解有机质(DOM)在光照条件下生成的活性氧(ROS)对有机污染物的降解等环境行为影响较大。此外,昼夜变化可通过改变藻类的新陈代谢进而使水体微环境(pH和DO等)发生周期变化,从而导致水体中重金属的浓度和形态发生周期性的显著改变,这对痕量金属的迁移转化、生物可利用性及最终归宿具有重要作用。藻类生理学的相关研究表明,新陈代谢(光合作用)过程除了可以生成溶解氧改变pH外,也可以生成ROS。然而,关于昼夜变化对自然水体中有机污染物影响的研究十分有限。
     自然水体生物膜,普遍存在于河流、湖泊、湿地等自然水体环境中的表层沉积物、沙石、岩石等各种固相物质表面上,微藻(硅藻、绿藻为主)是其重要的组分之一。所以,光照变化可能通过影响生物膜中藻类新陈代谢的变化(光合作用和呼吸作用)间接影响ROS的生成,进而影响污染物的环境行为。由于自然水体生物膜几乎含有天然水环境中所可能包含的绝大部分的物质成分和绝大部分的污染物行为,污染物在水-自然水体生物膜体系中的环境行为比单一的人工培养的藻类体系更能反映污染物在天然水环境中的行为。因此,非常有必要开展研究光照变化对自然水体生物膜与典型有机污染物间作用的影响及其机制,来了解光照变化对水环境中有机污染物迁移转化的影响,这有助于进一步认识有机污染物在自然界昼夜周期变化情况下的实际环境行为。
     本研究以实验室模拟为主要研究手段,通过构建水-自然水体生物膜体系作为模拟实验体系,选择十二烷基苯磺酸钠(DBS)为非挥发、非持久性的有机污染物代表,研究不同光照条件下,水-自然水体生物膜体系中DBS的降解规律和机制,具体包括:不同活性的生物膜存在时体系中DBS和过氧化氢(H2O2)的含量变化情况,来验证生物膜体系中H2O2的生成和DBS的降解;研究主要影响因素对模拟体系中H2O2的生成及其对DBS降解的影响;研究生物膜组分和典型离子对H2O2降解DBS的影响与机制;研究H2O2与其他ROS的关系及其对DBS降解的影响。在此基础上,分析总结光照对自然水体生物膜与典型污染物间作用的影响和机制,并进一步总结昼夜变化对水环境中有机污染物环境行为的影响规律。
     本论文在对生物膜活性对H2O2生成和DBS降解影响的研究中发现:在同样生物量的情况下,只有活性的生物膜体系中有生成H2O2,并且DBS浓度和TOC含量都明显降低。活性生物膜在光照和无光条件下,H2O2的生成量分别约为34.0μmol/L和17.2μmol/L,DBS含量分别减少了约85.2%和12.9%,TOC分别减少了约67.1%和10.9%。这说明光照和无光条件下,生物膜具有生物活性是生成H2O2的关键,光照是生物膜生成H2O2的重要影响因素,H2O2是DBS降解的原因之一。通过进一步的H2O2溶液体系实验,对比同一浓度的H2O2在光照和无光条件下对DBS降解的影响,验证了H2O2对DBS的降解作用。生物膜生成的H2O2对DBS的降解主要有两种方式:(1)H2O2可以直接氧化降解DBS;(2)H2O2转化生成ROS间接参与DBS的降解。生物膜也可能直接产生其他ROS参与DBS降解。此外,发现光照既可以促进生物膜生成H2O2,也可以使H2O2发生光化学反应促进DBS降解,这表明光照是生物膜生成H2O2和DBS降解的重要影响因素。
     在对生物膜形态和生物膜数量的研究中发现:光照或无光条件下,生物膜的形态和数量对H2O2的生成和DBS的降解都有影响。在光照条件下,生物膜的形态对生成H2O2和降解DBS的影响明显小于无光条件下。H2O2的生成量和DBS的降解量都与生物膜数量呈正比例增加。
     在溶解氧(2mg/L≤DO≤20mg/L)对生物膜生成H2O2和降解DBS影响的研究中发现:光照条件下,随着溶解氧含量的升高,H2O2的生成量和DBS的降解量也在升高,但是与溶解氧浓度呈非线性关系:在溶解氧浓度较低时其对H2O2生成和DBS降解的影响更显著。无光条件下,H2O2的生成量和DBS的降解量与溶解氧含量呈近似线性的关系。研究结果表明在光照和无光条件下,溶解氧都是生物膜生成H2O2和降解DBS的重要影响因素。溶解氧不但可以促进生物膜产生H2O2,可能还可以参与DBS降解的中间产物的氧化分解。
     对于水-生物膜体系中H2O2生成和DBS降解的机理,在O-2生成及其对H2O2的生成和Fe2+的释放的实验中发现:光照条件下生物膜可以产生O-2,并且对生物膜体系中H2+2O2的生成和Fe2+的释放具有显著的影响, O-2与H2O2的生成和Fe的释放都存在密切的联系。此外, O-+2和Fe2以及光照在一定程度上会促进H2O2转化生成其他ROS(如OH和1O2)。在H2O2溶液体系进行的生物膜组分和铁锰离子对H2O2降解DBS的影响实验结果表明:生物膜中的典型组分和铁锰离子(Fe2+、Fe3+和Mn2+)对H2O2降解DBS都有促进作用,特别是Fe2+存在时。所以,自然水体生物膜存在条件下,DBS的降解是多种原因共同作用的结果。但是本研究至少证明生物膜可以生成H2+2O2和Fe,那么在生物膜的表面附近或局部可能形成微观类Fenton体系生成ROS降解有机污染物。
Diurnal rhythm is one of the basic laws of nature and photochemical process is avery important aspect of the pollutants environmental behavior. In natural waterenvironments, photochemical process can produce reactive oxygen species (ROS)which will have great impact on pollutants environmental behavior. The ROS innatural waters is usually generated by non-living substances dissolved organic matter(DOM) under illumination. In addition, diurnal rhythm periodically altersmicro-environmental parameters (pH and DO) by altering the metabolism of algae,which results in the periodically change of concentrations and forms of heavy metalsin waters, and this has important impact on migration and transformation,bioavailability and ultimate fate of trace metals. However, there are many organicpollutants in natural waters, but studies on the impact on diurnal rhythm of organicpollution in natural waters are very limited. Algal physiology studies indicate that themetabolism (photosynthesis) process can not only generate dissolved oxygen to alterpH, but also can generate ROS.
