用户名: 密码: 验证码:
小麦生长的力学特性及其动力学规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦生长过程中根茎叶力学特性及其动力学规律的研究属生物力学范畴。本文运用力学的基本原理,借鉴工程设计思想,采用试验研究与理论分析相结合的方法,主要研究了小麦生长成熟期根、茎、叶的力学性能、根系-土壤复合体的应力-应变关系和风力作用下小麦茎秆的动力学规律。
     1.围绕力学性能,全面系统地研究了小麦成熟期根茎叶的力学特性,测得了根茎叶在拉伸、弯曲、压缩和剪切四种基本变形条件下的应力-应变曲线,获得了表征根茎叶强度、刚度和稳定性的主要评价指标,分析了根茎叶在外力作用下的变形规律和破坏规律。结果表明:小麦根茎叶具有不同的强度和刚度。茎秆的强度σ_j≈21.85~74.91MPa,弹性模量E_j≈580~3140MPa;叶片的强度σ_y≈2.04~9.54MPa,弹性模量E_y≈83.90~303.40MPa;初生根强度σ_g≈11.4~57.25MPa,弹性模量E_g≈137.6~470.5MPa;次生根强度σ_g≈1.07~13.07MPa,弹性模量E_g≈114.3~470.4MPa。茎秆的纵向、横向的抗压性能和抗剪性能有明显差别,纵压强度σ_(jz)≈7.40MP>横压强度σ_(jh)≈0.62MPa;横剪强度τ_(jh)≈6.21MPa>纵剪强度τ_(jh)=0.34MPa。叶片的纵向拉伸强度高于横向撕裂强度,叶片纵拉σ_(yz)≈4.85MPa>横撕σ_(yh)≈0.44MPa。小麦生长状态下茎秆的变形主要是悬臂弯曲,其破坏一般首先发生在根部附近的弯曲一侧,大多在第二节间;茎秆轴向压缩时,茎秆沿纵向纤维方向破裂;根茎叶轴向拉伸时,均在横截面发生断裂。根茎叶具有的强度和刚度,是小麦在复杂外力作用下能正常生长的主要原因,是根茎叶资源工业开发利用的基本依据。
     2.围绕组织结构,观察了小麦根茎叶微观组织的解剖构造影像,分析了根茎叶机械组织、薄壁组织和输导组织与力学性能之间的关系,比较了根茎叶微观组织结构的差异及其对力学性能的影响程度。结果表明:小麦根茎叶是多孔、不连续、非均匀、各向异性材料;根茎叶的横截面形如蜂窝,密实组织和多孔组织交错;纵向截面如同多层纤维组成的复合材料。根茎叶的承载能力主要决定于它们的机械组织(厚壁细胞组织)的层数(厚度)和纤维组织的排列形式;根茎叶外表皮机械组织发达、密实度高;维管束厚壁细胞(纤维)是主要的承力元件,薄壁细胞(基体)则起连接、传载作用。茎秆纤维密度沿秆壁径向由里向外逐渐增加,因此形成了茎秆承受外载弯曲的最佳结构。
     3.根据复合材料,建立了小麦根系-土壤复合体的力学模型,得到了根系-土壤复合体的应力-应变公式,探讨了根系-土壤复合体工程常数的计算方法,分析了小麦根系发育生长与土壤环境、土壤应力之间的相互关系。结果表明:土壤-根系复合体任一方向的正应力,不仅与各方向的应变分量有关,而且还与各方向的工程常数密切相关,与泊松比的关系更为复杂,其剪应力与相应平面的剪应变和剪切弹性模量成正比。土壤-根系复合体的强度,取决于土粒与土粒、土粒与根系之间的内摩擦力和黏聚力;粘聚力和摩擦力不仅与土壤、根系的材料特性、组织结构有关,而且与含根量、水分含量相关。粘聚力C≈25.1~43.6KPa,摩擦角Φ=23.73~0~35.33~0,根系-土壤复合体的强度τ=(25.1~43.6)+σtan(23.73~0~35.33~0);根系对复合体强度的贡献,主要来源于根与土粒之间的摩擦力。研究表明:作物根系在空间的分布随土壤应力的增大呈指数曲线变化;土壤应力增大,作物根量、根长、根系表面积递减。
     4.围绕动力性能,建立了小麦生长成熟期风力作用下的力学模型,推得了小麦成熟期风力作用下的微分方程,系统研究了小麦成熟期在瞬时风力和持续风力作用下的动力响应,得到了小麦成熟期风力作用下的频率方程、主振型函数、运动方程和强度评价公式。结果表明:小麦在随机风力作用下茎秆系统的响应和振动强度,与茎秆系统形态、茎秆系统材料性质、自然环境条件、土壤状态等因素有关。具体参数涉及叶片数量及其夹角、迎风面积,茎秆高度、茎秆形态、横截面积;麦穗质量、叶片质量、茎秆质量、茎秆转动惯量、茎秆弹性模量、茎秆剪切模量、茎秆内阻尼;风速、风压、风的脉动性、风速分布、地面粗糙度、地理位置,以及土壤松软程度。
     小麦生长成熟期风力作用下的运动微分方程:
     小麦生长成熟期风力作用下的运动规律表达式:
A study on the mechanical properties and dynamic laws of wheat in growth belongs to a biomechanics. In this paper, using the basic principles of mechanics and methods of engineering design, the mechanical properties of root, stem and leaf of wheat and the stress-strain relationship of soil-root composite and the dynamic laws under wind were researched by the method of combining analysis and experiment. The main contents are:
     1. The mechanical properties of major organs of wheat were systematically studied in this paper. The stress-strain curves of the root, stem and leaf of wheat were obtained under the conditions of the basic deformation including the tension, bending, compression and shear. The main indicators of the mechanical properties of root, stem and leaf of wheat were measured. The laws of deformation and failure of root, stem and leaf of wheat are analyzed under force. The results show that root, stem and leaf of wheat have different strength and stiffness. The strength of stemσ_j≈21.85-74.91MPa; the modulus of elasticity E_j≈0.58-5.14GPa, average 1.5GPa; the strength of the leafσ_y≈2.04-9.54MPa, the modulus of elasticity E_y≈83.90-303.40MPa; the strength of primary rootσ_g≈11.4-57.25MPa, the modulus of elasticity E_g≈l37.6-470.5MPa; the strength of secondary rootσ_g≈1.07-13.07MPa, the modulus of elasticity E_g≈114.3-470.4MPa. The longitudinal and transverse properties of the compression and the shear for wheat stems are obviously different; the longitudinal compressive strength of stemσ_(jz)≈7.40MP>the transverse compressive strength of stemσ_(jh)≈0.62MPa; the transverse sheering strength of stemτ_(jh)≈6.21MPa>the longitudinal sheering strength of stemτ_(jh)≈0.34MPa. The longitudinal tensile strength of leaf is higher then the transverse tensile strength; the longitudinal tensile strength of leafσ_(yz)≈4.85MPa>the transverse tensile strengthσ_(yh)≈0.44MPa. The deformation of stem is mainly the cantilever bending during the growth of wheat. The failure of wheat stem is firstly occurred in bending side at the foot of a stem. The stem will rupture along the fibers of stem when the stem being compressed. When the root, stem and leaf of wheat being tensioned longitudinally, the fracture is occurred in cross-section of them. The strength and stiffness of root, stem and leaf is the interior cause that enables wheat to grow under the complex exterior conditions and is the basis of developing and using root, stem and leaf of wheat.
