用户名: 密码: 验证码:
流化床的流动模拟及结渣现象的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气固流化床具有良好的混合、传质和传热特性。随着PFBC 锅炉的大型化、商业化、国产化进程的深入,给工程研究带来了一系列新的课题。在日本IHI公司的PFBC 锅炉结渣问题一直困扰已久,由于缺乏有效手段预测和避免结渣的发生,造成了较大的经济损失。本课题即以此为背景,探讨如何在小型冷态流化床实验台上模拟加压热态流化床的流动状况,以及对流化床内的结渣前兆进行探测的方法。
    本文首先对目前的流化床模化方法进行研究和比较。考虑到流化床内气泡行为对物料的混合、循环等有着重要的影响,加之本文的重点是研究加压流化床内的物料混合性及对结渣的影响,结合相似准则的适用性,本文的工作便选择以Horio 的Scaling-up 模型为基础进行研究。
    其次,根据Horio 的模化模型,设计了一个与已经在日本IHI 公司建成的冷态流化床(称原型床)相似的小型流化床,并提出压力波动信号测试和分析方法。实验发现,应用该方法得到的两个流化床气泡尺寸和气泡上升速度结果符合Horio 模化模型相似关系,也就是说该方法同样对于研究鼓泡流化床中的物料混合现象是有效的。结合Horio 的模化模型与本文提出的方法,可以在冷态小型流化床上对实际商业运行流化床进行流体动力学分析和预测。
    之后,利用本文采用的压力测试分析处理方法对流化床流化行为和结渣机理进行研究。
    通过流化行为研究,确定了物料的流化区域图以最小流化速度(umf)和最低烧结速度(umfs)介定为四个区域:流化区、非流化区、结渣区以及非结渣区的方法。为实际流化床有效操作运行区域并避免结渣的产生提供借鉴。
    实验中分别对物料最低烧结温度和流化床结渣故障诊断手段进行了研究。烧结实验发现,利用高温管式炉压降法能够快速侦测物料内孔隙率的变化,可以方便地确定物料的最低烧结温度。结渣故障诊断实验发现,选用大颗粒物料
Due to the excellent characteristics in such as mixing, heat and mass transfer, the gas-solid fluidized bed (FBC) has been widely used in coal combustion. While engineers are still facing series challenges during the commercializing and scaling up of the pressurized fluidized bed combustion (PFBC) boiler. One of them is the serious agglomeration occurring in the PFBC developed by IHI, a Japanese boiler manufacturer. The agglomeration decreases the availability of the boiler. So far there is no effective prediction and detection method to prevent agglomeration except shutting down boiler to clean the slagging bed material. Similar problem happened in other PFBC or FBC boilers in China and aboard as well. The motivation of this dissertation is to investigate and simulate the hydrodynamic behaviors in a PFBC boiler with a bench-scale fluidized bed in laboratory, and to develop an effective method to predict the agglomeration in a FBC boiler.
    First, the present work studied and compared the existing scaling theory about the hydrodynamic behaviors of a fluidized bed. Because the bubble behaviors play an important role in gas-solid, solid-solid mixing and solid recirculation, which has the major impact on agglomeration, the Horio’s scaling law that is mainly based on the bubble behavior, was adopted in the study.
    Secondary, based on the Horio’s Model, a bench-scale fluidized bed was designed and constructed in the laboratory at Tsinghua University to simulate the existing pilot-scale fluidized bed (called original bed) at IHI. The methodology used for acquisition and analysis of the pressure fluctuation signals in the fluidized bed was proposed and developed. The experimental results showed that the method well predicts the bubble size and the bubble rising velocities in both the bench-scale and pilot-scale fluidized beds at Tsinghua and IHI respectively. The results validated the feasibility and the effectiveness of the experimental approach in mixing phenomena in bubbling fluidized bed. Therefore, the suggested Horio scaling law together with the acquisition and analysis of the pressure fluctuation signals in the fluidized bed are the effective tools to investigate the fluidization behavior in PFBC.