     Natural biofilms naturally exist on the surfaces of solid materials such as surfacesediment, sand, rocks and so on in rivers, lakes, wetlands and other natural waterenvironments. Therefore, illumination variation may affect the variation of themetabolism (photosynthesis and respiration) of algae in biofilms and indirectly affectthe generation of ROS, thereby affects pollutants environmental behavior. Sincebiofilms contain almost most of the material composition and pollutants behavior thatmay contain in natural waters environments. The pollutants environmental behavior inwater-biofilm system can better reflect the pollutants in natural water environmentalbehavior than in single artificial algae system. Therefore, it is necessary to carry on the studies on laws and mechanism of biofilms and typical organic pollutants underillumination variation to further understand the impact of illumination variation onmigration and transformation of organic pollutants in water environments, whichcontributes to a better understanding of the actual environmental behavior of organicpollutants under natural diurnal rhythm condition.
     In this study, the degradation laws and mechanism of sodium dodecyl benzenesulfonate (non-volatile and non-persistent DBS, used as a representative of degradableorganic pollutant) under different illumination conditions were investigated throughsimulation experiments and by the construction of water-biofilm system as a carrier.These include: effects of activity of natural biofilms on DBS and hydrogen peroxide(H2O2) concentration to verify whether the biofilm system can generate H2O2; mainfactors affecting H2O2generation and its impact on DBS degradation in simulationsystem; influences and mechanisms of biofilm components and typical ions on H2O2degradation; the relation between H2O2and other ROS, and its impact on DBSdegradation. On this basis, this paper will analyze and summarize the influence lawsand mechanisms of illumination on natural biofilms and typical pollutants, and furthersummarize the influence of diurnal rhythm laws on organic pollutants environmentalbehavior in water environments.
     In this study for the research on H2O2generation and DBS degradation, it isfound that under the same biomass condition, the biofilm system which has activitycan generate H2O2, and the concentrations of DBS and TOC are significantly reduced.The amount of H2O2generation was34.0μmol/L and17.2μmol/L, DBS leveldeclined85.2%and12.9%, TOC level declined67.1%and10.9%respectively underillumination and in darkness. It explains that biological activity is the key to H2O2generation and then DBS degradation under illumination and in darkness.Illumination is an important factor on biofilms generating H2O2, and H2O2is one ofthe reasons of DBS degradation. Through degradation of H2O2solution on DBSexperiment, it is verified the degradation effect of H2O2on DBS, and analysis resultsare: there are two main ways for H2O2generated by biofilms to degrade DBS:(1)H2O2can directly degrade DBS;(2) H2O2is likely to generate ROS and then indirectly degrade DBS. Biofilms may also generate other ROS to degrade DBS. Inaddition, illumination can not only promote biofilms to generate H2O2, but also havephotochemical reaction with H2O2and promote DBS degradation. Illumination is animportant factor of H2O2generation and DBS degradation.
     In the study of existing form and the amount of biofilms, it is found that bothexisting form and amount of biofilms affect H2O2generation and DBS degradationunder illumination and in darkness. Under illumination, existing form of biofilms hasless impact on H2O2generation and DBS degradation than that in darkness. Theamount of H2O2generation and DBS degradation are proportionally increased withthe increase of the amount of biofilms, and the increase amount is higher underillumination than that in darkness.
     For the study of the influences of dissolved oxygen (2mg/L≤DO≤20mg/L) on H2O2generation and DBS degradation, it is found that under illumination,the amount of H2O2generation and DBS degradation was nonlinear increased with theincreasing of DO concentration. DO is an important factor on H2O2generation andDBS degradation, especially in darkness. DO can not only promote biofilms togenerate H2O2, and affect the concentration of H2O2that have been generated, butalso maybe involved in the degradation process of DBS degradation intermediateproducts.
     The study of H2O2generation and DBS degradation mechanism in water-biofilmsystem combined with biofilms generating O-2and releasing Fe2+experiments andthe effects on H2O2generation found that: Biofilms can generate superoxide anionradicals (O-2), which has a significant effect on H2O2generation and Fe2+release andis closely linked to H2O2generation and Fe2+release, O-2. Fe2+and illumination willpartly promote H2O2to transform and generate other ROS (such as OH and1O2). Inthe H2O2solution experiments of biofilm components and iron and manganese ionson H2O2degrate DBS, it can be drawn that typical components and iron andmanganese ions (Fe2+、Fe3+and Mn2+) in biofilms will promote H2O2to degrade DBS,especially in the presence of Fe2+. So, DBS degradation in natural biofilms is theresult of various reasons. But this study proved that at least biofilms can generate H2O2and Fe2+, and then on the surface of or near the biofilms can form similarmicro-Fenton system to degrade organic.
