用户名: 密码: 验证码:
药用远志的结构发育与主要药用成分积累关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
远志为我国大宗常用中药材和85种传统出口药材之一。《中国药典》中规定中药远志的原植物为远志(又名细叶远志)(Polygala tenuifolia Willd)或卵叶远志(又名宽叶远志)(Polygala sibirica L.)。细叶远志和卵叶远志隶属于远志科(Polygalaceae)远志属(Polygala),为多年生草本植物,以干燥根入药。远志的主要药用成分为皂苷、(口山)酮、寡糖酯类、脂肪油、多糖等。本文运用植物解剖学、组织化学和植物化学等方法,以药材的主流——细叶远志及最主要药用成分——皂苷为重点,系统研究了两种远志各器官的形态结构及发生发育规律,皂苷、口山酮、脂肪油和多糖在两种远志营养器官中的组织化学定位以及皂苷的细胞化学定位,皂苷在两种远志生长发育过程中含量的积累动态和变化规律,并对两种远志的药材品质进行比较,对主产区不同产地细叶远志药材的皂苷、多糖含量、和主要环境因子进行比较研究和相关性分析。研究结果如下:
     细叶远志根初生结构的分化与次生结构的发生过程,包括4个阶段:即原分生组织阶段、初生分生组织阶段、初生结构和次生生长阶段。初生结构中,其初生木质部脊数为二原型,发育方式为外始式,根中无髓。根的次生结构包括周皮和次生维管组织两部分。其特点为:第一,次生韧皮部的比例远大于次生木质部,通过不同年龄远志主根的比较解剖学研究发现,次生韧皮部约占根直径的2/3-3/5,其增粗只是正常的次生生长,不存在异常的次生生长;第二,次生韧皮部的主要成分为韧皮薄壁组织细胞,储存有丰富内含物,筛管和伴胞很少,与根的储存功能相适应;第三,根中周皮发达,具有较厚的木栓层,次生木质部中导管发达,分布频率较高,是适应干旱环境的特征。
     细叶远志茎的发育过程也包括四个阶段:即原分生组织阶段、初生分生组织阶段、初生生长和次生生长阶段。其成熟茎结构包括表皮、皮层、维管柱三部分。在茎的皮层与次生韧皮部之间发育出一圈排列紧密的厚壁细胞,推测这圈厚壁细胞具有质外体屏障作用,可有效地防止维管组织细胞水分丧失和离子泄漏,对于保护茎组织免受干旱的伤害具有积极的作用。茎近表皮的皮层细胞特化为同化组织,木质部发达,这些结构特点也是适应干旱环境的表现。
     细叶远志叶为的结构、发生和发育类似一般被子植物。叶为典型的异面叶,栅栏组织和海绵组织分化明显。上表皮分布有表皮毛,下表皮气孔器较密集,孔下室较大,在叶肉组织中具有含晶细胞,同样表现出旱生特点。
     卵叶远志营养器官的结构与细叶远志类似,所不同的是卵叶根中次生韧皮部的比例较小,卵叶远志次生韧皮部的厚度约占根直径的1/3。二者的叶在表皮毛密度、气孔器密度等方面也有差异,卵叶远志叶肉中无晶体细胞。
     两种远志的花为两性花,两侧对称,萼片花瓣状,中央花瓣形状为龙骨状,顶端特化为鸡冠状附属物,雌雄蕊的结构较为特殊,8枚雄蕊的花丝部分合生,雌蕊的柱头2裂,且不等高,花部具有适应虫媒传粉的特征。子房上位,2心皮构成2室,每室1胚珠,胚珠倒生。蒴果,种子类型为双子叶有胚乳种子。
     两种远志营养器官中,用5%香草醛-冰醋酸和高氯酸混合试剂进行皂苷的组织化学定位结果表明,在根的初生结构中,皂苷类物质分布于表皮、皮层及中柱内部的薄壁组织细胞内;在次生结构中,主要分布于次生韧皮部及栓内层的薄壁组织细胞中,在木质部的木射线和木薄壁细胞中也有少量分布。在茎中,主要分布于其皮层,在表皮和韧皮部细胞内也有少量分布。在叶中,主要分布于叶肉,在表皮细胞内也有少量分布。盐酸-镁粉进行组织化学定位,发现(口山)酮类化合物主要分布两种远志根的次生韧皮部和栓内层中。苏丹Ⅲ和锇酸对脂肪油的组织化学定位结果显示,在细叶远志根的次生韧皮部及栓内层具有丰富的脂肪油滴,而在卵叶远志的根中没有观察到脂肪油滴。PAS反应对多糖的组织化学定位结果显示在两种远志根的次生韧皮部和周皮中都有多糖物质的积累。因此,在两种远志根中,次生韧皮部是主要药用成分的主要积累场所。超微结构研究结果表明,积累皂苷的薄壁组织细胞中细胞器丰富,用醋酸铅沉淀的细胞化学方法进行处理,在积累皂苷的皮层细胞、韧皮薄壁细胞、筛管等细胞的液泡内及液泡膜周围观察到皂苷沉淀颗粒,进一步验证了皂苷的积累部位。
     植物化学研究表明,两种远志营养器官中都有远志皂苷的积累,根中的含量高,茎叶中含量较低,与组织化学的研究结果一致。同时说明两种远志地上部分也有药用价值,提倡综合利用远志的地上茎叶。根据不同发育时期根和茎叶中远志皂苷元的动态变化趋势,建议在4-5月采收卵叶远志的比较适宜。根的不同部位的植化测定结果显示,皮部与木芯(木质部)的总皂苷和皂苷元含量差异悬殊,皮部远大于木芯,与组织化学的研究结果一致。因此,可以将皮部与木质部的比值作为判断远志品质的标准之一,根皮厚、木芯细的药材应为上品,这与传统的用药习惯是一致的。
     对细叶远志在4-10月的生长发育过程中,1、2、3、4年生根中的远志皂苷元含量的动态变化研究结果表明,远志皂苷元含量均表现为:1年生根>2年生根>3年生根>4年生根,表明远志皂苷在幼嫩的植株根中含量高,推测可能与远志皂苷具有化学防御的功能有关。从年平均增长率来看,根的长度、直径、次生韧皮部的厚度及根干重的增长均在药材种植第2-3年增加最快,而在第4年生长速度减慢。从根中远志皂苷元积累的总含量来看,在果后期3年生根中远志皂苷元的总含量是二年生根的2.66倍、一年生根的3.97倍,而4年生根皂苷元的总含量仅是3年生根的1.2倍,因此兼顾药材产量和质量,应该在细叶远志种植第三年的果后期(8月中旬)进行采收比较适宜。
     对两种远志根的比较结果表明,细叶远志根的长度、直径、干重、皮部厚度以及皂苷元总含量都比卵叶远志高,因此,细叶远志的产量和质量明显优于卵叶远志,故建议人工栽培时应选择细叶远志。
     栽培和野生的细叶远志相比,栽培植株比较粗壮,地上部分分枝较多,根相对粗大,野生植株地上部分分枝少,根粗细不一,侧根较细。从全根和皮部皂苷元百分含量比较分析,野生品质总体要优于栽培植株。但从根中远志皂苷元积累的总含量研究分析,栽培三年细叶远志根的远志皂苷元总含量最高,远大于一、二年生根,并且也明显高于野生植株根,从而反映人工栽培远志是可行的,同时栽培三年后采收的药材产量和有效成分都比较高。
