用户名: 密码: 验证码:
大断面黄土隧道围岩变形特征及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土围岩工程特性成为隧道多类问题的根源,采用理论解析、实验室研究、数值模拟与现场工程应用相结合的方法对大断面黄土隧道围岩变形特征及控制技术进行深入研究。以典型黄土隧道为依托进行现场应用与反馈,解决围岩变形特征、失稳机理、空间位移及变形控制等关键问题,进行了大量的研究工作:
     (1)黄土地区隧道工程主要修建在低含水率Q2、Q3地层,其工程特性表现为显著结构性与垂直节理发育;采用室内固结排水三轴试验对黄土结构特性进行研究,将综合结构势mP由单轴应力状态应用到三轴应力状态实现黄土结构性的定量化;采用弹性圆孔应力集中分析垂直节理形成的力学机理,重力引起的水平拉力是产生垂直节理的原因;综合分析黄土工程特性,选取可考虑结构性与垂直节理双线型遍布节理模型。
     (2)基于黄土围岩工程特性,隧道开挖引起的围岩变形具有自身特点,具体表现在:突变性、变形值大、持续时间长、易形成地表裂缝;隧道开挖引发的应力调整经历了复杂加载与卸载过程,掌子面空间效应影响范围为2倍洞径;开挖引发围岩力学响应以洞周最为强烈,沿开挖半径向围岩深部发展;影响黄土隧道围岩变形因素主要包括黄土工程特性、地应力环境、隧道埋深、隧道断面形状与尺寸、地下水与施工组织管理等。
     (3)通过对大断面黄土隧道失稳案例调研与数值分析,剪切滑移与弱抗拉强度成为黄土隧道松动塌落主要原因;无支护条件下黄土围岩破坏过程表现:局部裂隙产生→局部裂隙扩展→裂隙急剧贯通→残余强度四个阶段;黄土围岩首先沿小主应力方向形成剪切破坏,随着荷载的分级施加,边墙处剪切裂隙贯通形成掉块,进而拱部围岩因边墙临空而显著下沉,拱顶松动塌落是在边墙剪切滑移破坏基础上出现;围岩深部存在环向应力升高区,承担着自重与外部土体荷载形成压力拱,自洞壁向围岩深部依次可分为:松动区→压力拱→原岩应力区。
     (4)通过模型试验得出型钢与喷网联合支护有效控制了黄土围岩变形发展,拱顶应力松弛得到缓解;选取拱顶部位实测数据绘制围岩与支护特征曲线,型钢与喷网联合支护结构提供的最大支护反力为围岩压力的70%,相应的拱顶沉降为5.1mm。与喷网联合支护结构起到了预想的限制效果,减小了有害松动的发生。
     (5)由于黄土特殊工程性质,大断面隧道深部围岩变形模式表现为围岩拱部竖向位移弱化较慢而边墙水平位移弱化较快,水平收敛普遍小于拱顶沉降,基本符合Boltzmann函数;支护结构合理调整围岩应力分布,有效改善应力集中;上台阶支护对控制拱顶沉降起关键作用,施工中应引起足够重视;支护封闭成环对整个隧道变形起到明显的控制效果,有利于开挖后围岩位移场的稳定。
     (6)采用数值方法对黄土围岩纵向变形及控制措施进行分析;临空面的存在使得掌子面挤出变形趋势显著,总体上边墙纵向位移小于拱顶,纵向位移与弹性模量成反比;对于纵向先期位移的预测结果,Panet经验公式为25%,Hoek经验公式为30%,数值计算结果为33%;预留核心土有效控制掌子面纵向挤出变形,使得掌子面土体由不利的双向应力状态变为三向应力状态,对于大断面黄土隧道台阶法施工,核心土的预留长度控制2R/3左右较为合适。
     (7)采用数值计算与理论分析绘制适用于大断面黄土隧道围岩与支护特征曲线;利用收敛约束法分析现行支护参数的适应性,支护结构最大反力大于围岩与支护特征曲线的平衡点应力值,满足适应性要求
     (8)基于正交试验设计对支护时机与刚度进行优化,选取合理的优化指标从而计算支护结构的优化组合;数值计算表明优化后支护结构组合具有较好适应性;根据数值计算结合现场实测制定大断面黄土隧道深、浅埋位移控制基准。
The characteristics of loess are source of tunnel mult-class problems. The deformation characteristics and control measures of large-section loess tunnel have been researched deeply by using theoretical analysis, laboratory model test, numerical simulation and field measurement methods. According to field application and feedback of typical loess tunnel, the surrounding rock deformation characteristics, failure mechanism, spatial displacement and deformation control have been solved. Specific findings are highlighted below:
     (1)Loess tunnels were usually built in Q2or Q3loess strata which are low moisture content strata. The engineering properties of loess are significant structural and vertical joints. The loss engineering characters was analysis laboratory triaxial test, and the potential of integrated structure which is from uniaxial stress state is applied to triaxial stress state, the loess structural quantitative has been realized by applying the uniaxial stress state to the triaxial stress state. According to the stress concentration of the elastic hole, the vertical joints are caused by level tension. Comprehensive analyzed of the engineering properties of loess, Bilinear Strain-Hardening/Softening Ubiquitous-Joint Model is selected to consider the type of structural and vertical joints.