     2. From the perspective of engineering materials research, the microstructure of root, stem and leaf of wheat were observed and analyzed in using electron microscope technology. The results show that root, stem and leaf of wheat are a typical material of porous, discontinuous, non-homogeneous and anisotropic. The mechanical properties depend on its organizational structure and chemical composition. The cross-section of root, stem and leaf of wheat look as if a cellular, the crisscross between dense organizations and porous organizations; longitudinal section looks as if composite materials made of multi-fiber and matrix. Mechanical organizations of outer-epidermis of root, stem and leaf are thick and high-density. The fibers (organizations of thick-walled cells of vascular) are the major component to bear. The role of matrix (organizations of thin-walled cells) is to link and transmit. Distribution of stem fiber density increases along the radial from the wall to the outside gradually, resulting in the best structure of a stem bending.
     3. The mechanical model of soil-root composite system is established in this paper; the relationship of stress-strain and the calculation method of engineering constant of soil-root composite were discussed; the relationship between soil stress and wheat roots growth was analyzed. The results show that a normal stress is related to the normal strain, the engineering constants and Poisson ratio; its shearing stress is direct proportion to the shearing strain and shearing modulus of elasticity. The strength of the soil-root composite depends on the friction between roots and soil particles and coherent force between soil particles and roots, and soil particles; the root s contributions to strength of the composite come mainly from the friction between roots and the soil particles; coherent force C=25.21-43.60KPa, friction angleΦ=23.73-35.33°. The friction and coherent force not only relate to the properties of the rootand soil, but also the amount of root and moisture content. The calculation formula of the strength of root-soil composite isτ=(25.1-43.6)+σtan(23.73~0-35.33~0). Research shows that distribution of crop roots in soil is exponentially curves. The number of crop roots, root length, and roots surface area decrease with the increase of soil stress.
     4. The mechanical model in wheat growth was established under wind. The motion differential equation of wheat growth maturity was obtained under the conditions of wind. The dynamic response of random vibration in wheat growth was analyzed under the conditions of instantaneous and continued wind. The results show that the dynamic response and the strength of vibration for wheat stem system is related to the morphology of stem system(ear of wheat, number of leaf and angle, windward area, height, mass, geometry, cross-section area, moment of inertia), the properties of the stem materials(elastic modulus, shear modulus, damping),natural environmental conditions(wind speed and pressure, pulse of wind, distribution of wind speed, ground roughness, location), and soil conditions (humidity and the degree of soil soft).
     The bending vibration differential equation in wheat growth under the conditions of wind:
     The dynamic formula in wheat growth under the conditions of wind:
引文
[1]陶祖莱,孟庆国.关于我国生物力学发展的几点意见[J].力学进展,2000,30(3):472-475.
    