     研究结果表明远志主产区山西、陕西、河北不同产地的药材中远志皂苷元、多糖的含量变化较大,差异达到显著水平(P<0.05),反映各地远志药材的质量存在较大差异。皂苷元和多糖含量综合分析,山西闻喜、新绛的含量都处于较高水平,启示我们在今后远志品种选育时可优先考虑闻喜和新绛两地的品种。对栽培产区的主要环境因子进行分析发现,主产区具有比较相似的气候特征,气候较干旱,年积温较高;土壤的肥力不高,偏微碱性,速效氮含量低,速效钾含量高。相关性分析显示,皂苷元含量与土壤中的有机质含量呈负相关,而与土壤中锰的含量呈正相关。皂苷元与多糖的含量具有正相关性。
"Yuan-Zhi" has been used in traditional Chinese medicine. Chinese Pharmacopoeia took Polygala tenuifolia Willd and Polygala sibirica L.as two original plants of "Yuan-Zhi". P. tenuifolia Will and P. sibirica L. which belong to Polygalaceae are perennial herbaceous plants, and the main medical parts of them are dry roots. The main medicinal ingredients in its dry roots were saponin, xanthone, oligosaccharide polyesters, polysaccharide and fat oil. Anatomical, histochemical and phytochemial methods were used systematically investigated the structural features and the development of vegetative organs in plant of Polygala tenuifolia and Polygala sibirica, and the localization of saponin xanthone, fat oil and polysaccharide in vegetative organs of the two plants, and localization of saponin by cytochemistry, as well as the accumulation and the dynamic variation rule of saponin content. At the same time, the quality of crude drug of Polygala tenuifolia and Polygala sibirica were compared. The contents of saponin and polysaccharide of cultivated crude drug of Polygala tenuifolia. from different places of major producing areas were also compared and the correlation between the content of main chemical constituents and main environmental factors were analysed. The main experimental results are as follows:
     The development of roots of P. tenuifolia could be divided into four stages: promeristem, primary meristem, primary structure and secondary growth. In primary structure, primary xylem was diarch; there is no pith in the center. The secondary structure included periderm and secondary vascular tissue. There were three characteristics of secondary structure of Polygala tenuifolia. Fristly, the secondary phloem made up about 3/5-2/3 of the root diameter, and the diameter of the roots increases depend on normal secondary growth not exceptional secondary growth. Secondly, the secondary phloem contained mainly parenchyma with abundant storeage, the sieve vessel and companion cells were few. Thirdly, Polygala tenuifolia had developed periderm with thick cork, and secondary xylem contained developed vessels which distributed frequently. The structure features of cork and secondary xylem were adapted to the xeromorphic characteristics of Polygala tenuiflia.