     (2)Based on the characteristics of loess, the deformation of wall rock is shows concretely as follows:concrete manifests of mutagenicity, the large deformation, long duration, easily formation of surface cracks; The stress adjustment experiences a complex loading and unloading process during the excavation progress and the range of tunnel face space effect is2times diameters; The mechanics respond caused by the excavation is most strongly at cavern perimeter and develops along tunnel radius; The influencing factors of deformation in loess mainly include the engineering properties, environmental stress, tunnel depth, tunnel cross-section shape and size, and groundwater and construction management, etc.
     (3)According to the investigation and numerical analysis of tunnel collapse in large section of loess tunnel, shear slip and weak tensile strength become the main reason for tunnel failure case. Under no-support conditions of the loess surrounding rock failure process performance:local fracture produced→local fracture extended→facture rapid transfixed→residual strength. The wedge slip body is firstly performed on the side-wall parts along direction of the minimum principal stress, then spread for vault and arch bottom and the integrity of surrounding rock is undermined. As the weak tensile strength, the lossening collapse is occurred on the vault. The tangential stress increased area is existed in the deep rock, the part rock bears weight with external load soil pressure arch formed a significant effect, since the rock wall can be divided into loose zone→pressure-arch→initial stress area.
     (4)According to the model test, the steel and spray net support is the effect way which can control the development of loess surrounding rock deformation and stress relaxation. The surrounding rock and support characteristic curves in vault show that Steel and spray net support provides the maximum support reaction force for70%of rock pressure and corresponding vault settlement5.1mm. The combined support structure of the steel and spray net plays the expected limit and reduces the occurrence of harmful loose.
     (5)Due to loess engineering properties, the deformation model of large-section loess tunnel show that the vertical displacement of crown slowly weakening and the rapid weakening of the horizontal displacement. The horizontal constringency is generally less than the crown settlement, and the law is in accordance with the Boltzmann function. The support of the upper bench plays an important role in the control of crown settlement, and the supporting structure reasonably adjusts the stress distribution and improves the stress concentration effective; The support of the upper bench plays an important role in the control of crown settlement, it should be pay more attention in the construction; The ring closure of support produces obviously restrain effect on the tunnel deformation and is beneficial to the stability of displacement field.
     (6)The longitudinal deformation of loess surrounding rock is analysis by site numerical analysis; the extrusion deformation trend is significant for the existence of free face. On the whole, The longitudinal deformation of the crown is smaller than the wall; For the forecast of longitudinal deformation, the empirical formula of Panet is25%, Hoek is30%and3D calculation is33%; The range of free face are effectively reduced and beneficial for the tunnel face stability; the suitable reserved length of core soil is2R/3.
     (7)The ground and support reaction curve of large section of loess tunne is drawn by the numerical calculation and theoretical analysis. The initial support adaptation is studied by convergence-confinement method. The maximum reaction force is larger than the stress values of the equilibrium point, so it meet the requirements for adaptability.
     (8)Based on orthogonal design for the optimization of supporting opportunity and stiffness, a reasonable optimal indicator is selected and the combination is calculated. It shows that better adaptability to optimize the combination. The displacement control benchmark of large section loess tunnel deep and shallow has been established based on in-situ monitoring and numerical analysis.
