用户名: 密码: 验证码:
铜矿排土场细菌强化浸出机理及新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济持续快速发展,矿产资源供需矛盾日益严重,对国外的依存度越来越大,将威胁到国家的资源安全。同时,矿产资源严重短缺与固体废弃物中的有价元素闲置形成鲜明对比,进行排土场等“人工矿床”二次资源开发迫在眉睫。虽然堆浸法是处理低品位矿石、表外矿、废石等贫呆资源的理想方法,但由于排土场堆体厚大、地形复杂、含泥量高、颗粒平均粒径大、矿石品位低等原因,造成浸堆渗透性差、浸出率及浸出液浓度低、细菌活性小等问题,致使浸出周期长、生产成本高,影响了堆浸法在排土场的推广应用。因此,进行排土场强化浸出技术研究对于缓解我国矿产资源供需矛盾、保障国家资源安全具有重要意义。
     本论文以德兴铜矿排土场细菌浸出为工程实例,结合国家973重点基础研究发展规划项目《微生物浸出体系多因素强关联》(2004CB619205)、国家杰出青年科学基金项目《散体多相介质中多级渗流传质的动力学研究》(50325415)以及国家创新群体项目《硫化矿生物提取的基础研究》(50321402),对铜矿排土场强化浸出机理及其新工艺进行研究。本论文通过现场调查、室内实验、理论分析等手段,针对铜矿排土场浸出存在的问题,分析其关键因素,以排土场渗流机理以及新的布液收液方式为突破口,兼顾浸堆内温度控制与气体输送,开展溶浸液流动过程中动量传递、热量传递和质量传递规律研究,最终将理论成果集成于排土场浸出新工艺中,该技术应用潜力十分巨大。论文完成的主要工作如下:
     (1)实验发现,非均质体水平渗流效果明显优于垂直渗流,堆中布液方式极大地改善了浸堆内溶浸液的均匀性。非均质体具有渗流各向异性,其各向异性系数范围为63~155,是均质体的10~100倍;非均质体堆中布液渗流系数大于堆顶布液,两者比值在1.42~3.02之间。这一结论为解决渗透性差问题指明了改进方向,强化浸出新工艺应采用堆中布液方式。
     (2)首次进行了综合性强化浸出原生矿柱浸实验,为排土场强化浸出提供了技术原型。综合强化浸出同时采用驯化菌种、供气、控温、大流量四项技术措施,柱内温度高于常规浸出平均值5.8℃,细菌浓度始终处于上升趋势,铜浸出率提高了40.5%,浸出速率明显高于供气、控温单一强化浸出措施,浸出动力学控速步骤由界面化学速率转变内扩散。同时,铜浸出率与温度、通气量、布液强度成正比,证明大流量浸出有利提高浸出率;在浸出过程中,散体渗流系数随时间而逐渐下降,化学堵塞的影响大于机械堵塞,铁的沉淀是影响浸出顺利进行的重要因素。
     (3)基于势函数及其叠加原理,揭示了排土场浸堆中不同渗流状态下的渗流规律,认为直线二点形钻孔布置方式的浸堆单位面积流量最大。提出了浸堆最优布孔网度的三原则,建立了网度参数与钻孔影响半径的关系,推导了不同流态下影响半径、单位面积渗流量公式,在同等条件下推荐采用梅花形布孔方式。借鉴粗粒土渗流的经验公式,阐述了排土场散体渗透性恶化的原因在于散体压实后形成一水平弱透水层,渗流状态属于过渡流,浸堆渗流破坏形式为管涌形式,并得出新工艺有利于提高浸堆边坡稳定性的结论。
     (4)借助于热力学原理研究细菌浸矿作用机理,阐明了铜矿浸出过程中直接作用占主导地位。当细菌直接作用时,浸矿反应均为放热反应,而间接作用时均为吸热反应;硫化矿与氧作用时自由能较低,在同等条件下,硫化矿优先与氧作用,但温度高对直接作用不利;硫化矿与氧作用时的电位范围比与硫酸铁低,氧作氧化剂要优于硫酸铁。
     (5)利用多孔介质流体强制对流理论,揭示了浸堆内热量传导规律,为控温强化浸出提供理论指导。根据热流量平衡原理,建立了浸堆内放热量与散热量的守恒公式,为浸堆内流体传热奠定基础。由焓变原理以及主要伴生矿物,推导浸出反应热流量公式,表明黄铁矿浸出和硫氧化产生的热流量远远高于黄铜矿的热量。在自然对流传热理论的基础上,分析了浸堆向大气的散热量,其结果显示其值所占比例较小,可忽略不计。由物质比热容估算矿石吸热量,其值与现场实测数据基本吻合。最后借鉴多颗粒群强制对流传热原理,得出浸堆溶浸液换热关联式,结合德兴铜矿数据,证明了溶浸液作为媒介进行传热是可行的,溶浸液调节的热量占总热量的59.6~67.4%,夏季控温难度大于冬季。
     (6)探讨了氧气传输途径,借助气体传质理论对氧气传质规律进行了有益的探索。溶浸液中的溶解氧仅能维持细菌自身繁殖,无法满足化学反应需氧量。依靠人工通风于浸堆内,形成大量气泡,空泡发生溃灭出现瞬间高压来促进氧的溶解与传递。黄铁矿是铜矿浸出过程中主要耗氧竞争对象,随着黄铁矿含量的增加,耗氧量急剧增长。通过工程实例估算,证明采用供气强化浸出是可行的,单位体积矿石耗气量仅为0.77m~3/m~3,在现有设备的基础上比较容易实现人工强制供氧。
     (7)在上述强化浸出机理研究的基础上,提出了排土场强化浸出新工艺。新工艺是地表布液与堆内布液相结合的联合工艺,在高度方向上地表布液方式覆盖范围只能占15%,堆内布液方式承担绝大部分金属回收的任务。而人工供氧、温度控制成为管注法浸出的有机组成,智能化连续培养细菌是强化浸出技术的关键。以德兴铜矿堆浸厂实际生产资料为基础,预测了新工艺的主要经济技术指标,结果表明,新工艺的生产成本虽然较高,但由于提高了浸出率,总利润比旧工艺提高了11%,总体经济效益较好。
Along with economy developing continuously and fleetly, the conflict of supply and need of mineral resource is severity increasingly in China, and its depending degress on foreign country is more higher, which will threaten the safety of national resources. Meanwhile the serious shortage of mineal resource and the idling of valuable element in solid waste forming vivid contrast, it is extremely urgent to exploit redeposit resource—"Artificial Deposit", such as dump. Although heap leaching is an ideal method for processing poor resources, example as low grade ore, out-of-list ore, waste rock and tailings, its application and popularization are limited in dump, because the dump has some disadvantages, such as thicker heap, complex topography, higher clay content, bigger average particle of grain and lower grade as well, which cause poor permeability, low leaching rate and lixivium concentration, poor bacterial activity, and long leaching period and higher product cost. So, it has important significant to study