     The development of stems could also be divided into four stages: promeristem, primary meristem, primary structure and secondary growth. The stem composed of epidermis, cortex and vascular bundle. The ring of sclerenchymatous cells that developed between cortex and phloem might be the apoplastic protective screen which could protect the stem from drought. The cellls of cortex that close to the epidermis specialized into assimilating tissue. Xylem was developed. These characteristics adapted to arid environment.
     The leaves of Polygala tenuiflia were typically bifacial, and the structure, origin and development of leaves was similar to those of ordinary dicotyledonous plants, There were epidermis hair and stomatal apparatus on the epidermis. The stoma chamber was big. There were crystal cells among the mesophyll. These characteristics of leaf also adapt to arid environment.
     The structures of vegetative organs of P. sibirica were similar to that of Polygala tenuiflia. However, the secondary phloem of P. sibirica made up about 1/3 of the root diameter, the ratio was lower than that of Polygala tenuiflia. There were difference between the density of epidermis hair and stomatal apparatus of the two plants. There were not crystal cells among the mesophyll of P. sibirica.
     The flower of Polygala tenuiflia and P. sibirica was bisexual, zygomorphous one. The shape of sepal differentiated into petal, and the petal in center of flower differentiated into keel, and the upper partial of petal specialized into the cristate shape. The structures of pistil and stamen were special. The filaments of eight stamens combined partially, and the stigma of pistil was split into two parts, which had unequal height. These characteristics were adapted to entomophilous pollination. The pistil consisted of two carpels. There was one anatropous ovule in the ovary which was epistasis with two loculars. The capsule was composed of pericarp and a seed. The type of seed belonged to a dicotyledonous albuminous one.
     The histochemical localization results of Polygala tenuiflia by 5% vanillin-glacial acetic acid-perchloric acid solution showed that saponins were distributed in epidermis, cortex and the parenchyma of central cylinder in primary structure, while in secondary structure saponins mainly in secondary phloem, phelloderm, rarely in xylem ray and xylem parenchyma, and in stem mainly in phloem, rarely in epidermis and cortex, and mainly in mesophyll of leaf, rarely in epidermis. Histochemical localization results of P. sibirica were similar to the result of Polygala tenuiflia. The Mg-Hcl localization results of xanthones indicated that phelloderm parenchyma cells and secondary phloem were storage locus. The localization by SudanⅢand osmic acid indicated that there were abundant fat oil in secondary phloem, phelloderm . However, in root of P. sibirica L., fat oil could not be found. PAS reaction results showed polysaccharide were also existed in root periderm and secondary phloem of the two plants. It displayed that the secondary phloem was the main storage site of main medicinal components. The ultrastructure research result indicated that the parenchyma cell which accumulate the saponin have plentiful organelle. The cytochemistry method of PbAc—settling showed that the settleable solids of PbAc were found in vacuoles or around the tonoplast in the parenchyma cells which accumulate the saponin, such as parenchyma cells of phloem, cortex cells and sieve tube etc. It proved the location of saponin of histochemical results.
     The phytochemical results also showed that the saponin accumulated in the vegetative organs of P. tenuifolia and P. sibirica, with higher content in roots and lower content in the aerial parts that included stems and leaves. This result was consistent with the findings obtained through the histochemistry experiment. Based on these results, we advocate the utilization of aerial parts of P. tenuifolia and P. sibirica facing the shortage of Yuan-Zhi" resource today. According to the dynamic variance of saponins content of P. sibirica at the developmental stage, the P. sibirica should be gathered at period from April to May. The content of total saponin and segenenin in different parts of root showed obvious variation. The content in the "skin areas" was much higher than that of xylem. The result is consistent with the histochemical localization. Accordingly, the crude drug that had thick "skin areas" and thin xylems was of top grade.
     The HPLC result showed that during the growth period the senegenin percent content of roots in four different years had dynamic variant trend, the senegenin percent content had the similar result, that is annual roots'> biennial roots'> triennial roots'>quadrennial roots', it showed that the younger root had higher content. We guessed that this result came because triterpenoid in P. tenuifolia may be chemical defenses. As far as the increasing rate of roots of P. tenuifolia was concerned, the length, diameter, thickness of "skin areas" as well as dry weight content of roots increased most quickly from the second to the third growth year. The increasing rate of roots decreased at fourth growing year. In the post-fruit period, the total senegenin content of the triennial roots was 2.66 times as much as that of the biennial roots, and 3.97 times as that of the annuals. However, the total senegenin content of the quadrennial root was only 1.20 times as much as that of the triennial roots. In fact, it is the total amount of secondary metabolic product in plant that should be considered while the medicinal material is selected. So the middle ten days of August of the third growing year was optimal collecting period for the drug of Polygala tenuifolia.