引文
[1] Harvey H.Oxidation in seawater. J. Mar. Biol. Assoc.,1925,13(4):953-969.
    [2] Shaked Y, Harris R, Klein-Kedem N. Hydrogen peroxide photocycling in theGulf of Aqaba, Red Sea. Environ. Sci. Technol.,2010,44(9):3238-3244.
    [3] Clark C D, De Bruyn W J, Hirsch C M, et al. Hydrogen peroxide measurementsin recreational marine bathing waters in Southern California, USA. Water Res.,2010,44(7):2203-2210.
    [4] Liao C H, Gurol M D. Chemical oxidation by photolytic decomposition ofhydrogen peroxide. Environ. Sci. Technol.,1995,29(12):3007-3014.
    [5] Cooper W J, Zika R G. Photochemical formation of hydrogen peroxide insurfaceand ground waters exposed to sunlight.Science,1983,220(4598):711-712.
    [6] Cooper W J, Lean D R S. Hydrogen peroxide concentration in a northern lake:photochemical formation and diel variability. Environ. Sci. Technol.,1989,23(11):1425-1428.
    [7] Mostofa S H. Spatial and temporal variations and factors controlling theconcentrations of hydrogen peroxide and organic peroxides in rivers. Environ.Chem.,2009,6(6):524-534.
    [8] Herut B, Shoham F E. Hydrogen peroxide production rates in clean and pollutedcoastal marine wates of the Mediterranean, Red and Baltic Seas. Mar. Pollut.Bull.,1998,36(12):994-1003.
    [9] Goldstone J V, Voelker B M. Chemistry of superoxide radical in seawater:CDOM associated sink of superoxide in coastal waters. Environ. Sci. Technol.,2000,34(6):1043-1048.
    [10] Obernosterer I, Ruardij P, Herndl G J. Spatial and diurnal dynamics of dissolvedorganic matter (DOM) fluorescence and H2O2and the photochemical oxygendemand of surface water DOM across the subtropical atlantic ocean. Limnol.Oceanogr.,2001,46(3):632-643.
    [11] Liao C H, Gurol M D. Chemical oxidation by photolytic decomposition ofhydrogen peroxide. Environ. Sci. Technol.,1995,29(12):3007-3014.
    [12] Dalrymple R M, Carfagno A K, Sharpless C M. Correlations between dissolvedorganic matter optical properties and quantum yields of singlet oxygen andhydrogen peroxide. Environ. Sci. Technol.,2010,44(15):5824-5829.
    [13] Meunier L, Laubscher H, Hug S, et al. Effects of size and origin of naturaldissolved organic matter compounds on the redox cycling of iron in sunlitsurface waters. Aquat. Sci.,2005,67(3):292.
    [14] Zhang Y, Del V R, Blough N V. Investigating the mechanism of hydrogenperoxide photoproduction by humic substances. Environ. Sci. Technol.,2012,46(21):11836-11843.
    [15] Rose A L, Waite T D. Role of superoxide in the photochemical reduction of ironin seawater. Geochem. Cosmochim. Acta,2006,70(15):3869-3882.
    [16] Steigenberger S, Statham P J, Voelker C, et al. The role of polysaccharides anddiatom exudates in the redox cycling of Fe and the photoproduction of hydrogenperoxide in coastal seawaters. Biogeoscience,2010,7(1):109-119.
    [17] Grag S, Rose A T, Waite T D. Photochemical production of superoxide andhydrogen peroxide from natural organic matter. Geochem. Cosmochim. Acta,2011,44(9):3238-3244.
    [18] Rose A L, Webb E A, Waite T D, et al. Measurement and implications ofnonphotochemically generated superoxide in the equatorial Pacific Ocean.Environ. Sci. Technol.,2008,42(7):2387-2393.
    [19] Vermilyea A W, Hansard S P, Voelker B M. Dark production of hydrogenperoxide in the Gulf of Alaska. Limnol. Oceanogr.,2010,55(2):580-588.
    [20] Palenik B, Morel F M. Dark production of H2O2in the Sargasso Sea. Limnol.Oceanogr.,1988,33(6):1606-1611.
    [21] Vermilyea A W, Dixon T C, Voelker B M. Use of H182O2to measure absoluterates of dark H2O2production in freshwater systems. Environ. Sci. Technol.,2010,44(8):3066-3072.
    [22] Dykens J A, Shick J M, Benoit C, et al. Oxygen radical production in the seaanemone Anthopleura elegantissima and its endosymbiotic algae. J. Exp. Biol.,1992,168(1):219-241.
    [23] Kim D, Watanabe M, Nakayasu Y, et al. Changes in O2and H2O2production byChattonella antiqua during diel vertical migration under nutrient stratification.Aquat. Microb. Ecol.,2005,39(2):183-191.
    [24] Kim D, Watanabe M, Nakayasu Y, et al. Production of superoxide anion andhydrogen peroxide associated with cell growth of Chattonella antiqua. Aquat.Microb. Ecol.,2004,35(1):57-64.
    [25]江涛,吴霓,钟艳,等.卵圆卡盾藻香港株过氧化氢产生的影响因素研究.环境科学,2012(3):832-837.
    [26]江涛,陈文静,吴霓,等.海洋卡盾藻日本株过氧化氢产生的影响因素.中国环境科学,2011(11):1864-1869.
    [27]郑金秀,彭祺,张甲耀,等.藻类产生及清除过氧化氢的研究.微生物学杂志,2006(6):80-84.
    [28] Palenik B, Zafiriou O C, Morel F. Hydrogen peroxide production by a marinephytoplankter. Limnol. Oceanogr.,1987,32(6):1365-1369.