引文
[1]董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001
    [2]谢定义.试论我国黄土力学研究中的若干新趋向[J].岩土工程学报.2001.(23):3-13
    [3]骆亚生,胡仲有,张爱军等.非饱和黄土结构性参数与其强度指标关系初探[J].岩土力学.2009.30(4):943-948
    [4]谢定义,齐吉琳,张振中.考虑土结构性的本构关系[J].土木工程学报.2000.33(4):35-41
    [5]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报.1999.21(6):651-656
    [6]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形-强度的关系[J].水利学报.1999.(10):1-6
    [7]雷华阳.结构性海积软土的弹塑性研究[J].岩土力学.2002.23(6):721-724
    [8]骆亚生,谢定义,邵生俊等.复杂应力状态下的土结构性参数[J].岩石力学与工程学报.2004.23(24):42484251
    [9]邵生俊,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究[J].岩土工程学报.2004.26(4):531-536
    [10]陈存礼,胡再强,高鹏.原状黄土的结构性及其与变形特性关系研究[J].岩土力学.2006.27(11):1891-1896
    [11]陈存礼,高鹏,胡再强.黄土的增湿变形特性及其与结构性的关系[J].岩石力学与工程学报.2006.25(7):1352-1360
    [12]陈存礼,高鹏,唐杰.三轴应力状态下不同湿度原状黄土的结构性定量化参数[J].岩石力学与工程学报.2006.25(11):2313-2319
    [13]Dafalias Y F,Popov E P.A model of nonlinearly hardening materials for complex loading[J]. Acta Mechanica.1975.21(3):173-192 [14] G. Lombardi. Some Comments on the Convnce-Confinement Method [J]. Underground Space,1980,4(4):249-258.
    [14]Rouainia M, Muir Wood D. A kinematic hardening constitutive model for natural clays with loss of structure[J]. Geotechnique.2000.50(2):153-164
    [15]Lutenegger A J. Schmertmann's swell sensitivity-Revisited[C]. Proceedings of From Research to Practice in Geotechnical Engineering Congress 2008-From Research to Practice in Geotechnical Engineering.2008. (325):193-205
    [16]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社.
    [17]周维垣.高等岩石力学[M].北京:水利水电出版社
    [18]安红刚,冯夏庭.大型洞室群稳定性与优化的进化有限元方法研究[J].岩土力学,2001,22(4):373-37
    [19]刘宁,卓家寿.节理岩体的三维随机有限元及可靠度计算[J].岩石力学与工程学报,1995,14(4):297-305.
    [20]张顶立,王悦汉,曲天智.夹层对层状岩体稳定性的影响分析[J].岩石力学与工程学报,2000,19(2):140-144.
    [21]张玉军,唐仪兴.层状岩体强度异向性地下洞室的有限元分析[J].地下空间,1999,19(1):30-34
    [22]张玉军,刘谊平.层状岩体的各向异性一弹塑性三维有限元分析[J].焦作大学学报,2003,(2):47-50
    [23]张玉军,刘谊平.正交各向异性岩休中地下洞室稳定的粘弹-粘塑性三维有限元分析[J].岩土力学,2002,23(3):278-283.
    [24]肖明,王阳雷.陡倾角层状岩体中地下厂房洞室围岩稳定性分析[J].岩石力学与工程学报,2002,19(增):2057-2060.
    [25]刘学增.岩土介质横观各向同性粘弹性优化反分析理论与应用研究[D].上海:同济大学,2001.
    [26]Tonon F, Amadei B Effeet of elastic anilsotropy of tunnel wall displacements behind a tunnel faee[J].Iniemational Journal of Rock Mechanic and Rock Engneering.2002,35(3):141-160
    [27]杨法玉,马国彦.对黄河小浪底水利枢纽地下厂房围岩稳定性分析方法的研究[J].水力发电,1995,(1):23-26
    [28]顾义磊.西山坪水平煤系地层隧道围岩稳定性研究[D].重庆:重庆大学,2003
    [29]黄达.软硬岩层互层巷道顶板稳定性分析[D].太原:太原理工大学,2004
    [30]李树森,符文熹,聂德新.地下洞室顶部软弱夹层和层状岩体的稳定性分析及参数反演[J].成都理工学院学报,2000,27(1):60-62.