     The comparision of roots of two plant indicated that the diameter, thickness of "skin area", dry weight as well as senegenin contents of roots in P. tenuifolia were all higher than that of P. sibirica. So, the crude drug quality of P.tenuifolia was better than that of P. sibirica. We should choose Polygala tenuifolia as cultivated material.
     The shape of cultivated plants of P. tenuifolia was more hairchested and had more branches and thicker root, comparising with the wild one. The wild plants of P. tenuifolia having less branches and the root were nonuniform, the lateral root were thiner. Judging from the senegenin contents of "skin areas" and root, the quality of wild plant was higher than that of the cultivated plant as a whole. However, analyzing from the dry weight and total senegenin contents, the roots of triennial cultivated P. tenuifolia had the highest level, which was also higher than that of the wild plant. The result indicated that the cultivated P. tenuifolia could instead of the wild, and the cultivated P. tenuifolia shoud be gathered at third growth year because of the highter total senegenin contents.
     Results on Polygala tenuifolia from different places of major producing areas in Shanxi, Shaanxi, Hebei province showed that there were obvious differences (p<0.05) in the contents of saponins and polysaccharide. This indicated that the quality of major producing areas were very different. Analyzing from contents of saponins and polysaccharide, the quality of crude drug of "Xin-Jiang" and "Wen-Xi" were higher. The variety of "Yuan-Zhi" from "Xin-Jiang" and "Wen-Xi" could be preferred for breeding. The analysis of major environmental factor showed that the climate of different places of major producing areas were similar, having dryclimate and higher accumulated temperature. The soil were not fertile and alkalescent, with lower content of N and highter content of K. Correlation indicated that the content of saponin had negative correlation with the organic matter of soil, but had positive correlation with the element of Mn. The content of saponin had positive correlation with content of polysaccharide.
引文
白效令.中药材栽培与采集[M].山西:山西科学技术出版社,1992:27-29
    曹玉芳,林如,胡正海.盾叶薯蓣根状茎的发育解剖学和组织化学研究[J].武汉植物学研究,2003,21(4):288-294
    曹玉芳,王太霞,胡正海.盾叶薯蓣营养器官薯蓣皂甙元含量的动态变化[J].实验生物学报,2004,37(3):221-225
    陈勤,曹炎贵,张传惠.远志皂苷对β2淀粉样肽和鹅膏草氨酸引起胆碱能系统功能降低的影响[J].药学学报,2002,37(12):913-917
    陈书坤.中国远志属植物的分类研究[J].植物分类学报,1991,29(3):193-229
    陈士林.暗紫贝母品质与生态条件的相关性研究[J].中药材,1989,12(11):5
    陈瑛.实用中药种子技术手册[M].北京:人民卫生出版社,1999:306-307
    崔克明.植物生长调节剂在控制形成层活动中的作用[J].植物学通报,1991,8(1):22-29
    丁乡.远志人气旺 后市稳中升[J].中药研究与信息,2005,7(9):47-48
    邓传良,周坚.石蒜属植物叶微形态特征研究[J].西北植物学报,2005,25(2):355-362
    Fahn A(吴树明译).植物解剖学[M].天津:南开大学出版社,1990:350
    范丽芳,张兰桐,景秀娟,等.河北道地药材远志HPLC-UV指纹图谱研究[J].中草药,2008,39(4):595-598
    饭冢进.远志的脑保护活性成分[J].国外医学·中医药学分册,1995,17(5):29
    冯向东,高光伟,黄海欣.远志炮制前后质量变化的比较研究[J].中成药,2008,36(6):818-820
    傅博强,谢明勇,聂少平,等.茶叶中多糖含量的测定[J].食品科学,2001,22(11):69-73
    付洪兰.实用电子显微镜技术.北京:高等教育出版社,2004
    高玲玲,刘文哲.远志根的形态发生及组织化学研究[J].2008,16(1):1-9
    高万林,张厚宝.远志的炮制工艺比较[J].中药通报,1987,12(2):25-26
    韩建萍,梁宗锁.矿质元素与根类中草药根系生长发育及有效成分累积的关系[J].植物生理学通讯,2003,39(1):78-82
    黄德杰,程超寰,周国伟.远志不同炮制方法的质量研究[J].中成药研究,1986,3:13-14
    贺玉林,李先恩,淡红梅.远志种子质量分级标准研究[J].种子,2007,26(1):106-107
    胡侃,郝建平.外源激素对远志试管苗增殖和生根的影响[J].山西医药杂志,2008,37(2):189-190
    胡正海,苏红文.西洋参根的形态发育与主要药用成分积累的关系[J].中草药,1996,27:162-164
    胡云,燕玲,李红.14种荒漠植物茎的解剖结构特征分析[J].干旱区资源与环境,2006,20(1):202-207
    金航,崔秀明,徐珞珊,等.三七道地与非道地产区药材及土壤微量元素分析[J].云南大学学报(自然科学版),2006,28(2):144-149
    姜勇,张娜,崔振,等.远志药材的HPLC指纹图谱[J].药学学报,2006,41(2):179-183
    姜勇,屠鹏飞.远志属植物中口(口山)酮类化合物的结构特征和谱学规律[J].北京大学学报医学版,2004,36(1):94-98
    姜华,毕玉芬,何承刚,等.关于苜蓿传粉机制及与传粉昆虫之间的关系[J].草业科学,2003,20(1):1-6
    金宝渊.远志生物碱成分的研究[J].中国中药杂志,1993,18(11):675-677
    柯文彬.远志不同炮制方法的探讨[J].基层中药杂志,1994,8(1):8-9
    K.伊稍(李正理译).种子植物解剖学[M].上海:上海科学技术出版社,1982:161-166
    康廷国主编.中药鉴定学[M].北京:中国中医药出版社,2003:131.