    [29] Zhou L, Song W, Chen Z, et al. Degradation of organic pollutants in wastewaterby bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst.Environ. Sci. Technol.,2013,47(8):3833-3839.
    [30] Liu M, Zhao L, Lin J M. Chemiluminescence energy transfer reaction for theon-line preparation of peroxymonocarbonate and Eu(II)-dipicolinate complex. J.Phys. Chem. A,2006,110(23):7509-7514.
    [31] Lin J M, Liu M. Chemiluminescence from the decomposition of peroxymono-carbonate catalyzed by gold nanoparticles. J. Phys. Chem. B,2008,112(26):7850-7855.
    [32] Lin Z, Chen H, Zhou Y, et al. Self-catalytic degradation of ortho-chlorophenolwith Fenton's reagent studied by chemiluminescence. J. Environ. Sci.,2012,24(3):550-557.
    [33] McCullagh C, Robertson P K. Photosensitized destruction of chlorella vulgarisby methylene blue or nuclear fast red combined with hydrogen peroxide undervisible light irradiation. Environ. Sci. Technol.,2006,40(7):2421-2425.
    [34]孙育平,马瑜静,孙杰,等.可见光照下过氧化氢氧化降解罗丹明B.中南民族大学学报(自然科学版),2007(1):13-16.
    [35]方剑锋,曾鑫年,熊忠华,等.过氧化氢降解有机磷农药的研究I.降解性能及影响因素.华南农业大学学报,2004(1):44-47.
    [36]李艳霞,段晓勇,李先国,等.水体中壬基酚光降解机理研究.化学学报,2012(17):1819-1826.
    [37] Gupta S S, Stadler M, Collins T J, et al. Rapid total destruction of chlorophenolsby activated hydrogen peroxide. Science,2002,296(5566):326-328.
    [38]余少青,胡俊,王建龙. γ辐照和H2O2联合作用下五氯酚(PCP)的降解.环境科学学报,2011,31(1):54-60.
    [39] Joshi R P, Thagard S M. Streamer-like electrical discharges in water:environmental applications. Plasma Chem. Plasma P.,2013,33(1):17-49.
    [40] Miller C J, Rose A L, Waite T D. Hydroxyl radical production by H2O2media-ted oxidation of Fe(II) complexed by Suwannee River fulvic acid under circu-mneutral freshwater conditions. Environ. Sci. Technol.2013,47(2),829-835.
    [41] Hug S J, Leupin O. Iron-catalyzed oxidation of Arsenic(III) by oxygen and byhydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.Environ. Sci. Technol.,2003,37(12):2734-2742.
    [42] Santos J L, Nchez S A, García L O, et al. Dissolved oxygen concentration: Akey parameter in monitoring the photo-Fenton process. Appl. Catal. B,2011,104(3):316-323.
    [43]孙红文,吕俊岗,翟洪艳. Fenton法与光Fenton法降解2,4-D的研究.环境化学,2005(4):365-369.
    [44]于怀东,项念,杨扬,等.锰离子对Fenton反应的影响.武汉大学学报:理学版,2006,52(4):453-456.
    [45] Nimick D A, Gammons C H, Parker S R. Diel Biogechemistryical processesand their effect on the aqueous chemistry of streams: A review. Chem. Geol.,2011,283(1-2):3-17.
    [46] Tercier-Waeber M L, Hezard T, Masson M, et al. In situ monitoring of the diur-nal cycling of dynamic metal species in a stream under contrasting photo-benthic biofilm activity and hydrological conditions. Environ. Sci. Technol.,2009,43(19):7237-7244.
    [47] Parker S R, Poulson S R, Gammons C H, et al. Biogechemistryical controls ondiel cycling of stable isotopes of dissolved O2and dissolved inorganic carbon inthe Big Hole River, Montana. Environ. Sci. Technol.,2005,39(18):7134-7140.
    [48] Parker S R, Gammons C H, Poulson S R, et al. Diel variations in streamchemistry and isotopic composition of dissolved inorganic carbon, upper ClarkFork River, Montana, USA. Appl. Geochem.,2007,22(7):1329-1343.
    [49] Kurz M J, de Montety V, Martin J B, et al. Controls on diel metal cycles in abiologically productive carbonate dominated river. Chem. Geol.,2013,358(61):61-74.
    [50] Beck A J, Janssen F, Polerecky L, et al. Phototrophic biofilm activity anddynamics of diurnal Cd cycling in a freshwater stream. Environ. Sci. Technol.,2009,43(19):7245-7251.
    [51] Hua X, Hu J, Jiang X, et al. Adsorption of Cd to natural biofilms in the presenceof EDTA: effect of pH, concentration, and component addition sequence.Environ. Sci. Pollut. Res.,2013,20(2):1079-1088.
    [52] Fuller C C, Davis J A. Influence of coupling of sorption and photosyntheticprocesses on trace element cycles in natural waters. Nature,1989,340(6228):52-54.
    [53] Jones C A, Nimick D A, Cleskey R B. Relative effect of temperature and pH ondiel cycling of dissolved trace elements in Prickly Pear Creek, Montana. WaterAir Soil Pollut.,2004,153(1):95.
    [54] Beck A J, Janssen F, Beer D. The influence of phototrophic benthic biofilms onCd, Cu, Ni, and Pb transport in permeable sediments. Biogeochem.,2011,102(1-3):167-181.
    [55] Morris J M, Meyer J S. Photosynthetically mediated Zn removal from the watercolumn in High Ore Creek, Montana. Water Air Soil Pollut.,2007,179(1-4):391-395.