    [31]张晓春,张东升,缪协兴.井巷围岩的延迟失稳机理分析[J].岩石力学与工程学报,2001,20(6):830-833.
    [32]张农,侯朝炯,王培荣.深井三软煤巷锚杆支护技术研究[J].岩石力学与工程学报,1999,18(4):437-440.
    [33]肖明,龚玉锋,俞裕泰.西龙池抽水蓄能电站地下厂房围岩稳定三维非线性分析[J].岩石力学与工程学报,2000,19(5):557-561.
    [34]Passaris E K S, Ran J Q and Mottahed P. Stability of the jointed roof in stratified rock[J].Intemational Journal of Rock Mechanics and Mining Scienee & Geomechanics Abstracts,1993,30(7):857-860.
    [35]谢漠文,杨淑清,廖野澜.互层状岩体中群洞开挖稳定性研究和实践[J].岩石力学与工程学报,1995,14(2):131-137
    [36]赵海斌,李学政,张孝松.龙滩水电站地下厂房洞室群围岩稳定性研究[J].水力发电,2004,30(6):37-40
    [37]钱康.天生桥一级水电站放空隧洞围岩稳定分析[J].红水河,1997,(4):58-62
    [38]宋战平,邓良胜,王昆,等.岩体结构分析法及其在隧洞裂隙围岩稳定性分析中的应用研究[J].四川水力发电,2004,23(2):15-18
    [39]王宇,罗毅.凌子口隧道围岩稳定性分析评价[J].地质灾害与环境保护,2002,13(3):4042
    [40]何满朝,袁和生等中国煤矿巷道支护理论理论和实践[M,北京科学出版社,2002
    [41]于学馥,郑颖人.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983
    [42]蒋金泉.巷道围岩结构稳定性与控制设计[M].北京:煤炭工业出版社,1998
    [43]郭宏志,董方庭,宋宏伟.大跨度矩形巷道锚喷支护模拟研究[J].北京:中国矿业大学学报,1990,2(1):11-16
    [44]董方庭,宋宏伟.巷道围岩松动圈支护理论[J].北京:煤炭学报,1994,19(1):21-32
    [45]顾金才,沈俊,陈安敏.地质力学模型试验技术及其工程应用[J].岩石力学与工程-世纪成就会议论文集,403-412
    [46]林韵梅.深部近矿体巷道的位移规律[J].岩石力学与工程学报,1983,2(1):89-101
    [47]程桦,孙钧,吕渊.软弱围岩复合式隧道衬砌模型试验研究[J].岩石力学与工程学报,1997,16(2):162-170
    [48]郭文兵,李楠,王有凯.软岩巷道围岩应力分布规律光弹性模拟实验研究[J].煤炭学报,2002,27(6):596-600
    [49]王梦恕,地下工程浅埋暗挖技术通论[M],合肥:安徽教育出版社,2004.12
    [50]Sterpi D.An analysis of geotechnical problems involving strain softening effects[J].International Journal for Numerieal and Analytieal Methods in Geomeehanies,1999,23,1427-1454
    [51]Huang C.C,Tatsuoka F. Bearing capacity of reinforced horizontal sandy ground[J].Geotextiles and Geomembranes,1990,9(51-82):236-267
    [52]刘洪洲.大跨度扁担隧道施工的力学响应及施工方法的研究[D].重庆大学博士学位论文,1999
    [53]陈亚军,王家臣,常来山等.节理岩体边坡渐进失稳的试验研究[J].金属矿山,2005(8):11-14
    [54]程刚,仇文革,高新强.单线铁路隧道斜切式隧道门模型试验研究[J].西南交通大学学报,2004,39(2):152-156
    [55]陈浩.地下工程围岩与支护体相互作用的模型试验研究与理论分析[D].武汉:2008
    [56]Kripakov N.P Sun M.C.& Donato D.A. ADINA applied toward simulation of progressive failure in underground mine struetures[J].Computers & Structures,1995,56(2/3):329-344
    [57]Peng.E.L., Siddiquee M. S. A., Liao, S.M. A work-hardening and softening constitutive model for sand[J]:Modified plastic energy-based approach, ACTA Mechanica Sinica (English Series),2005,21(1):76-86
    [58]ZhuW.C., etc. Simulation of Progressive fracturing process around underground exeavation under biaxial compression[J].Tunnelling and Underground SpaeeTeehnology 2005,20:231-247
    [59]陈亚军,王家臣.节理岩体边坡渐进失稳的数值模拟研究[J].有色金属(矿山部分),2006,58(2):28-31
    [60]房倩.高速铁路隧道支护与围岩作用关系研究[D].北京交通大学博士学位论文,2010
    [61]汪成兵.软弱破碎隧道围岩渐进性失稳机理研究[D].同济大学博士学位论文,2007
    [62]G Lombardi. Some Comments on the Convnce-Confinement Method [J]. Underground Space,1980,4(4):249-258.