    [2]余松烈.作物栽培学[M].2001.
    
    [3]冼杏娟.竹纤维增强树脂复合材料及其微观形貌[M].北京:北京航空航天大学出版社,1995
    
    [4]国家自然科学基金委员会.力学--自然科学学科发展战略调研报告[J].力学与实践,1998,20(1),(2):59-71,61-72
    
    [5]冯元桢.生物力学[M].北京:科学出版社,1983.
    
    [6]马中和.生物力学导论[M].北京:北京航空学院出版社,1986.
    
    [7]刘人怀,王璠.浅谈我国生物力学的研究近况(综述)[J]暨南大学学报(自然科学与医学版),2001,(01)
    
    [8]陶祖莱.生物流体力学[M].北京:科学出版社,1984.
    
    [9]顿斯柯依,扎齐奥尔斯基[苏],著.吴忠贤,译.生物力学[伽.重庆:人民体育出版社,1981.
    
    [10]J.C.切托,著.徐云生,译.生物传热学基础.北京:科学出版社,1991.
    
    [11]王兆华,李立科,高志文,赵二龙,洪晓强,张朝阳.铧式犁耕作对沙尘暴的影响[J].西北林学院学报
    
    [12]郭维俊,黄高宝,王芬娥.植物根系若干力学问题研究[J].中国农机化,2006,(4)
    
    [13]李小昱.农业生物力学在农业工程中的应用[J].西北农业大学报,1994,22(1):105-109.
    
    [14] Cheng H, and Zhang XQ. 2002. An experimental study on herb plant root system for strengthprinciple of 390 soil fixation[J]. Bulletin of Soil and Water Conservation, 22(5): 20-23
    
    [15]Coile TS. 1936. Distribution of forest tree roots in North Carolina Piedmont soil[J].J. For., 35: 247-257
    
    [16] Zhu QK, Chen LH, Zhang DS, et al. 2002. Mechanisms of soil-reinforcement by roots inforest ecological in Gongga Mountain[J]. Journal of Beijing Forestry University, 24(4):64-67.
    
    [17]刘国彬,蒋定生,朱显漠.黄土区草地根系生物力学特性研究[J].土壤侵蚀与水土保持学报,1996,2(3):21-28.
    
    [18]程洪,张新全.草本植物根系网固土原理的力学试验探究[J].水土保持通报,2002,22(5):20-23.
    