    [56] Morris J M, Farag A M, Nimick D A, et al. Light-mediated Zn uptake inphotosynthetic biofilm. Hydrobiologia,2006,571(1):361-371.
    [57] Qiang Z, Chang J H, Huang C P. Electrochemical generation of hydrogenperoxide from dissolved oxygen in acidic solutions. Water Res.,2002,36(1):85-94.
    [58] Guerard J J, Chin Y P. Photodegradation of ormetoprim in aquaculture andstream-derived dissolved organic matter. J. Agric. Food Chem.,2012,60(39):9801-9806.
    [59] Lin A Y C, Reinhard M. Photodegradation of common environmental phar-maceuticals and estrogens in river water. Environ. Toxicol. Chem.,2005,24(6):1303-1309.
    [60] Remucal C K. The role of indirect photochemical degradation in theenvironmental fate of pesticides: a review. Environ. Sci. Processes Impacts,2014,16(4):628-653.
    [61] Ge L, Deng H, Wu F, et al. Microalgae-promoted photodegradation of twoendocrine disrupters in aqueous solutions. J. Chem. Technol. Biotechnol.,2008,84(3):331-336.
    [62]彭章娥,冯劲梅,何淑英,等.含藻水中壬基酚的光降解转化研究.环境科学,2012(10):3466-3472.
    [63]陈跃,吴峰,邓南圣.藻引发水中偶氮染料的光降解.重庆环境科学,2003(5):27-30.
    [64]邓欢欢,葛利云,吴峰,等.三种藻类引发水中17-乙炔基雌二醇的光降解实验研究.环境工程学报,2007,1(6):25-29.
    [65] Wimpenny J. Ecological determinants of biofilm formation. Biofouling,1996,10(1):43-63.
    [66] Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment.Chem. Rev.,1993,93(2):671-698.
    [67] Costerton J W C K. Bacterial biofilms in natural and disease. Ann. Rev.Microbiol.,1987,41(1):435-464.
    [68] Picioreanu C, van Loosdrecht M C, Heijnen J J. Two-dimensional model ofbiofilm detachment caused by internal stress from liquid flow. Biotechnol.Bioeng.,2001,72(2):205-218.
    [69] Gray B R, Hill W R. Nickel sorption by periphyton exposed to different lightintensities. J. North. American. Benthol. Society,1995,14(2):299-305.
    [70] Villeneuve A, Montuelle B, Bouchez A. Influence of slight differences inenvironmental conditions (light, hydrodynamics) on the structure and functionof periphyton. Aqua. Sci.,2010,72(1):33-44.
    [71] Morris J M, Nimick D A, Farag A M, et al. Does biofilm contribute to dielcycling of Zn in High Ore Creek, Montana? Biogechem.,2005,76(2):233-259.
    [72] Dong D, Derry L A, Lion L W. Pb scavenging from a freshwater lake by Mnoxides in heterogeneous surface coating materials. Water Res.,2003,37(7):1662-1666.
    [73] Dong D, Nelson Y M, Lion L W, et al. Adsorption of Pb and Cd onto metaloxides and organic material in natural surface coatings as determined byselective extractions: new evidence for the importance of Mn and Fe oxides.Water Res.,2000,34(2):427-436.
    [74] Grossart H P, Czub G, Simon M. Algae-bacteria interactions and their effects onaggregation and organic matter flux in the sea. Environ. Microbiol.,2006,8(6):1074-1084.
    [75] Fuhrman J A. Microbial community structure and its functional implications.Nature,2009,459(7244):193-199.
    [76] Battin T J, Kaplan L A, Denis N J, et al. Contributions of microbial biofilms toecosystem processes in stream mesocosms. Nature,2003,426(6965):439-442.
    [77] Hunt AP P J. The effect of substratum roughness and river flow rate on develop--ment the of a freshwater biofilm community.1998,12(4):287-303Biofouling,1998,12(4):287-303.
    [78] Rao T S, Ranib P G, Venugopalana V P. Biofilm formation in a freshwater en-vironment under photic and aphotic condition. Biofouling,1997,11(4):256-282.
    [79] Guo Z, Hua X, Lan X, et al. Evidence for a mutual effect of biofilms, suspendedparticles and sediments on DDT sorption. Environ. Chem. Lett.,2012,10(4):1-5.
    [80] Hua X, Dong D, Ding X, et al. Pb and Cd binding to natural freshwater biofilmsdeveloped at different pH: the important role of culture pH. Environ. Sci. Pollut.Res.,2012,20(1):1-8.
    [81] Writer J H, Ryan J N, Barber L B. Role of biofilms in sorptive removal ofsteroidal hormones and4-nonylphenol compounds from streams. Environ. Sci.Technol.,2011,45(17):7275-7283.
    [82] Fechner L C, Dufour M, Gourlay-Franc E C. Pollution-induced communitytolerance of freshwater biofilms: measuring heterotrophic tolerance to Pb usingan enzymatic toxicity test. Ecotoxicol.,2012,21(8):2123-2131.
    [83] Proia L, Osorio V, Soley S, et al. Effects of pesticides and pharmaceuticals onbiofilms in a highly impacted river. Environ. Pollut.,2013,178C:220-228.
    [84] Haack E, Warren L A. Biofilm hydrous manganese oxyhydroxides and metaldynamics in acid rock drainage. Environ. Sci. Technol.,2003,37(18):4138-4147.
    [85] Fuchs S, Haritopoulou T, Wilhelmi M. Biofilms in freshwater ecosystems andtheir use as a pollutant monitor. Water Sci. Technol.,1996,34(7-8):137-140.