    After the validation, the experimental methodology was further applied to study the agglomeration mechanisms in fluidized bed. The experimental results showed that the Temperature VS Umf diagram solid particles can be separated into four zones by Umf and Ts , that are: fluidization zone, defluidization zone, agglomeration zone and non-agglomeration zone. This map provides an effective reference on normal operation and agglomeration avoidance of fluidized bed. The experiments on the measurement of the minimum agglomeration temperature (Ts) and the detection of the agglomeration appearance were also conducted. It is found with the pressure drop measurement in a high-temperature tube furnace can quickly detect the voidage variation inside the bed materials and is convenient to determine the minimum agglomeration temperature. The early agglomeration was successfully detected with the time-frequency analysis of pressure fluctuation signals, characterized by the parameters of the averaged amplitude of local major frequency and the local power weighted averaged frequency. The methodology developed in this dissertation is convenient, effective and prompt to early detection and prevention on the agglomeration in fluidized bed boilers.
引文
[1] 周一工. 大型增压流化床联合循环的发展. 能源工程. 2000, 1:7~9
    [2] 孙献斌. 增压流化床燃烧技术的技术状况、进展和发展目标. 电站系统工程. 1994. 10(1):32~37
    [3] Alvarez M, Anthony E J. Pressurized fluidized bed combustion. Blackic Academic & Professional, 1995
    [4] Tidd PFBC Demonstration Project –Final Report. DOE Contract DE-FC21-87 MC-24132.000, AEPSC, Columbus, Ohio. 1995
    [5] Tejedor R A, Guilarte T, Nales I A. Operating experiences of the TESC BWE Filter in the Escatrón PFBC Power Plant. In Robert B R ed. Proceedings of the 15th International Conference on Fluidized Bed Combustion, Savannah, 1999, No. 0007
    [6] 荣德刚, 李福安, 沈湘林. PFBC 粒煤输送系统及管路设计中的若干问题. 热力发电, 1997, 3: 12~17
    [7] 孟令杰, 刘前鑫, 唐楚明, 等. 增压流化床煤水混合物管内流动阻力特性的研究. 洁净煤燃烧与发电技术. 1995, 4: 22~26
    [8] 李福安, 荣德刚, 沈湘林, 等. 加压下粒煤的气力输送. 洁净煤燃烧与发电技术.1996,3: 1~4
    [9] 汉春利, 张军, 刘坤磊, 等. 煤中钠的存在形式. 燃料化学学报. 2000, 6: 39~44
    [10] 张赣道, 谷和平. 增压流化床炉气中碱金属含量测定的实验研究. 洁净煤燃烧与发电技术. 1995, 1: 8~12
    [11] 熊源泉, 刘前鑫, 章名耀. 煤的加压热解实验研究. 洁净煤燃烧与发电技术. 1995, 4: 16~21
    [12] 范从振. 增压流化床燃烧(PFBC)高灰煤的实验研究. 东南大学学报. 1990, 20(2): 42~47
    [13] 孟令杰, 章名耀, 秦显燕, 等. 增压流化床煤水混合物流动特性影响因素分析. 燃烧科学与技术. 6(1): 24~27
    [14] 朱金荣, 章名耀, 陈晓平. 60t/h 增压流化床锅炉负荷调节的仿真研究. 中国工程热物理学会燃烧学学术会议论文集. 1994, Ⅲ: 27~32
    [15] 陈晓平, 赵常遂, 章名耀, 等. 增压流化床锅炉负荷调节特性分析. 工程热物理学报. 17(增): 191~194
    [16] 刘柏辉, 刘前鑫. 石灰石分解和脱硫的加压热重分析实验研究. 洁净煤燃烧与发电技术. 1996, 3: 23~27
    [17] 段钰峰, 金保升, 赵常遂, 等. 增压流化床燃烧室启动特性模拟研究. 洁净煤燃烧与发电技术, 1994. 1: 21~29
    [18] 向文国, 蔡宁生. PFBC-CC 中燃气轮机系统动态特性实时仿真研究. 热能动力工程. 1999, 14(5): 356~358
    [19] 章名耀. 增压流化床燃烧PFBC 长时间运行的实验研究. 工程热物理学报. 1992, 13(1): 27~34
    [20] 陈晓平, 赵长遂, 段钰峰, 等. 贾汪15MW 增压流化床联合循环中试机组PFB 锅炉投入满负荷运行. 黑龙江电力, 2002, 24(1):5~10
    [21] 蔡宁生, 章名耀, PFBC-CC 发电技术的进展与创新发展, 东南大学学报(自然科学版),2002, 32(3): 437~442
    [22] 李全胜, 张维洁, PFBC 增压流化床锅炉简介, 电站系统工程, 2002, 18(1): 17~18
    [23] 沈自求. 相似理论及其在化工上的应用. 高等教育出版社. 1959.