    [19]Diti Hengchaovaich.香根草技术在工程上的运用---稳定斜坡、减少侵蚀[M].香根草研究与展望.北京:中国农业科技出版社,1998.
    
    [20]史敏华,王棣,李任敏.石灰岩区主要水保灌木根系分布特征与根抗拉力研究初报[J].山西林业科技,1994,2:17-19
    
    [21]朱清科,陈丽华,张东升等.贡嘎山森林生态系统根系固土力学机制研究[J].北京林业大学学报,2002,24(40):64-67.
    
    [22]李勇,朱显漠等.黄土高原土壤抗冲性机理初步研究[J].科学通报,1990,35(5),390-393.
    
    [23]李勇,朱显漠,田积莹.高原植物根系提高土壤抗冲性的有效性[J].科学通报,1991,36(12),935-938.
    
    [24]唐克丽等.重建植被仍为治理黄土高原良策[J].中国科学报,1989.
    
    [25]吴彦,刘世全,王金锡.植物根系对土壤抗侵蚀能力的影响[J].应用与环境生物学报,1997,3(2):119-124.
    
    [26]野久田捻郎,林拙郎,等.由根系抗拉强度推算根系固坡效果[J].水上保持科技情报,1997.
    
    [27]代全厚,张力,刘艳军,等.嫩江大堤植物根系固土护堤功能研究[J].中国水土保持,1998,2??3:36-37.
    
    [28]姬长英,潘君拯.湿软土壤剪切应力-剪切速度-时间关系及其应用(第1报)——湿软土壤剪切变形机理探析[J].农业工程学报,1994,(04).
    
    [29]邵颂东,王礼先,周金星.国外土壤侵蚀研究的新进展[J].水土保持科技情报,2000,1:32-36.
    
    [30]Gray D H. Influence of vegetation on the stability of slopes[J]. In: Barker D H.Vegetation and Slopes-Stabilisation, Protection and Ecology. London: Thomas Telford,1995. 2-25.
    
    [31]O' Dogherty M J A review of the mechanical behaviors of Straw when compressed to highdensities[J]. Journal of Agricultural Engineering Research, 1989,44:241-265.
    
    [32]Limpiti S Effect of moisture content and stage of maturity on mechanical propertiesof wheat straw[J]. Thai Journal of Agricultural Science 1980,13:277-283.
    
    [33]Kushwaha R L;Vaishnav A S;Zoerb G C Shear strength of wheat straw[J]. CanadianAgricultural Engineering 1983, 25(2):163-166.
    
    [34]Gowin J M E Determination of wheat stem modulus of elasticity by means of holographicinterferometry[J]. Second International Conference on the Physical Properties ofAgricultural Materials, 1980, 106.
    
    [35]Skubisz G The dependence of the Young' s modulus of winter wheat stalk in variousphonological phases[J]. Second International Conference on the Physical Properties ofAgricultural Materials, 1980, 37.
    
    [36]Huber J A A study of the physical properties of wheat straw[J]. M. Phil. Thesis, CranfieldInstitute of Technology, Silsoe College, 1991.
    
    [37]袁志华,冯宝萍,赵安庆.作物茎秆抗倒伏的力学分析及综合评价探讨[J].农业工程学报,2002,(06).
    
    [38]胡婷,付志一,焦群英.小麦茎秆抗弯性能研究[J].农业工程学报,2006,(10)
    
    [35]袁红梅,郭玉明,李红波.小麦茎秆弯折力学性能的试验研究[J].山西农业大学学报,2005.
    
    [39]刘君.春小麦倒伏内外因素及茎杆力学特点的研究[D].东北农业大学学报,2005.
    
    [40]李红波.小麦茎秆力学特性的实验研究[D].太原理工大学学报,2005.
    
    [41]康福华.矮丰三号小麦茎秆的力学性质初探[J].西北农林科技大学学报(自然科学版),1986,(03)
    
    [42]段传人,王伯初,王凭青.水稻茎秆的结构及其性能的相关性[J].重庆大学学报(自然科学版),2003,(11).
    
    [43]杨惠杰,杨仁崔,李义珍.水稻茎秆性状与抗倒性的关系[J].福建农业学报,2000,(02).
    