    [86] Hua X, Li M, Su Y, et al. The degradation of linear alkylbenzene sulfonate(LAS) in the presence of light and natural biofilms: the important role of photo-synthesis. J. Hazard. Mater.,2012,229-230:450-454.
    [87] Wang L, Zhang C, Wu F, et al. Photodegradation of aniline in aqueoussuspensions of microalgae. J. Photochem. Photobiol. B,2007,87(1):49-57.
    [88] Cheng M, Ma W, Li J, et al. Visible-light-assisted degradation of dye pollutantsover Fe(III)-loaded resin in the presence of H2O2at neutral pH values. Environ.Sci. Technol.,2004,38(5):1569-1575.
    [89] Asada K. Production and scavenging of reactive oxygen species in chloroplastsand their functions. Plant. Physiol.,2006,141(2):391-396.
    [90] Pavel P. Production of reactive oxygen species by photosystem II. Biochim.Biophys. Acta,2009,1787(10):1151-1160.
    [91] Fujii M, Rose A L, Waite T D, et al. Superoxide-mediated dissolution ofamorphous ferric oxyhydroxide in seawater. Environ. Sci. Technol.,2006,40(3):880-887.
    [92] Do S H, Batchelor B, Lee H K, et al. Hydrogen peroxide decomposition o nmanganese oxide (pyrolusite): kinetics, intermediates, and mechanism.Chemosphere,2009,75(1):8-12.
    [93]于怀东,方茹,陈士明,等.锰离子参与的类Fenton反应的HPLC和ESR波谱研究.化学学报,2005,63(14):1357-1360.
    [94] Sun C, Chen C, Ma W, et al. Photodegradation of organic pollutants catalyzedby iron species under visible light irradiation. Phys. Chem. Chem. Phys.,2011,13(6):1957-1969.
    [95] Liu W, Au D W T, Anderson D M, et al. Effects of nutrients, salinity, pH andlight:dark cycle on the production of reactive oxygen species in the algaChattonella marina. J. Exp. Mar. Biol. Ecol.2007,346(1):76-86.
    [96] Sun Y, Hua X, Ge R, et al. Investigation on pretreatment of centrifugal motherliquid produced in the production of polyvinyl chloride by air-Fenton technique.Environ. Sci. Pollut. Res.,2013,20(8):5797-5805.
    [97] Dong D, Hua X, Li Y, et al. Cd adsorption properties of components in differentfreshwater surface coatings: the important role of ferromanganese oxides.Environ. Sci. Technol.,2003,37(18):4106-4112.
    [98] Hua X, Dong D, Liu L, et al. Comparison of trace metal adsorption ontodifferent solid materials and their chemical components in a natural aquaticenvironment. Appl. Geochem.,2012,27(5):1005-1012.
    [99] Maison-Peteri B, Etienne A L. Effects of sodium azide on photosystem II ofChlorella pyrenoidosa. Biochim. Biophys. Acta,1977,459(1):10-19.
    [100] Buchan J R, Yoon J H, Parker R. Stress-specific composition, assembly andkinetics of stress granules in Saccharomyces cerevisiae. J. Cell. Sci.,2011,124(2):228-239.
    [101] Vandermeulen J H, Davis N D, Muscatine L. The effect of inhibitors of photo-synthesis on zooxanthellae in corals and other marine invertebrates. Mar. Biol.,1972,16(3):185-191.
    [102] Duysens L N M, Sweers H E. Microalgae Photosynthetic Bacteria [Q]//SpecialIssue of Plant and Cell Physiol. Tokyo: University of Tokyo Press,1963:353-372.
    [103] Lex M, Silvester W B, Stewart W D. Photorespiration and nitrogenase activityin the blue-green alga, Anabaena cylindrica. Proc. R. Soc. Lond. B,1972,180(58):87-102.
    [104] Marshall J, Hovenden M, Oda T, et al. Photosynthesis does influence super-production in the ichthyotoxic alga Chattonella marina (Raphidophyceae). J.Plankton Res.,2002,24(11):1231-1236.
    [105] Espeland E M, Francoeur S N, Wetzel R G. Influence of algal photosynthesis onbiofilm bacterial production and associated glucosidase and xylosidase activities.Microb. Ecol.,2001,42(4):524-530.
    [106] Richardson L L, Aguilar C, Nealson K H. Manganese oxidation in pH and O2microenvironments produced by phytoplankton. Limnol. Oceanogr.,1988,33(3):352-363.
    [107] Biggins J, Mathis P. Functional role of vitamin K1in photosystem I of thecyanobacterium Synechocystis6803. Biochem.,1988,27(5):1494-1500.
    [108] Barr R, Brightman A, Morr E D J, et al. Modulation of plasma membraneelectron transport reactions by menadione (vitamin K3) and related naphtho-quinones. J. Cell. Biol.,1990,111(5):389.
    [109] Felcyn J R, Davis J C, Tran L H, et al. Aquatic photochemistry of isoflavonephytoestrogens: degradation kinetics and pathways. Environ. Sci. Technol.,2012,46(12):6698-6704.
    [110] Yu H, Nie E, Xu J, et al. Degradation of diclofenac by advanced oxidation andreduction processes: kinetic studies degradation pathways and toxicity assess-ments. Water Res.,2013,47(5):1909-1918.
    [111] Smith B A, Teel A L, Watts R J. Identification of the reactive oxygen speciesresponsible for carbon tetrachloride degradation in modified Fenton's systems.Environ. Sci. Technol.,2004,38(20):5465-5469.
    [112] Chen Y, Liang Q, Zhou D, et al. Photodegradation kinetics products and mecha-nism of timolol under simulated sunlight. J. Hazard. Mater.,2013,252-253C:220-226.