    [24] 李之光. 相似与模化(理论及应用). 国防工业出版社. 1982.
    [25] 岑可法, 倪明江, 骆仲泱. 循环流化床锅炉理论设计与运行. 中国电力出版社. 2002.
    [26] May W G. Fluidized bed reactor studies. Chem. Eng. Prog. 1959, 55: 49~56
    [27] Werther J. Scale-up of fluidized bed reactors. Ger. Chem. Eng. 1978, 1: 243~251
    [28] Glicksman L R. Scaling relationships for fluidized beds, Chem. Eng. Sci., 1984, 39(9): 1373~1379
    [29] Horio M and Nonaka A. A new similarity rule for fluidized bed scale-up. AICHE Journal. 1986, 32(9): 1466~1482
    [30] Avidan A and Edwards M. Modeling and scale up of mobil’s fluid-bed MTG process. Fluidization V, Engineering Foundation, New York, 1986, 457~466
    [31] Kunii D and Levenspiel O. Fluidization Engineering. 2nd edition, Boston, Butterworth-Heinemann Press, 1991, 152~164
    [32] Foscolo P U, Di Felice R, Gibilaro L G., Pistone L & Piccolo V. Scaling relationships for fluidisation: the generalized particle bed model. Chem. Eng. Sci. 1990, 45: 1647~1651
    [33] Nicastro Mark T. Development and testing of scaling laws for fluidized beds. M.S. Thesis, M.I.T., 1982: 42~46
    [34] Foscolo P U, Gibilaro L G. and Di Felice R. Pressure field in an unsteady-state fluidized bed. AIChE. J. 1989, 35(12): 1921~1926
    [35] R Di Felice, S Rapagna and P U Foscolo. Dynamic similarity rules: validity check for bubbling and slugging fluidized beds. Powder Technology. 1992, 71: 281~287
    [36] Horio M, Ishii H, Kobukai Y and Yamanishi N. A scaling law for circulating fluidized beds. J. Chem. Eng. Japan. 1989, 22(6): 587~592
    [37] L R Glicksman, M R Hyre and P A Farrell. Dynamic similarity in fluidization. Int. J. Multiphase Flow. 1994, 20: 331~386
    [38] Paul A Farrell. Hydrodynamic scaling and solids mixing in pressurized bubbling fluidized bed combustors. Ph.D. Thesis, M.I.T. 1996.
    [39] Jackson R. Hydrodynamic stability of fluid-particle systems. Fluidisation, 2nd edition, Academic Press, London.