    [44]郭玉华;朱四光;张龙步;不同栽培条件对水稻茎秆材料学特性的影响[J].沈阳农业大学学报,2003年01期
    
    [45]周丽华.杂交稻茎秆生理特性对其抗倒伏能力的影响[J].河南农业科学,2006,(10).
    
    [46]邹德堂,秋太权,赵宏伟.水稻倒伏指数与其它性状的相关和通径分析[J].东北农业大学学报,1997,(02).
    
    [47]袁志华,赵安庆,苏宗伟,赵祥雄.水稻茎秆抗倒伏的力学分析[J].生物数学学报,2003,(02).
    
    [48]关玉萍,沈枫.水稻抗倒伏能力与茎秆物理性状的关系及对产量的影响[J].吉林农业科学,2004,(04).
    
    [49] Speck T, Spatz H-C, Vogellehner D. 1990. Contributions to the biomechanics of plants [J]. I. Stabilities of plant stems with strengthening elements of different cross-sections against weight and wind forces [J]. Botanica Acta 103: 111 ± 122.
    
    [50] Vogel S. 1992. Twist-to-bend ratios and cross-sectional shapes of petioles and stems[J]. Journal of Experimental Botany 43: 1527±1532.
    
    [51]高梦祥,郭康权,杨中平,李星恕.玉米秸秆的力学特性测试研究[J].农业机械学报,2003,(04).
    
    [52]赵安庆,袁志华.玉米茎秆抗倒伏的力学机制研究[J].生物数学学报,2003,(03).
    
    [53]卿上乐,区颖刚,刘庆庭.土壤支撑下甘蔗茎秆的内力和变形[J].华中农业大学学报,2005,(S1).
    
    [54]田保明,袁志华,王建平.油菜茎秆抗倒伏的力学分析及综合评价探讨[J].河南农业科学,2005,(03).
    
    [55]Halyk R M; Hurlbut L M Tensile and shear strength characteristics of alfalfa stems [J].Transactions of American Society of Agricultural Engineering, 1968,11:256-257.
    
    [56]吴杰,黄勇,王艳云,王维新.棉秆轴向压缩特性的试验研究[J].农机化研究,2004,(04).
    
    [57]EI ag H E;Kunze O R;Wilkes L H Influence of moisture, dry matter density and rate of loading on ultimate strength of cotton stalks[J]. Transactions of American Society of Agricultural Engineers,1971, 14:713-716.
    
    [58]李明,汤楚宙,谢方平,吴明亮,孙松林.毛桃苗力学特性试验研究[J].农业工程学报,2005,(03).
    
    [59] Gardner W R. Dynamic aspects of water availability to plants[J]. SoilSci, 1960,89:63-73
    
    [60] Chandra S P O, Amaresh K R. Nonlinear root-water uptake model[J]. J Irrig and DrainEngi, 1996, 122 (4): 198-202.
    
    [61] Herkelrath W N, Miller E E. Gardner W R. Water Uptake by Plant[J]: I. Divided rootexperiment. Soil Sci Soc Am J, 1977,41:1033-1038.
    
    [62] Molz F J. Water transport in the soil-root system[J]: Transient analysis. Waterresource Res, 1976, 12:805-807.
    
    [63]杨培岭,郝仲勇.植物根系吸水模型的发展动态[J].中国农业大学学报,1999,4(2):67-73.
    
    [64]姚建文.作物生长条件下土壤含水量预测的数学模型[J].水利学报,1989(9):32-38.
    
    [65] Nimah M N, Hanks R J. Model for estimating soil water, plant and atmosphere interrelations: Field test of model[J]. Soil Sci Soc Am Proc, 1973, 37:522-527.
    
    [66]康绍忠,刘晓明,熊运章.冬小麦根系吸水模式研究[J].西北农业大学学报,1992,20(2):5-12.
    
    [67]邵爱军,李会昌.野外条件下作物根系吸水模型的建立[J].水利学报,1997(2):68-72.
    
    [68]迟道才,王王宣,夏桂敏.水稻根系吸水模型的初步研究[J].灌溉排水学报,2004,23(1):56-51.
    