    [63]B. Ladanyi. Use of the Long-Term Strength Concept in the Pressure on Tunnel Linings [C].Proceedings of the Third Rock Mechanics.1974. Denver:1150-1156.
    [64]B. Ladanyi. Direct Determination of Ground Pressure on Tunnel Lining in a Nonlinear Viscoelastic Rock [C].Underground Rock Engineering,13th Canadian Rock Mechanics Symposium.1980. Toronto:126-132.
    [65]J.J.K. Daemen. Tunnel Support Loading Caused by Rock Failure [D]. Minneapolis:1975.
    [66]陈建勋,楚馄,王天林.用收敛-约束法进行隧道初期支护设计[J].西安公路交通大学学报,2002,21(2):57-59.
    [67]张素敏,朱永全,景诗庭.收敛约束原理在隧道位移稳定性判据中的应用[J].铁道标准设计,2004(8):38-40.
    [68]张素敏,宋玉香,朱永全.隧道围岩特性曲线数值模拟与分析[J].岩土力学,2004,25(3):455--458.
    [69]刘保国,杜学东.圆形洞室围岩与结构相互作用的粘弹性解析[J].岩石力学与工程学报,2004(04):561-564.
    [70]李明,刘永.巷道围岩位移特性曲线预测的自适应神经模糊推理方法及应用[J].矿业安全与环保,2005,32(3):49-51.
    [71]齐明山.大变形软岩流变性态及其在隧道工程结构中的应用研究[D].上海:2006.
    [72]唐雄俊.隧道收敛约束法的理论研究与应用[D].武汉:2009.
    [73]王晓州,大断面黄土隧道建设技术[M],北京:中国铁道出版社,2009.4
    [74]沈珠江,关于土力学发展前景的设想[J].岩土工程学报,1994,16(1):10-11
    [75]GB_T50123-1999土工试验方法标准[S].北京:中国水利出版社,1999
    [76]张炜,张苏民.非饱和黄土地基的变形特性[J].岩土工程学报,1998,20(4):101-105
    [77]赵占厂,谢永利.黄土公路隧道衬砌参数影响性状分析[J].岩土工程学报,2005,27(11):1291-1295
    [78]夏旺民,郭新明等.黄土弹塑性损伤本构模型[J].岩石力学与工程学报.2009,28(al):3239-3243
    [79]赵学勐,王璐.黄土拱作用机理剖析[J].岩土力学,2009,S2(3):9-12.
    [80]喻波,呼佳.压力拱理论及隧道埋深划分方法研究[M],北京:中国铁道出版社,2008.2.
    [81]SHI G H,GOODMAN R E.Two dimensional discontinuous deformation analysis[J].International Journal for Numerical and Analytical Methods in Geomechanics,1985,9(6):541-556
    [82]欧阳院平,高速铁路大断面黄土隧道施工数值模拟[D],西南交通大学,2006
    [83]朱泽兵,张东明,浅埋、富水、软弱黄土地段隧道施工技术[J].地下空间,2001,21(2):134-137.
    [84]冯玉国.灰色优化理论模型在地下工程围岩稳定性分类中的应用[J].岩土工程学报,1996,18(3):62—66.