    [113] Qu S, Kolodziej E P, Cwiertny D M. Phototransformation rates and mechanismsfor synthetic hormone growth promoters used in animal agriculture. Environ.Sci. Technol.,2012,46(24):13202-13211.
    [114] Andre S, Weis E, Krieger A. Heterogeneity and photoinhibition of photosystemII studied with thermoluminescence. Plant. Physiol.,1998,116(3):1053-1061.
    [115] Yuan S, Fan Y, Zhang Y, et al. Pd-catalytic in situ generation of H2O2from H2and O2produced by water electrolysis for the efficient electro-Fenton degra-dation of rhodamine B. Environ. Sci. Technol.,2011,45(19):8514-8520.
    [116] Kustka A B, Shaked Y, Milligan A J, et al. Extracellular production of super-oxide by marine diatoms: contrasting effects on iron redox chemistry and bio-availability. Limnol. Oceanogr.,2005,50(4):1172-1180.
    [117]吴季松,刘雅鸣.水利技术标准汇编:水资源水环境卷·分析方法.北京:中国水利水电出版社,2002:462-468.
    [118] Eisenberg G. Colorimetric determination of hydrogen peroxide. Anal. Chem.,1943,15(5):327-328.
    [119] Manousaki E, Psillakis E, Kalogerakis N, et al. Degradation of sodiumdodecylbenzene sulfonate in water by ultrasonic irradiation. Water Res.,2004,38(17):3751-3759.
    [120] Auffan M, Pedeutour M, Rose J, et al. Structural degradation at the surface of aTiO2-based nanomaterial used in cosmetics. Environ. Sci. Technol.,2010,44(7):2689-2694.
    [121] Li Y, Zhang W, Niu J, et al. Mechanism of photogenerated reactive oxygenspecies and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano,2012,6(6):5164-5173.
    [122] Liu N, Lin Z, Mo H. Metal (Pb, Cd, and Cu)-induced reactive oxygen speciesaccumulations in aerial root cells of the Chinese banyan (Ficus microcarpa).Ecotoxicol.,2012,21(7):2004-2011.
    [123] Komadel P, Stucki J W. Quantitative assay of minerals for Iron(II) and Iron(III)using1,10-phenanthroline: a rapid photochemical method. Clay Clay Miner,1988,36(4):379-381.
    [124] Liu X, Wu F, Deng N. Photoproduction of hydroxyl radicals in aqueous solutionwith algae under high-pressure mercury lamp. Environ. Sci. Technol.,2004,38(1):296-299.
    [125] Rehman A U, Cser K, Sass L, et al. Characterization of singlet oxygenproduction and its involvement in photodamage of Photosystem II in thecyanobacterium synechocystis PCC6803by histidine-mediated chemicaltrapping. Biochim. Biophys. Acta,2013,1827(6):689-698.
    [126] Nils G A E. Interactions between photosynthesis and ‘light-enhanced darkrespiration’(LEDR) in the flagellate Euglena gracilis after irradiation withultraviolet radiation. J. Photochem. Photobiol. B,2000,55(1):63-69.
    [127] Hidaka H, Koike T, Kurihara T, et al. Dynamics and mechanistic features in thephotocatalyzed oxidation of disulfonated anionic surfactants on the surface ofUV-irradiated titania nanoparticles. New J. Chem.,2004,28(9):1100-1106.
    [128] Fernandez J, Riu J, Garica-Calvo E, Rodriquez A, et al. Determination ofphoto-degradation and ozonation by products of linear alkylbenzenesulfonatesby liquid chromatography and ion chromatography under controlled laboratoryexperiments.Talanta,2004,64(1):69-79.
    [129] Mailhot G, Asif A, Bolte M. Degradation of sodium4-dodecy-enzenesulphonatephotoinduced by Fe(III) in aqueous solution. Chemosphere,2000,41(3):363-370.
    [130] Duesterberg C K, Cooper W J, Waite T D. Fenton-mediated oxidation in thepresence and absence of oxygen. Environ. Sci. Technol.,2005,39(13):5052-5058.
    [131] Zhao J, Chen C, Ma W. Photocatalytic degradation of organic pollutants undervisible light irradiation. Top. Catal.,2005,35(3):269-278.
    [132]林志荣,赵玲,董元华,等.针铁矿催化过氧化氢降解PCB28.环境科学学报,2011,31(11):2403-2408.
    [133] Debbache N, Djebbar K, Lav E Drine B, et al. Fe (III) promo ted LAS (linearalkylbenzenesulfonate) removal from waters. Chemosphere,2008,72(3):557-464.
    [134] Dur A N A, Monteagudo J M, Mohedano M. Neural networks simulation ofphoto-Fenton degradation of Reactive Blue4. Appl. Catal. B,2006,65(1):127-134.
    [135] Zhang L, Zhang Z, Lu C, et al. Improved chemiluminescence in Fenton-like re-action via dodecylbenzene-sulfonate-intercalated layered double hydroxides. J.Phys. Chem. C,2012,116(27):14711-14716.
    [136] Peng Z, Wu F, Deng N. Photodegradation of bisphenol A in simulated lakewater containing algae, humic acid and ferric ions. Environ. Pollut.,2006,144(3):840-846.
    [137] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, andsignal transduction. Annu. Rev. Plant Biol.,2004,55(2):373-399.
    [138] Stone J R, Yang S. Hydrogen peroxide: a signaling messenger. Antioxid. Redox.Sign.,2006,8(3-4):243-270.