    李金亭,彭励,胡正海,等.牛膝根结构的发育与齐墩果酸积累的关系[J].分子细胞生物学报,2007,40(2):121-129
    李光植,黄瑛,王琳.远志对D-半乳糖致衰小鼠红细胞中超氧化物歧化酶、肝组织谷胱甘肽过氧化物酶活性影响的实验研究[J].黑龙江医药研究,2002,23(1):4
    李衡森,许同印,杨霞.远志栽培技术简介[J].中草药,2002,33(3):271-272.
    李家实主编.中药鉴定学[M].上海:上海科学技术出版社,1996:121
    李萍,闫明,卢丹,等.远志挥发油成分的GC-MS分析[J].特产研究,2003,25(4):43-45
    李希,谢守德.远志不同炮制工艺比较[J].四川中医,2002,20(3):19-20
    李占林,赵云生,毛福英,等.晋产远志种质资源药材性状研究[J].中国农学通报,2002,22(6):383-386
    李正理.植物组织制片学[M].北京:北京大学出版社,1996
    刘德祥,殷学军,王河川,等.102种中药水溶性提取物的抗诱变性筛选[J].中国中药杂 志,1990,15(10):41-46
    刘国刚,牛福春.远志的栽培技术[J].特种经济动植物,2003,(7):279-281
    刘汉珍,张树杰.远志的人工栽培技术[J].中国野生植物资源,2003,22(1):55-56
    刘友平,万德光,刘涛,等.分光光度法测定不同产地远志总皂甙的含量[J].成都中医药大学学报,2000,23(2):46-47
    刘友平,万德光,宋英.HPLC法测定远志中去羟基远志皂苷元含量[J].中草药,2001,32(9):786
    刘友平,万德光,黄荣,等.薄层扫描法测定远志中远志皂苷元的含量[J].中草药,2002,31(7):512-514
    刘世彪,林如,胡正海.绞股蓝人参皂甙的组织化学定位及其含量的变化[J].实验生物学报,2005,38(1):54-60
    刘世彪,寥海民,胡正海.绞股蓝营养器官各发育阶结构与总皂甙含量相关性的研究[J].武汉植物学研究,2005,23(2):144-148
    刘旭.中国生物种质资源科学报告[M].北京:科学出版社,2003,124-139
    刘文哲,胡正海.虎杖根茎葸醌类化合物细胞化学定位和含量测定[J].实验生物学报,2001,34(3):235-236
    刘文哲,胡正海.贯叶连翘的分泌结构及其与金丝桃素积累的关系[J].植物学报,2001,41(4):369-372
    刘文哲,王自芬.喜树幼枝的喜树碱积累及其组织内定位[J].植物生理与分子细胞生物学学报,2004,30(4):405-412
    马俊英,许建国,仙连生.苏木等15种中草药水提液体外对HL-60,yac~(-1)、K_(562)、L_(929(的细胞毒作用[J].天津医药,1990,1:41-42
    聂淑琴.草药制剂的药理学特性(20):远志中天然前提药物的筛选[J].国外医学-中医中药分册,1996,18(6):39-40
    裴瑾,万德光,杨林.苯酚-硫酸比色法测定远志及地上部分多糖的含量[J].华西药学杂志,2005,20(4):337-339
    彭汶铎.远志皂苷H对离体平滑肌与心脏的作用[J].中国药学杂志,1999,34(4):241-243
    彭汶铎,许实波.四种远志皂苷的镇咳和祛痰作用[J].中国药学杂志,1998,33(8):491
    彭汶铎.远志皂苷的降压作用及其机制[J].中国药理学报,1999,20(7):639
    彭汶铎.远志皂苷H对离体平滑肌与心脏的作用[J].中国药学杂志,1999,34(4):241-243
    彭玮欣,吴志明,谢晓亮.远志的人工种植、鉴别及炮制研究进展[J].河北农业科学,2005,9(1):111-113
    乔俊缠,杨卿.蒙药远志金属元素含量测定[J].中国民族医药杂志,2001,7(4):32
    秦金山,郭龙.远志叶片愈伤组织的诱导和植株的再生[J].植物生理学通讯,1986,21(3):44
    任明迅.植物雄蕊合生的多样性、适应意义及分类学意义初探[J].植物分类学报,2008,46(4):452-466
    邵伟国.北药远志的开发及栽培技术[J].中国林副特产,2002,5:58-59
    孙红祥.远志中皂苷类免疫佐剂活性成分的分离及活性评价[J].杭州,浙江大学,2005
    孙晓飞,时索琴.远志脂肪油成分分析[J].中草药,2000,23(1):35-37
    孙桂波,邓响潮,李楚华.远志皂苷对H_2O_2所致PC12细胞损伤的保护作用[J].中药材,2007,30(8):991-993
    谭玲玲,胡正海,蔡霞,等.北柴胡营养器官中主要化学成分的组织化学定位及其含量比较[J].分子细胞生物学报,2007,40(4):214-221
    谭沛.植物(口山)酮苷类化合物[J].天然产物研究与开发,1995,7:45-54
    田伟,温春秀,周巧梅,等.不同来源远志种子的质量比较[J].现代中药研究与实践,2006,17(5):34-35
    田伟,高丽,谢晓亮,等.远志种子发芽检验标准化研究[J].种子,2008,27(2):99-101
    田庚元,冯宇澄,林颖.植物多糖的研究进展[J].中国中药杂志,1995,20(7):441
    苏文华,张光飞,李秀华.植物药材次生代谢产物的积累与环境的关系[J].中草药,2005,36(9):144-146
    王爱蓉.远志的栽培技术[J].中国西部科技,2006,11(47):53-54
    王光远,夏镇澳.远志的快速繁殖[J].植物生理学通讯,1986,19(6):55-56
    王光志.远志资源与品质评价研究[J].成都,成都中医药大学,2006