the technologies for accelerating leaching in dump for relaxing the conflict of supply and need of mineral resouyrce and ensuring the safety of national resources.This thesis focuses on studying the accelerating leaching mechanism and new technology of copper mine dump, taking the dump leaching plant of Dexing Copper Mine as an engineering example. It is supported by three projects that are 973 Program-National Basic Research Program of China "The Multifactor Strong Relating in Leaching System" (No.2004CB619206), National Science Fund for Distinguished Young Scholars of China "The Study on Dynamics of Multilevel Seepage and Mass Transfer in Multiphase Granular Medium" (No.50321402), and National Fund for Creative Research Groups of China "The Basic Research of Bioleaching Sulphide Ore" (No.50321402).Aimed at the problems existed in copper mine dump, with site investigation, indoor experiments, theoretical analysis, the paper analyzed the key factors. Taking seepage mechanism and new spreading and collecting liquid mode of dump as breakthrough, and compromising temperature control and gas transportation, it carried out the studies about momentum transfer, heat transfer and mass transfer rule in solution flow, and integrated theoretical achievements into the new technology of dump leaching finally, which has great applying potential.The main works that the thesis finished are as follows:(1) It was discoveried that seepage effect of level seeping is superior to vertical one obviously in heterogeneous body, and the spraying inside dump improve largely uniformity of solution in dump. It has anisotropism in heterogeneous body, and its anistotropy factor is between 63 and 155, which is 10 to 100 times of homogeneous body. The seepage factor of spraying inside dump is bigger than that of spraying on surface of heterogeneous body, where the ratio of them is 1.42 to 3.02. The conclusuon designates way to solve poor permeability, and the new technology should adopt the mode of spraying inside dump.(2) It was first to experiment on column leaching of primary copper sulphide ore with all-around accelerating leaching measure, and offered technical prototype for accerlating leaching in dump. It adopted together with four measures in synthetical acclerating leaching, which is domesticated bacterial, air feeding, temperature controlling, mass flow. The temperature inside column is 5.8℃high than one of conventional leaching column, the bacterial concentration is upward trend all along, and Cu leaching efficiency rise 40.5%. The leaching rate of synthetical acclerating leaching is high than one of single accerlating measure, such as air feeding and temperature controlling, which the ratedetermining step transform internal diffusion from surface chemical rate with the study on copper leaching dynamics. In the meanwhile, the leaching efficiency of copper is in direct proportion to temperature, air-flow rate and spraying intensity, which prove the mode of mass flow leaching being favorable for heightening leaching efficiency. In the course of leaching, the granular seepage coefficient drops gradually with time, and the influence of chemical jam is greater than that of mechanical jam, which Fe precipitation is key factor to decide if the leaching is succeed or not.