    [69]刘晚苟,山仑.土壤机械阻力对玉米根系导水率的影响[J].水利学报,2004,(4):114-117.
    
    [70]姚立民,康绍忠,龚道枝.苹果树根系吸水研究方法的讨论[J].水资源与水工程学报,2004,15(1).
    
    [71]华云龙,董务民.力学可以为农业现代化作贡献[J].力学进展,1998,28(3):289-298.
    
    [72]阳小成,王伯初,叶志义.试论农业工程中的力学问题及主要研究方向[J].华南师范大学学报(自然科学版),2003,(
    
    [73]王伯初,段传人,龙雪峰等.植物应激效应的研究[J].中国学术期刊文摘,1999,5(7):924-925
    
    [74]龙雪峰.非洲雏菊茎尖愈伤组织对机械振荡刺激的应激效应[J].重庆:重庆大学,1999
    
    [75]曹孟德,丁洪,王君健.流体切力对植物细胞的影响[J].生物工程进展,1996,16(4):51-53.
    
    [76]邱树毅,姚汝华,宗敏华.超声波在生物工程中的应用[J].生物工程进展,1999,19(3):45-48.
    
    [77]孙一源,余登苑.农业生物力学及农业生物电磁学.北京:中国农业出版社,1996.
    
    [78]赵剑,杨文杰,马福荣,等.高压静电场(H V E F)对苜蓿叶片愈伤组织增殖的影响[J].生物物理学报,1997,13(2):255-256.
    
    [79]郭静成,袁风华,特定电磁波对作物某些生理生化特性的影响[J].作物学报,1994(2):235-240.
    
    [80]刘世华,赵淑萍,徐昭玺.空间植物学研究进展[J].自然杂志,1999,21(1):19-23.
    
    [81]徐继,闫田,赵琦等.空间环境对刁柏幼苗向性生长及代谢过程的影响[J].生物物理学报,1997,13(4):660-663
    
    [82]徐继,闫田,赵琦,等.微重力对刁柏根尖组织和细胞中钙水平及分布的影响[J].生物物理学
    
    [83]三思计量技术公司.CMT微机控制电子万能试验机使用手册[M].深圳:三思计量技术,2002.
    
    [84]三思计量技术公司.CMT微机控制电子万能试验机软件管理指南[M].深圳:三思计量技术,2002.
    
    [85]刘成宇.土力学(第二版)[M].北京:中国铁道出版社,2002.
    
    [86]山东农学院.作物栽培学(上册)[M].北京:农业出版社,1995.
    
    [87]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    
    [88]镇江农业机械学院.农业机械学(上册)[M].北京:中国农业机械出版社,1981.2.
    
    [89] Schultheisz CR, Waas AM. 1996. Compressive failure of composites, Part 1: Testing andmicromechanical theories[J]. Progess in Aerospace Science 32: 1±42.
    
    [90]Gale MR, and Grigal DE. 1987. Vertical root distribution of northern tree species inrelation to successional status[J]. Can J For For, 17: 829-834
    
    [91]Jackson RB, Canadell J, and Mooney HA. 1996. A global analysis of root distributionfor terrestrial [J].
    
    [92]徐芝纶.弹性力学(上册)[M].北京:高等教育出版社,1982.
    
    [93]张锦,张乃恭.新型复合材料力学机理及其应用[M].北京:北京航空航天大学,1993.
    
    [94]郭维俊,黄高宝,王芬娥,牛俊义.农业土壤应力状态与作物根系生长相关性研究[J].兰州大学学报(自然科学版),2006,(02)
    
    [95]Russell E W.土壤条件与植物生长[M].北京:科学出版社,1979.
    
    [96] Passioura J B. Soil structure and plant growth [J]. Aust. J. Soil Res, 1991, 29: 717-728.
    
    [97] Atwell B J. The effect of compaction on wheat during early tilling[J]. I. Growth,Development and roots structure[J]. New Phytol, 1990, 115: 29-35.
    
    [98] Bengough A G. . A biophysical analysis of root growth under mechanical stress [J]. Plant Soil, 1997, 189: 155
    
    [99]冼杏娟.天然复合材料[M].北京:机械工业出版社.2001
    
    [100]郑维平,冼杏娟.第五届全国复合材料学术会议.西安:1988,873-875.
    