    [40] Toomey R D and Johnstone H F. Gaseous fluidization of solid particles. Chemical Engineering Progress. 1952, 48(5): 220~226
    [41] Davidson J F, and D Harrison. Fluidized Particles. London: Cambridge Univ. Press, 1963
    [42] Clift R and J R Grace. Coalescence of bubbles in fluidized bed. AIChE. Symp. Ser. 1971, 67(116): 23~27
    [43] Horio M and A Nonaka. A generalized bubble diameter correlation and its a lication to fluidized bed reactor modeling. Ms. No.1471, AIChE. Ann. Meet., San Francisco, 1984
    [44] Toei R et al. Deformations and splittings of a bubble in a two-dimensional fluidized bed-experimental results. J. Chem. Eng. Japan.1974, 7: 447~450
    [45] Horio M, J Liu and I Muchi. Direct simulation for predicting bubble distribution and particle circulation pattern in large-scale fluidized beds. Kagaku Kogaku Ronbunshu. 1983, 9: 176~179
    [46] Mori S, and C Y Wen. Estimation of bubble diameter in gaseous fluidized beds. AIChE J. 1975, 21: 109~115
    [47] Rowe P N. Prediction of bubble size in a gas-fluidized beds. Trans. Inst. Chem. Eng. 1976, 54: 285~290
    [48] Darton R C, et al. Bubble growth due to coalescence in gas fluidized bed. Trans. Inst. Chem. Eng. 1977, 55: 274~280
    [49] L R Glicksman, M Hyre and K Woloshun. Simplified scaling relationships for fluidized beds. Powder Technology. 1993, 77: 177~199
    [50] Foscolo P U and Gibilaro L G.. A fully prediction criterion for the transition between particulate and aggregate fluidization. Chem. Eng. Sci. 1984, 38: 107~120
    [51] Batchelor G K. A new theory for the instability of a fluidized bed. J. Fluid Mech. 1988, 31: 657~668
    [52] Rietema K and Piepers H W. The effect of interparticle forces on the stability of gas-fluidized beds –I. Experimental evidence. Chem. Eng. Sci. 1990, 45: 1627~1639
    [53] Rietema K, Cottaar E J A and Piepers H W. The effect of interparticle forces on the stability of gas-fluidized beds -II. Theoretical derivation of bed elasticity on the basis of Van der Waals forces between powder particles. Chem. Eng. Sci. 1988, 48: 1687~1697
    [54] Baeyans J and Geldart D. Predictive calculations of flow parameters in gas fluidized bed and fluidization behavior of various powders. Toulouse: Proc Int. Symp. on fluidization and its A lications, 1973, 263~273
    [55] Litka T and Glicksman L R. The influence of particle mechanical properties on bubble characteristics and solid mixing in fluidized beds. Powder Technology. 1985, 42: 231~239
    [56] R Roy and J F Davidson, Similarity between gas-fluidized beds at elevated temperature and pressure. Fluidization VI. Engineering Foundation, New York, 1989, 293~300
    [57] Almstedt A E and Zakkay V. An investigation of fluidized-bed scaling-capacitance probe measurements in a pressurized fluidized-bed combustro and a cold model bed. Chem. Eng. Sci. 1990, 45(4):1071~1078
    [58] Ackeskog H B R and Almstedt A E. An investigation of fluidized bed scaling: Heat transfer measurements in a pressurized fluidized-bed combustor and a cold model bed. Chem. Eng. Sci. 1993, 48(8):1439~1473
    [59] 王丽莉, 孟繁君, 吴履琛. 日本的增压流化床联合循环(PFBC)发电技术. 锅炉制造. 2001, Vol.4:17~21
    [60] 丁玉, 徐守坤, 陈清如. 气-固流化床气泡行为研究进展. 江苏煤炭. 2001, 2: 17~20
    [61] T Baron, C L Briens, P Galtier, et al. Verification of models and correlations for bubble properties in fluidizd beds. Chemical Engineering Science. 1990, 45(8): 2227~2233