    王桂芹,吴愁.商陆营养器官及不同生长龄储藏根的解剖结构研究[J].安徽科技学院学报,2007,21(1):18-22
    王红,简令成,张举仁.低温胁迫下水稻幼叶细胞内Ca~(2+)水平的变化.植物学报,1994,36(8):587-591
    王太霞,司源,李景原,胡正海.怀地黄块根内含梓醇结构的组织化学和超微结构研究[J].西北植物学报,2005,25(5):928-931
    王铁僧,姚金.我国华东地区远志属药用植物的整理鉴定[J].中药材科技1984,5:20-21
    王亚琴.杜仲叶有效成分的地理学研究(一)广东药学院学报,2000,16(3):173-176.
    万德光.四川省远志属植物种类分布和药用情况的调查报告[J].成都中医学院学报,1985.2:35-36
    万德光,陈幼竹,刘友平.远志活性成分的动态变化[J].成都中医药大学学报,1999,22(3):42-47
    汪豪,童玉新,叶文才等.细叶远志的化学成分研究[J].中国中药杂志,2003,28(9):828
    夏厚林,董敏,吴希等.远志蜜炙前后HPLC指纹图谱对比研究[J].中草药,2006,37(11):1657-1659
    肖培根.新编中药志,第一卷[M].化学工业出版社,2002:488
    肖小河.乌头品质与土壤因子的相关性研究[J].中药材,1990,13(11):3
    徐国钧,徐珞珊.常用中药材品种整理和质量研究(南方协作组),第一册[M].福洲:福建科学技术出版社,1994:241-263徐继振,刘效瑞,赵荣.钼锌铁锰在党参栽培中的应用效果.中药材,1996,19(1):1-3
    徐绶竣.实用生物学制片技术[M].湖南:湖南教育出版社,1987
    徐是雄.植物材料的薄切片超薄切片技术[M].北京:北京大学出版社,1981
    徐昭玺.中草药种植技术指南[M].北京:中国农业出版社,2000:266-269
    徐建中.微肥对益母草生长和总生物碱积累的调控效应.中国中药杂志,1999,25(1):20-22
    薛辉.远志种子繁殖实验观察[J].中国中药杂志,1989,14(8):15-16
    闫明,李萍.远志抗衰老作用的研究,实用药物与临床,2006,9(1):22-23
    杨国红,孙晓飞.反相高效液相色谱法测定远志中远志皂苷元的含量[J].药物分析杂志,2001,21(4):260-263
    杨海.远志的人工栽培与加工[J].北京农业,2002,(7),15
    杨持,王迎春,刘强等,2002.四合木保护生物学[M].北京:科学出版社,11-16
    杨学东,徐丽珍,杨世林.远志属植物中(口山)酮类成分及其药理研究进展[J].天然产物研究与开发,2002,12(5):88-93
    杨学东,张丽杰,梁波等.远志科植物中的寡糖酯类成分[J].中草药,2002,33(10):954-958
    杨学东.植物中酮类成分及药理研究进展[J].天然产物的研究与开发,2000,123(5): 90-93
    杨雁斌.(口山)酮类化合物[J].云南植物研究,1980,2(3):345-369
    杨梓懿,余晓涛.中药净制取心的作用理论探讨[J].中成药,1997,19(2):23-24
    张丽萍.远志[M].北京:中国中医药出版社,2001
    张若明,李经才.解酒天然药物研究进展[J].沈阳药科大学学报,2001,18(2):138-142
    张培轩,段瑞,黄鹏.中国远志属药用植物资源及地理分布[J].基层中药杂志,2002,16(6):42-43
    张雄熙.远志炮制方法初探[J].福建中医药,2001,32(4):46-47
    张永清,商庆新,药用植物的次生代谢与中药GAP[J].世界科学技术/中医药化,2005,7(2):67-75
    赵云生,严铸云,李占林,等.晋产远志品种资源多糖含量测定[J].时珍国医国药,2005,16(9):867-868
    赵云生,李占林,王勇.不同处理对远志出苗率的影响[J].山西农业科学,2002,30(2):58-59
    赵云生,李占林,毛福英,等.远志良种繁育研究[J].中药研究与信息,2005,7(12):33-34
    赵云生,李占林,毛福英,等.远志种子贮存特性研究[J].中医药学刊,2006,24(8):1485-1486
    赵云生,李占林,张丽萍.晋产远志种质资源皂苷元含量测定[J].世界科学技术-中医药现代化,2006,84(4):68-70
    赵帅.远志高产栽培技术[J].北京农业,2003,2:10
    赵军霞.土壤酸碱性与植物的生长[J].内蒙古农业科技,2003,(6):33-34
    中华人民共和国卫生部药典委员会.中华人民共和国药典(二部)[S].北京:化学工业出版社,2005:26
    中华人民共和国卫生部药典委员会.中华人民共和国药典(一部)[S].北京:化学工业出版社,2000:123
    中国科学院中国植物志编辑委员会.中国植物志,第四十三卷,第三分册[M].北京:科学出版社,1979:181-195
    邹建华.远志根中的蔗糖衍生物[J].国外医学-中医中药分册,1994,16(4):321
    周智彬,李培军.我国旱生植物植物的形态解剖学研究[J].干旱区研究,2002,19(1):35-40
    郑汉臣.药用植物学[M].北京:人民卫生出版社,1999.156-157
    郑秀华,沈政.远志石菖蒲对大鼠穿梭行为及脑区域代谢率的影响[J].锦州医学院学报,1991,12(5):288-290
    郑友兰,李向高.吉林人参与西洋参生药学和组织化学的比较研究[J].吉林农业大学学报,1986,8(4):30-35
    朱丽霞,程乃乾,高信曾.生物学中的电子显微镜技术.北京:北京大学出版社,1983