    [85]张伟;大断面黄土隧道稳定性参数指标研究[D];铁道部科学研究院;2007
    [86]孙钧.岩土力学与地下工程结构分析分析的若干进展[J].力学季刊.2005,26(3):329—338
    [87]肖明,叶超,傅志浩.地下隧洞开挖和支护三维数值分析计算[J].岩土力学,2007,8(12):2501-2505.
    [88]Arild Palmstrom. Characterizing Rock Mass by the RMI for Use in Practical Rock Engineering [J].Tunneling and Underground Space Technology,1996 11(2):175-188.
    [89]乔春生,管振祥,腾文彦.饱和黄土隧道变形规律研究[J].岩土力学,2003(24):225-230.
    [90]Wu Faquan, Method to calculate engineering parameters of rockmass,8th ICRM,1995.9, Rock Foundation,115-118
    [91]汪成兵,朱合华.埋深对软弱隧道围岩破坏影响机制试验研究[J].岩石力学与工程学报,2010,29(12):2442-2448.
    [92]汪成兵,朱合华.隧道塌方机制及其影响因素离散元模拟[J].岩土工程学报,2008,30(3):450-456
    [93]蒋树屏,刘洪洲.大跨度扁坦隧道动态的相似模拟与数值分析研究[J].岩土工程学报,2000,19(5):567-572
    [94]王抒,张顶立,房倩.隧道软弱围岩相似材料的力学性能试验[J].华侨大学学报,2010,31(6):680-683
    [95]房倩,张顶立.圆形洞室围岩破坏模式模型试验研究[J].岩石力学与工程学报,2011,30(3):564-571.
    [96]LEE C J,WU B R,CHEN H T,et al.Tunnel stability and arching effects during tunneling in soft clayey soil[J].Tunnelling and Underground Space Technology,2006,1 (2):119-32
    [97]李志厚,杨晓华,来弘鹏,等.公路隧道特大塌方成因分析及综合处治方法研究[J].工程地质学报,2008,16(6):806-812
    [98]ADACHI T,KIMURA M,KISHIDA K.Experimental study on the distribution of earth pressur e and surface settlement through three-dimensional trapdoor tests[J].Tunnelling and Underground Space Technology,2003,18(2)171-83.
    [99]吉小明,吕纬.含水砂层隧道围岩失稳破坏机制及控制研究现状综述[J].岩土力学,2007,8(12):2501-2505.
    [100]SUN D,HUANG W,YAO Y.Granular Matter.An experimental study of failure and softening in sand under three-dimensional stress condition[J].Granular Matter,2008, (10): 187-195.
    [101]IM Lee, SW Nam. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J].Tunnelling and Underground Space Technology,2001,16:31-40.
    [102]IM Lee, SW Nam, JH Ahn. Effect of seepage forces on tunnel face stability[J]. Canadian Geotechnical Journal,2003,40(2):342-350.
    [103]KANAYASU S, KUBOTA L, Shikibu N. Stability of face during shield tunneling-A survey of Japanese shield tunneling[C]//Fujita, Kusakabe. Underground Construction in soft Ground, Rotterdam:Balkema,1995:337-343
    [104]ATKINSON J H, POTS D M. Stability of a shallow circular tunnel in cohesionless soil[J]. J. Geotechnique,1977,27(2):203-215.
    [105]CHAFOIS S, LAREAL P, Monnet J. Study of tunnel face in a gravel site[C]//Numerical Method in Geomechanics Swoboda, [S.1.]:[s. n.],1988:1493-1498
    [106]SUAT AKBULUT, Ahmet Saglamer. Estimating the groutability of granular soils:A new approach[J].Tunneling and Underground Space Technology,2002,17(3):371-380.
    [107]SAADA Z, CANOU J, DORMIEUX L,. DUPLA J C,MAGHOUS S. Modelling of cement suspension flow in granular porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2005,29:691-711.
    [108]张强勇,李术才,尤春安.新型岩土地质力学模型试验系统的研制及应用[J].土木工程学报,2006,39(12):100—103,107
    [109]韩伯鲤,陈霞龄,宋一乐,等.岩体相似材料的研究[J].武汉水利电力大学学报,1997,30(2):7-10.
    [110]汪成兵,朱合华.隧道围岩渐进性破坏机理模型试验方法研究[J].铁道工程学报,2009(03):48-53.