    [62] Dry R J, M R Judd and T Shingles. Bubble velocities in fluidized beds of fine, dense powders. Powder Technology. 1984, 39: 69~75
    [63] 陶秀祥, 丁玉, 骆振福. 高密度浓相流化床内气泡行为的研究. 中国矿业大学学报. 2003, 32(6): 601~607
    [64] Saxena S C and Rao N S. Fluidization characteristics of gas-fluidized beds: air and flass Beads System. Energy. 1989, 14(12): 811~826
    [65] 邹东雷, 周游. 流化床气泡参数的测量. 吉林化工学院学报. 1995, 12(3): 26~30
    [66] Fan L T, Tho-Ching H and Walawender W P. Measurements of the rise velocities of bubbles, slugs and pressure waves in a gas-solid fluidized bed using pressure fluctuation signals. AIChE J. 1983, 29(1): 33~39
    [67] S C Saxena, N S Rao, V N Tanjore. Diagnostic procedures for establishing the quality of fluidization of gas-solid systems. Experimental Thermal and Fluid Science. 1993, 6: 56~73
    [68] O Trnka, V Vesely, and M Hartman et al. Identification of the state of a fluidized bed by pressure fluctuations. AIChE J. 2000, 46(3): 509~514
    [69] Jaap C Schouten and Cor M van den Bleek. Monitoring the quality of fluidization using the short-term predictability of pressure fluctuations. Particle Technology and Fluidization. 1998, 44(1): 48~60
    [70] S C Saxena and N S Rao. Pressure fluctuations in a gas fluidized bed and fluidization quality. Energy. 1990, 15(6): 489~497
    [71] 应怀樵. 波形和频谱分析与随机数据处理. 中国铁道出版社. 1983
    [72] Rowe P N and H Masson. Interactions of bubbles with probes in gas fluidized beds. Trans. Int. Chem. Engrs. 1981, 39: 202~211
    [73] Tamarin A I. The origin of self-excited oscillation in fluidized beds. Intern. Chem. Eng. 1964, 4(1): 50~54
    [74] Chen T P and Saxena S C. A theory of solids projection from a fluidized-bed surface as a first step in the analysis of enertainment processes, Second Engineering Foundation Conf. on Fluidization. 1978, 151~156
    [75] 周章玉, 石炎福, 余华瑞. 由压力波动判断气-固流化床中的流化类型. 化学反应工程与工艺. 1999, 15(3): 262~267
    [76] 凌福根[译], J S 贝达特, A G 皮尔索[著]. 相关分析和谱分析的工程应用. 北京: 国防工业出版社. 1983
    [77] Martin W, Flandrin P. IEEE Trans. Acoust. Speech, Signal Process. 1986, 34(4): 858~863
    [78] Stakovic L, Stankovic S. Wigner distribution of noisy signals.. IEEE Trans. Signal Process. 1993, 41(2): 956~962
    [79] 李勇, 徐震. Matlab 辅助现代工程数字信号处理. 西安电子科技大学出版社. 2002
    [80] S C Saxena and B Waghmare. Investigations of pressure fluctuation history records of gas-solid fluidized beds. Int. J. Energy Res. 2000, 24: 495~502
    [81] 赵贵兵, 陈纪忠, 阳永荣. 流化床压力脉动信号时间延迟相关性. 化工学报. 2002, 53(12): 1281~1287
    [82] N Sadasivan, D Barreteau and C Laguerie. Studies on frequency and magnitude of fluctuations of pressure drop in gas-solid fluidised beds. Powder Technology. 1980, 26: 67~74
    [83] R C Darton, R D LaNauze, J F Davidson and D Harrison. Bubble growth due to coalescence in fluidized beds. Trans. Inst. Chem. Eng. 1977, 55:274~280
    [84] Rufino C Lirag, Jr and Howard L. Statistical study of the pressure fluctuations in a fluidized Bed. AIChE Symp. Ser. 1971, 116(67): 11~22
    [85] Kato K and C Y Wen. Bubble assemblage model for fluidized bed catalytic reactors. Chem. Eng. Sci. 1969, 24(8): 1351~1369
    [86] Park W H, Kang W K, Capes C E, Osberg G L. Properties of bubbles in fluidized beds of conducting particles as measured by electroresistivity probe. Chem. Eng. Sci. 1969, 24(5): 851~865
    [87] Kunii D and O Levenspiel. Fluidization Engineering. New York : Wiley, 1969