    朱玉琢.中草药对实验性小鼠雄性生殖细胞遗传物质损伤的保护作用[J].吉林大学学报(医学版)2003,29(3):258-259
    魏·吴普等述,清·孙星衍,孙冯具辑.神农本草经[M].北京:人民卫生出版社,1963:20,136
    梁·陶弘景.《本草经集注》[M].北京:人民卫生出版社,1994:202
    明·李时珍编著.本草纲目[M].北京:人民卫生出版社影印,1957:525
    清·吴其浚著.植物名实图考[M].北京:商务印书馆,1957:155
    Champagne DE,Koul O,Isman MB,et al.Biological activity of limonoids from the Rutales[J].Phytochemistry 1992,31:377-394
    Chung IW,Moore NA,Oh W K,et al.Behavioural pharma-cology of polygala saponins indicates potential antipsychotic efficacy[J].Pharmacol Biochem Behav,2002,71(122):1912-1951
    Chen YL,Hsich CL,Wu PH,et al.Effect of polygala tenuifolia root on behavioral disorders by lesioning nucleus basalis magnocellularis in rat[J].J Ethnopharmacol,2004,95(1):47-55
    Fahn A.Plant anatomy(3rd ed)[M].Oxford:Pergaman Press,1982:237-247
    Govindachari TR,Suresh G,Gopalakrishnan G,et al.Banumathi B.Antifungal activity of some tetranortriterpenoids[J].Fitoterapia.2000,71,317-320
    Govindachari TR,Suresh G,Banumathy B,et al.Gopalakrishnan Geetha,Krishna Kumari GN.Antifungal activity of some B,D-secolimoniods from two Meliaceous plants[J].J.Chem.Ecol.,1999,25,923-933
    Ikeya Y,Sugama K,M aruno M.Xanthone C-glycoside and acylated sugar from Polygala tenuifolia[J].Chem Pharm Bull,1991,39(10):2600-2605
    Ikeya Y,Sugarna K,OkadaM,et al.Four new phenolic glycosides from Polygala tenuifolia [J].Chem Pharm Bull,1994,42(11):2305-2308
    Kim H M,Lee E H,Na H J,et al.Effect of Polygala tenuifolia root textract on the tumor necrosis factor secretion from mouse astrocytes[J]. J Ethnopharmaco,1998,61:201-208
    Kubo. Histochemistry I: Ginseno sides in ginseng (Panax ginseng root) [J]. Journal of Natural Products, 1980,43(2):278-284
    Kubo M, Asano T, Matsuda H. Studies on rehmanniae radix.Ⅲ. The relation between changes of constituents and improvable effects on roots of Rehmannia glutinosa [J].Yakugaku Zasshi. 1996,116(2): 158-168
    Liu Wen-Zhe. Secretory Structures and Their Relationship to Accumulation of Camptothecin in Camptotheca acuminata (Nyssaceae) [J]. Acta Botanica Sinica. 2004,46(10): 1242-1248
    Liu Z, Carpenter SB, Bourgeois WJ, et al. Variation in the secondary metabolite camptothecin in relation to tissue age and season in Camptotheca acuminata (Nyssaceae) [J]. Tree Physiol, 1998,18:265-270
    Locke JC. Fungi. In: Schmutterer H, ed. The Neem Tree Azadirachta indica A. Juss. and Other Meliaceous Plants: Sources of Unique Natural Products for Integrated Pest Management, Medicine, Industry and Other Purposes[M]. VCH, Weinheim. pp.1995,118-125