     (3) Based on potential function and its superposition principle, It was opened out the seepage law under the different seepage states in dump, and indicated that the flux unit area of two-point mode is maximum. It brought forward the three principle for optimal hole network, and erected the relation of hole network parameter and radius influened, and deduced that the formulas of the radius influenced and solution flux of unit area in different flow states, and it has priority to adopt the mode of cube under the same conditions. Reference for empirical formula of coare grained soil seepage, it was expatiated that the cause of permeablility exasperated is a level aquiard forming after granular compacted, the seepage state belongs to tranition flow, the destructional form of seepage is piping, and educed the conclusion that the new technical is favourable to enhance slope stability in dump.
     (4) Recur to thermodynamic principle, it studied on mechanism of bacterial leaching, and was clarified that the direct action holds the leading status in copper leaching. The leaching reaction are exothermic if bacterial act directly, and that are endothermic if bacterial act indirectly. The free energy is lower if sulphide ore act with oxygen, and sulphide ore act prioritically with cxygen under the same condition, but higher temperture makes against bacterial direct action. The range of electic potential if sulphide ore act with oxygen is lower than that with ferric sulfate, and oxygen is excelled to ferric sulfate as oxidant.
     (5) Utilizing the forced convection principle of fluid in porous medium, it opened out the the heat conduct law in dump, which provided theretical guiding to temperature controlling for accelating leaching. Basis on heat flux equilibrium theory, it established the conservation formula of exotherm and heat dissipated, which settles base on fluid transfering heat in dump. By enthalpy principle and the main associated mineral, it derivated heat flow formula of leaching reaction, which indicates heat flux from pyrite leached and sulfur oxygened outclass one from chalpyrite. With natural-convection heat transfer, it analyaed the heat disspating from dump to atomsphere, which is less ratio of totall heat flux and ignore. It estimated ore heat absorption by matter specific heat theory, which fits with observational data in field basically. Use for multiparticle swarm forced converction heat transfer theory, it elicited the heat exchange correlative formular, combining with Dexing Copper Mine data, it was a witness to heat transfer is feasble by solution, which heat adjusted by solution accounts for 59.6%~67.4% of the total heat, and temperature controlling in summer is difficult than in winter.
     (6) It discussed the oxygen transmitting path, probed into profitably oxygen transmitting theory under gas transferring theory. The dissolve oxygen only maintains bacterial self breeding in solution, but can't satisfy the oxygen demanded in chemical reaction. Depending on artifical ventilation into dump, forming a great deal of bubble, oxygen dissovlling and transferring is promoted by high press instant as bubble crumble and fall. The pyrite is the main mineral competing for oxygen in leaching copper ore, and oxygen consumption increases sharply with pyrite increasing. By engineer example estimating, it proved air feeding for accelating leaching is feasible, which air constumption unit volume ore is only 0.77 m~3/m~3, and articial forcing oxygen supply realize easily on basis of available facilities.
     (7) On the basis of the above accelerating leaching mechanism study, it put forward the new craft of dump leaching accelerated. The new technology is coordinating process of spraying on surface and inside dump, which the coverage area of spraying on surface accounts 15% in height and the mode of spraying inside dump undertakes the most part of metal recovered. Air supplying and temperature controlling articially become organic composition of pipe-pouting method, and continuous culture bacterial technology intelligentized is key to accedating leaching technique. Based on actual production data of dump leaching plant in Dexing Copper Mine, it forecasted the main econo-technical indicators of the new technics. Although the new technology needs higher production cost, its gross profit is improved by 11% than that of the old one because leaching rate is enhanced, so the overall economic benefits are better.