    [139] Kangasjarvi S, Neukermans J, Li S, et al. Photosynthesis, photorespiration, andlight signalling in defence responses. J. Exp. Bot.,2012,63(4):1619-1636.
    [140] Forman H J, Fukuto J M, Torres M. Redox signaling: thiol chemistry defineswhich reactive oxygen and nitrogen species can act as second messengers. Am.J. Physiol. Cell. Physiol.,2004,287(2):246-256.
    [141] Dr A Bkov A M, Matthijs H C P, Admiraal W, et al. Selective effects of H2O2on cyanobacterial photosynthesis. Photosynthetica.,2007,45(3):363-369.
    [142] Page S E, Kling G W, Sander M, et al. Dark formation of hydroxyl radicalsupports high rates of dissolved organic matter oxidation in arctic soil and sur-face waters. Environ. Sci. Technol.,2013,47(22):12860-12867.
    [143] Page S E, Sander M, Arnold W A, et al. Hydroxyl radical formation upon oxi-dation of reduced humic acids by oxygen in the dark. Environ. Sci. Technol.,2012,46(3):1590-1597.
    [144] Shang Y, Chen C, Li Y, et al. Hydroxyl radical generation mechanism duringthe redox cycling process of1,4-naphthoquinone. Environ. Sci. Technol.,2012,46(5):2935-2942.
    [145] Zhu B Z, Kalyanaraman B, Jiang G B. Molecular mechanism for metalindepen-dent production of hydroxyl radicals by hydrogen peroxide and halogenatedquinones. Proc. Natl. Acad. Sci.,2007,104(45):17575-17578.
    [146] Zhu B Z, Zhao H T, Kalyanaraman B, et al. Metal-independent production ofhydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spintrapping study. Free Radic Biol. Med.,2002,32(5):465-473.
    [147] Pignatello J J. Dark and photoassisted iron(III)-catalyzed degradation of chloro-phenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol.,1992,26(5):944-951.
    [148] Tarasov A L, Borzenkov I A, Milekhina E I, et al. Utilization of H2O2as theoxygen source by bacteria of the genera Pseudomonas and Rhodococcus.Microbio.,2004,73(4):465-471.
    [149] Legrini, O., Oliveros, E., Braun, A. M. Photochemical processes for water-treatment. Chem. Rev.,1993,93(2)671-698.
    [150] Gosselin F, Madeira L M, Juhna T, et al. Drinking water and biofilm dis-infection by Fenton-like reaction. Water Res.,2013,47(15):5631-5638.
    [151] Kusic H, Koprivanac N, Horvat S, et al. Modeling dye degradation kinetic usingdark and photo Fenton type processes. J. Chem. Eng.,2009,155(1-2):144-154.
    [152] Asada K. The water-water cycle in chloroplasts: scavenging of active oxygensand dissipation of excess photons. Physiol. Plant. Mol. Biol.,1999,50:601-639.
    [153] Laloi C, Stachowiak M, Pers-Kamczyc E, et al. Cross-talk between singletoxygen-and hydrogen peroxide-dependent signaling of stress responses inArabidopsis thaliana. Proc. Natl. Acad. Sci.,2007,104(2):672-677.
    [154] Campbell D, Hurry V, Clarke A K, et al. Chlorophyll fluorescence analysis ofcyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev.,1998,62(3):667-683.
    [155] Manna P, Vermaas W. Lumenal proteins involved in respiratory electron trans-port in the cyanobacterium Synechocystis sp. PCC6803. Plant. Mol. Biol.,1997,35(4):407-416.
    [156] Pospisil P, Snyrychova I, Naus J. Dark production of reactive oxygen species inphotosystem II membrane particles at elevated temperature: EPR spin-trappingstudy. Biochim. Biophys. Acta,2007,1767(6):854-859.
    [157] Kruk J, Jemiola-Rzeminska M, Burda K, et al. Scavenging of superoxidegenerated in photosystem I by plastoquinol and other prenyllipids in thylakoidmembranes. Biochem.,2003,42(28):8501-8505.
    [158] Oda T, Akaike T, Sato K, et al. Hydroxyl radical generation by red tide algae.Arch. Biochem. Biophys.,1992,294(1):38-43.
    [159] Marshall J A, Ross T, Pyecroft S, et al. Superoxide production by marine micro-algae I. Survey of37species from6classes. Mar. Biol.,2005,147(2):541-549.
    [160] Zepp R G, Faust B C, Hoigne J. Hydroxyl radical formation in aqueous react-ions (pH3-8) of Iron(II) with hydrogen peroxide: the photo-Fenton reaction.Environ. Sci. Technol.,1992,26(2):313-319.
    [161] Vermilyea A W, Voelker B M. Photo-Fenton reaction at near neutral pH.Environ. Sci. Technol.,2009,43(18):6927-6933.
    [162] Fujii M, Rose A L, Waite T D, et al. Oxygen and superoxide-mediated redoxkinetics of iron complexed by humic substances in coastal seawater. Environ.Sci. Technol.,2010,44(24):9337-9342.
    [163] Borman C J, Sullivan B P, Eggleston C M, et al. Is iron redox cycling in a highaltitude watershed photochemically or thermally driven? Chem. Geol.,2010,269(1):33-39.
    [164] Parker S R, Gammons C H, Pedrozo F L, et al. Diel changes in metal concentra-tions in a geogenically acidic river: Rio Agrio, Argentina. J. Volcanol. Geother.Res.,2008,178(2):213-223.
    [165] Aubry J M. Search for singlet oxygen in the decomposition of hydrogenperoxide by mineral compounds in aqueous solutions. J. Am. Chem. Soc.,1985,107(21):5844-5849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700