    [111]王戍平.破碎围岩隧道的模拟试验研究[D]:浙江大学,2004.
    [112]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社,1998
    [113]陈安敏,顾金才,沈俊,等.岩土工程多功能模拟试验装置的研制及应用[J].岩石力学与工程学报,2004,23(3):372-378
    [114]贺可强,王滨,万继涛.枣庄岩溶塌陷形成机制与致塌模型的研究[J].岩土力学,2002,23(5):564-569.
    [115]KAMATA H, MASHIMO H. Centrifuge model test of tunnel face reinforcement by bolting [J]. Tunneling and Underground Space Technology,2003,18(2/3):205-212.
    [116]Herbert Walter, Charles James Coccia, Hon-Yim Ko and John Scott Mc Cartney. Centrifuge Modeling of Face Excavation in Tunnels with a Deformable Lining[J]. GeoFlorida 2010:Advances in Analysis, Modeling & Design,2010:2329-2338.
    [117]席俊杰,李德武.纸坊隧道三台阶与两台阶开挖数值模拟对比分析[J].隧道建设,2010,30(2):147-151.
    [118]邓皇根,高永涛.台阶法施工公路隧道围岩变形预测模型研究[J].建筑科学,2010,26(2):26-29.
    [119]赵占厂,谢永利等.黄土公路隧道衬砌受力特性测试研究[J].中国公路学报,2004,17(1):66-69.
    [120]张顶立,王梦恕,高军,等.复杂围岩条件下大跨隧道修建技术研究[J].岩石力学与工程学报,2003,22(2):290-296.
    [121]杨会军,王梦恕.隧道围岩变形影响因素分析[J].铁道学报,2006,28(3):92-96.
    [122]Y. Yang and Q. Zhang. A Hierarchical for Rock Engineering Using Artificial Neural Networks [J]. Rock Mechanics and Rock Engineering,1997,30(4):207-222.
    [123]B. Singh, M. N. Viladkar, V. K. Mehrotra. Rock Mass Strength Parameters Mobilized in Tunnels [J].Tunneling and Underground Space Technology,1997,12(1):47-54.
    [124]丁维利,赵永明,初厚永,等,浅埋大断面湿陷性黄土隧道地表变形规律分析[J].铁道建筑技术,2007(5):1-4.
    [125]王梦恕.隧道工程浅埋暗挖法施工要点[J].隧道建设,2006,26(5):6-9.
    [126]唐朝松.大管棚超前支护环形开挖预留核心土三台阶隧道施工方法[J].铁道建 筑,2009(9):35-37.
    [127]皇甫明,孔恒,王梦恕等.核心土留设对隧道工作面稳定性的影响[J].岩石力学与工程学报,2005,24(3):521-525.
    [128]王明年,张建华.工程措施对控制隧道围岩变形的力学效果研究[J].岩土工程学报,1998,20(5):27-30.
    [129]北京交通大学隧道及地下工程试验研究中心.地层大变形机理与控制措施研究中期报告[R].北京:北京交通大学,2002.
    [130]霍润科,王艳波,等.黄土隧道初期支护性能分析[J].岩土力学,2009,30(2):287-290.
    [131]PANET M. Calcul des tunnels par la mrthode de convergence confinement[M].Paris:Press de iecole Nationale des Ponts et Chaussres,1995.
    [132]Chem J,C,et al. An empirieal safety criterion for tunnel construction[C].In:Regional Symposium on Sedimentary Rock Engineering.Taipei,Tal,van.1998.222-227
    [133]LEE Y L.Prise en compete des non-linearite de comportment des sols et roches dans la mod61isation du creusement d'un tunnel[Ph. D. Thesis][D].Pads:D6partement de Genie Civil,Ecole Nationale des Ponts et Chauss6es,1994.
    [134]刘保国,杜学东.圆形洞室围岩与结构相互作用的粘弹性解析[J].岩石力学与工程学报,2004,23(4):561-564.
    [135]冯夏庭,马平波.基于数据挖掘的地下硐室围岩稳定性判别[J].岩石力学与工程学报,2001,20(3):306-309
    [136]曾亚武,赵震英.地下洞室模型试验研究[J].岩石力学与工程学报,2001,20(增):1745-1749

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700