引文
[1] 谷树忠,姚予龙,沈镭等.资源安全及其基本属性与研究框架[J].自然资源学报,2002,17(3) :280-285
    [2] 周淑敏.重国国土资源安全的地位和评价[J].石家庄经济学院学报,2005,28(5) :608-611
    [3] 于光.循环经济--矿产资源可持续发展的必然选择[J].当代经济管理,2005,27(5) :92-96
    [4] 彭金荣,陈利。高外贸依存度下中国经济面临的风险与应对策略[J].中国人民大学学报,2005,(6) :57-62
    [5] 刘玉强.2005中国矿产开发及矿产品供需形势分析与建议[J].矿产与地质,2005,19(3) :219-222
    [6] 罗晓玲.国内外铜矿资源分析[J].世界有色金属,2000,(4) :4-10
    [7] 杨苏琦.中国铜矿资源现状及产销形势分析[J].云南冶金,2002,31(6) :52-55
    [8] 常前发.谈矿产资源的开发利用与可持续发展[J].2000,9(6) :11-15
    [9] 杨建功.我国有色金属矿产资源供需形势分析[J].中国国土资源经济,2004,200(8) :10-13
    [10] 郑飞.过去十年铜精矿市场述评与展望[J].国外金属矿选矿,2003,(11) :7-11
    [11] 姚春雷.从有色金属价格上涨中把握机会[EB/OL].http//www.21our.com/readnews,2005. 3-7
    [12] 鲍负.浅议当前我国矿业发展所面临的主要问题及解决措施[J].南方冶金学院学报.2001,22(5) :28-29
    [13] 佚名.我国主要矿产开采利用状况[EB/OL].http//www.bigm.com.cn/china-res/kcly.html,2003-6-8
    [14] 丁士垣.采矿业的环境问题分析与治理[J].矿业快报,2004,419(5) :7-10
    [15] 周连碧.矿山复垦与生态恢复[J].有色金属工业,2004,(6) :19-21
    [16] 王占歧,魏民.国内外“人工矿床”研究现状与前景[J].地球科学进展,2001,16(2) :235-237
    [17] 马文骥.萃取铜的萃取剂及其应用[J].云南冶金,1996,(5) :31-39
    [18] Klaus Bosecker. Bioleaching: metal solubilization by microorganism[J]. FEMS Microbilogy Review, 1997,20: 597-604
    [19] 朱屯.现代铜湿法冶金[M].北京:冶金工业出版社,2002
    [20] 孔祥智,胡迎春.西部地区矿业发展的现状及对策[J].中国地质大学学报,2003,3(6) :7-11
    [21] 李淳中.树立科学发展观搞好西部矿业开发[J].世界有色金属,2004,(10) :10-14
    [22] 古德生.对西部矿产资源开发问题的思考[J].矿业研究与开发,2001,21(1) :1-3
    [23] Harles Kubach. What will be the future of mining R&D?[EB/OL]. http://www. mine-engineer. com/commentary / usbm.html, Oct 27,2004
    [24] Anon. Mining and milling operations[EB/OL]. http://www.kinross.com/op/mine-round-mountain/mining.html.
    [25] 浸矿技术编委会.浸矿技术[M].北京:原子能出版社,1994
    [26] 王成彦.低品位铜湿法冶炼的现状及发展趋势[J].新疆地质,2001,19(4) :281-284
    [27] Anon. New copper/uranium leaching process to be lauched in Chile [J]. E/MJ, 1997(9) : 41
    [28] TJ.Harvey, W.Van Der Merweb, K.Afewu. The application of the GeoBiotics GEOCOAT?biooxidation technology for the treatment of sphalerite Kumba resources' Rosh Pinah mine[J]. Minerals Engineering, 2002,15: 823-829
    [29] 王昌汉.溶浸采铀(矿)[M].北京:原子能出版社,1998
    [30] 王昌汉.就地破碎浸铀法的技术特性及最佳应用准则[J].中国核科技报告,2000,0:1-8
    [31] 王昌汉.就地破碎溶浸采矿法几个关键技术的探讨[J].南华大学学报,2001,15(2) :13-15
    [32] 吉兆宁.地下溶浸采矿技术在我国铜矿山的应用[J].有色金属(矿山部分),2002,54(3) :11-13
    [33] 杨仕教,杨建明,李广悦等.原地破碎浸铀理论与实践[M].长沙:中南大学出版社,2003
    [34] J.Hunter. Highland in site leaching mine[J]. Mining Magazine, 1991, (8) : 58-63
    [35] Anon. In situ leach (isl) mining of uranium[EB/OL]. Nuclear Issues Briefing Paper 40, June 2003
    [36] Shawn L.Bell, Glenn D.Welch, Paul GBenett. Development of ammoniacal lixiciants for in-situ leaching of chalcopyrite. Hydrometallurgy, 1995,39:11-23