    [101]宋焕成,张佐光.混杂纤维复合材料[M].北京:北京航空航天大学出版社,1988.
    
    [102]北京农业大学.农业气象出版社.北京:农业出版社.1992.
    
    [103]Stokes A, Fitter AH, Coutts MP. 1995. Responses of young trees to wind and shading: effects on root architecture[J]. Journal of Experimental Botany 46: 1139±1146.
    
    [104] Vincent JFV. 1992. Biomechanics-materials[M] : a practical approach. Oxford: 165-IRL Press at Oxford University Press.
    
    [105]庄表中,梁以德,张佑启.结构随机振动[M].北京:国防出版社,1993.
    
    [106]张景绘,王超.工程随机振动理论[M].陕西:西安交通大学出版社,1988.
    
    [107]陈基发,沙志国.建筑结构荷载设计手册[M].北京:中国建筑工业出版社,1997.
    
    [108]刘鸿文.材料力学(第二版,上下册)[M].北京:高等教育出版社,1987.
    
    [109]程耀东.机械振动力学[M].浙江:浙江大学出版社,1990.
    
    [110]Cai Zengshe, Liang Lihua, Feng Ping. Mechanics of Materials[M]. Bing Jing: World Pulishing Corporation, 1999.
    
    [111]Waters NE. 1980. Some mechanical and physical properties of teeth[J]. In: Vincent JFV, Currey JD, eds. The mechanical properties of biological materials[J]. Cambridge: Cambridge??University Press, 99 ± 135.
    
    [112]O'Dogherty MJ, Huber JA, Dyson J, Marshall CJ. 1995. A study of the physical and mechanical properties of wheat straw[J]. Journal of Agricultural Engineering Research 62: 133±142.
    
    [113]Canarache, A. Horn, R. and Colibas, I, 2000. Compressibility of soils in a longterm field experiment with intensive deep ripping in Romania[J]. SoilTill.Res. 56, 185-196.
    
    [114] Gupta, S. C. and Raper, R. L. Prediction of soil compaction under vehicles [J]. In: Soane, B. D. and van Ouwerkerk, C., eds. Soil compaction in crop production. Amsterdam, Elsevier, 1994.p.71-90.
    
    [115] O' Dogherty M J; Gilbertson H G;Gale G E Measurements of the physical and mechanical properties of wheat straw. Fourth International Conference on the Physical Properties of Agricultural Materials[J], Rostock, German Democratic Republic,4-8 September, 1989, 608-613.
    
    [116]Roark R J Formulas for stress and strain.McGraw Hill,1965.
    
    [117]B. Budiansky, Advances and Trends in Structural and Solid Mechanics[J]. Pergamon Press, 1983, 3-12.
    
    [118]A.Kelly and S.T.Miteike(eds), Handbook of Composites[J], Vot. 4. Elsevier Science Publishers, B.V. ,1983.
    
    [119]X.J. Xian et al., Advanced Structural Materials[J], Elsevier Science Publishers B.V. ,1991,245-250.
    
    [120]李正理,等.24种国产竹材的比较解剖观察[J].植物学报,1960,(3).
    
    [121]张寿槐,等.中国竹材物理力学性质试验现状和展望.北京:国际竹类工业利用研讨会,1992:130-138.
    
    [122]周芳纯,等.竹材力学性质测定报告[J].竹类研究,1991,10(1);7-12.
    
    [123]张劲松,孟平,宋兆民.农林复合模式耗水特征的研究[J].林业科学研究,1996,9(4):331 337
    
    [124]马秀玲,陆光明.农林复合系统中林带和作物的根系分布特征[J].中国农业大学学报,1997,2(1):109-116
    
    [125]钱祖香.小麦品种收获指数与其他多种性状相关性的研究[J].湖北农学院学报,1989(2):9-17
    
    [126]王远亮等.生物力学与管理组织工程[J]。力学进展,1996,26(4)
    
    [127]周光召.迈向科技大发展的新世纪[J].中国科学报,95.5.29
    
    [128]中国力学学会.力学——迎接21世纪的挑战[J].力学与实践,1995,17(5)
    
    [129]谈镐生.力学和它的发展[J].力学学报,1978,10(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700