    Lu H F, Sheng Z G, Li J Y. The patterns of secretory structure and their relation to hypericin content in Hypericum[J]. Acta Botanica Sinica, 2001,43(10):343-348
    Miyase, T., Noguchi H. Chen X.M. Sucrose esters and xanthone C-glycosides from the roots of Polygala sibirica [J]. Journal of Natural Products, 1999, 62(7):993-996
    Miyase T, Iwata Y, Ueno A. Tenufolioses A-F, oligo saccharide multi-esters from the roots of Polygala tenuifolia Willd [J]. Chem Pharm Bull, 1991,39(11):3082-3084
    Miyase T, Iwata Y, Ueno A. Tenufolioses G-P, oligosaccharide multi-esters from the roots of Polygala tenuifolia Willd [J]. Chem Pharm Bull, 1991,40(10):2741-2748
    Metcalfe C R., Chalk L. Anatomy of the Dicotyledons.Volume I [M]. Oxford at the Clarendon Press.l957:133-138
    Nagai T, Suzuk I Y, Kiyohara H, et al. Onjisaponins, from the root of Polygala tenuifolia Willdeow, as effective adjuvants for nasal influenza and diphtheria-pertussis-tetanus vaccines [J]. Vaccine,2001,19(32):4824-4834
    Peres V, Nagem TJ, Oliveira FF. Tetraoxygenated naturally occurring xanthenes [J]. . Phytochemistry,2000,55:683-710
    Pelletier S W. Constituents of Polygala species, strueture of tenuifolin,a prosapogenin from Polygala segena and Poly gala tenuifolia [J]. Tetahedron, 1971,27,4417.
    Roberts L. W. Vascular. Differentiation and Plant Growth Regulators [M]. Springer-Verlag, Berlin, 1988.
    Sakuma Seiich, Shoji junzo. Studies on the Constituents of the Root of Polygala tenuifolia Willd. I . Isolation of Saponins and the Structures of Onjisaponins G and F [J].Chem. Pharm. Bull, 1981,29(9):2431
    Sakuma Seiich, Shoji junzo. Studies on the Constituents of the Root of Polygala tenuifolia Willd. Ⅱ .On the Structures of Onjisaponins A, B and E [J].Chem. Pharm. Bull,1982, 30(3):810
    Shen Z G, Chauser-Volfsone, Gutterman Y, et al. Anatomy, histochemistry and phytochemistry of leaves in Aloe vera var. chinensis [J]. Acta Bot. Sin., 2001,43:780-787
    Shen X L, Witt M R, Dekermendjian K, et al. Isolation and identification of tetrahydrocolumbamine as a dopamine recaptor ligand from Polygala tenuifolia Willd [J]. Aeta Pharmaceutica Sinica,1994,29(12):887-890
    
    Trease GE. Pharmacognosy (Elerenth Edition) [M]. Macmillan Publishers. Co. 1978,491 Yabe T, Tuchida H, Kiyohara H, et al. Induction of NGF synthesis in astrocyles by onjisaponins of Polygala tenuifolia, constituents of kampo (Japanese herbal) medicine, Ninjn-yoei-to [J]. Phytomedicine, 2003,10(2-3):106-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700