    [88] 邹鯤, 袁俊泉, 龚享铱. Matlab 6.x 信号处理. 清华大学出版社. 2002
    [89] 陈兆国. 时间序列及其谱分析. 北京: 科学出版社. 1988
    [90] He Zh, Zhang D M, Cheng B Ch and Zhang W D. Pressure-fluctuation analysis of a gas-solid fluidized bed using the Wigner distribution. AIChE. Journal. 1997, 43(2): 345~356
    [91] 黄海, 黄轶伦, 张卫东. 气固流化床压力脉动信号的Wigner 谱分析. 化工学报. 1999, 50(4): 477~482
    [92] H Kage, N Iwasaki, H Yamaguchi and Y Matsuno. Frequency analysis of pressure fluctuation in fluidized bed plenum. Journal of Chemical Engineering of Japan. 1991, 24(1): 76~81
    [93] J F Davidson, R Clift and D Harrison. Fluidization. Academic Press, 2th edition. 1985
    [94] Xu B Zh, OuYang J Zh. Signal analysis and correlation technology. Science Press (Chinese), 1981
    [95] J S Bendat, A G Piersol et al. Engineering applications of correlation and spectral analysis. Wiley-Interscience Publication. 1980
    [96] Littman H and G A J Homolka. Bubble rise velocities in two-dimensional gas-fluidized beds from pressure measurements, Chem. Eng. Prog. Sym. Ser. 1970, 66(105): 37~46
    [97] Goldberger W. Collection of fly ash in a self agglomerating fluidized bed coal burner.ASME paper 67-WA/FU-3, November 1967
    [98] Squires A M. Study of defluidization in fluidized bed. Fluidization Technology (Dale, L. Kearns, Ed.), Hemisphere Publishing Corp., Washington, DC, USA, 1976, pp.395-422
    [99] Siegill J H. Defluidization phenomena in fluidized beds of sticky particles at high temperatures, PhD dissertation, The City University of New York, 1976
    [100] M J Gluckman, J Yerushalmi and A Squires. Defluidization characteristics of sticky or agglomerating beds. in Fluidization Technology (Dale, L. Kearns, Ed.), Hemisphere Publishing Corp., Washington, DC, USA, 1976, pp.395-422
    [101] J H Siegell. High-temperature defluidization. Powder Technology, Vol.38, No.2, 1984, pp.13-22
    [102] Bengt-Johan Skrifvars and Mikko Hupa. Sintering of ash during fluidized bed combustion. Ind. Eng. Chem. Res., Vol.31, 1992, pp1026-1030
    [103] Compo P Pfeffer R, Tardos G I. Minimum sintering temperatures and defluidization characteristics of fluidizable particles. Powder Technology, v 51, n 1, 1987, pp.85-101
    [104] DIN. Testing of solid fuels, determination of ash content (in German). Prufung No.51719-A, June 1978
    [105] Basu P. A study of agglomeration of coal-ash in fluidized beds. The Canadian Journal of Chemical Engineering, Vol.60, 1982, pp.791-795
    [106] Basu P, Sarka A. Agglomeration of coal ash in fluidized bed. Fuel, Vol.62, 1983, pp.924-926
    [107] Tardous G, Mazzone D, Preffer R. Destabilization of fluidized beds due to agglomeration, Part 1: Theoretical model. The Canadian Journal of Chemical Engineering, Vol.63, No.3, 1985, pp377-383
    [108] Yamazaki R, Ueda N, Jimbo G. Mechanism of incipient fluidization in fluidized bed at elevated temperature. Journal of Chemical Engineering of Japan, Vol.19, No.4, 1986, pp251-257
    [109] J P K Seville, H Silomon-Pflug, P C Kight. Modelling of sintering in high temperature gas fluidisation. Powder Technology, Vol.97, 1998, pp.160-169
    [110] Al-Otoom A Y, Bryant G W, Elliott L K. Experimental options for determining the temperature for the onset of sintering of coal ash. Energy & Fuel, Vol.14, 2000, pp.227-233
    [111] 郭庆杰, 王启民, 徐猛, 吕俊复, 岳光溪, 王昕. 一种混合物初始粘结温度的测试方法及装置. CN.01118468.X

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700