    [37] 汤洵忠,李茂楠,杨殿.我国离子型稀土矿开发的科技进步[J].矿冶工程,1999,19(2) :14-16
    [38] 赵靖,汤洵忠,吴超.我国离子吸附型稀土矿开采提取技术综述[J].云南冶金,2001,30(1) :11-14
    [39] 阙为民,姚益轩.疏松砂岩型铀矿原地浸出开采法[J].中国矿业,1998,7(5) :5-8
    [40] 王海峰,谭亚辉,杜运斌等.原地浸出采铀井场工艺[M].北京:冶金工业出版社,2002
    [41] 王洪江,吴爱祥,李青松.大型铜矿排土场浸出技术中几个亟待解决的关键问题[J]. 矿冶工程,2004,19(2) :15-19
    [42] 罗光臣.云南铜浸出-萃取-电积工艺技术的发展[J].云南冶金,1999,28(1) :44-47
    [43] 项则传.难选氧化铜矿堆浸一萃取一电积提铜的研究和实践[J].有色金属:选矿部分,2004,(4) :1-3
    [44] 李宏煦,刘晓荣,邱冠周等.驯化氧化亚铁硫杆菌浸出废铜矿中铜的研究[J].矿冶工程.2001,21(1) :40-42
    [45] 彭琴秀.德兴铜矿含铜废石细菌浸出试验研究[J].湿法冶金,2002,21(2) :83-87
    [46] 黎维中,彭晓华.德兴铜矿废石堆浸方法优化研究与实践[J].湿法冶金,1999,(1) :29-33
    [47] 万长峰.德兴铜矿堆浸提铜投产措旌实践[J].有色冶炼,2000,29(3) :22-23
    [48] 李样人,宋炳申.德兴铜矿堆浸废矿石生产电铜[J].矿冶,1999,8(2) :44-48
    [49] K.A.Phillips, N.J.Niemuth, D.Bain. Arizona mining update-2000 and 2001[EB/OL]. http:// www. admmr.state.az.us/minupdat2000-l.pdf, November, 2002
    [50] Anon. Rum Jungle, Nt an ongoing environmental calamity[EB/OL]. http://www. sea-us. org. au / oldmines/ rumjungle.html. Sep 8,1999
    [51] Robin J.Hickson. El Abra: world's langest SX/ EW mine on track to join copper-mining elite[J]. Mining Engineering, 1996, (2) : 34-40
    [52] E.S.Mark, W.M.Pater. Liner system in Chilean copper and gold heap leaching[J]. Mining Engineering, 1995,47(1) : 53-57
    [53] A.Rubio, FJ.Garcia Frutos. Bioleaching capacity of an extremely thermophilic cultrue for chalcopyritic materials[J]. Mineral Engineering, 2002,15: 689-694
    [54] F.C.Boogerd, C.Van den Beemd, T.Stoelwinder et al. Relative contributions of biological and chemical reaction to the overall rate of pyrite oxidation at temperatures between 30 and 70[J]. Biotechnology and Bioengineering, 1991,38:109-115
    [55] J.Petersen, D.GDixon. Thermophilic heap leaching of a chalcopyrite concentrate[J]. Minerals Engineering, 2002,15: 777-785
    [56] J.Y. Witne, C.V.Phillips. Bioleaching of OK Tidi copper concentration in oxygen-and carbun dioxide-enriched air[J]. Minrial Engineering, 2001,14(1) : 25-48
    [57] 邓敬石,阮仁满.影响Sulfobacillus thermosulfidooxidans生长及亚铁氧化的因素研究[J].矿产综合利用,2002,(3) :38-41
    [58] 李聪颖,孟春,林晖等.布氏酸菌浸出紫金山铜矿过程特性[J].过程工程学报,2004,4(6) :519-524
    [59] 赵月峰,方兆珩.极度嗜热菌Acidianus brierleyi浸出镍铜硫化矿精矿[J].过程工程学报,2003,3(2) :161-164
    [60] 张在海,邱冠周,胡岳华等.不同富集菌种的浸矿比较研究[J].有色矿冶,2000,16(4) :11-14
    [61] 张在海,王淀佐,胡岳华等.硫化矿细菌浸出的菌种选育研究进展[J].有色金属:选矿部分,2001,(5) :35-40
    [62] Y.A.Attia, M.El-Zeky. Bioleaching of gold pyrite tailings with adapted bacterial[J]. Hydrometally, 1989,22: 291-300
    [63] 张卫民,荆秀艳,邱木清.永平铜矿浸矿细菌驯化培养研究[J].有色金属:冶炼部分,2004,(5) :5-8
    [64] 徐晓军,宫磊,赵丙辰等.氧化铁硫杆菌的亚硝酸化学诱变及对黄铜矿的生物浸出[J].有色金属:选矿部分,2004,(6) :20-24
    [65] David K.Berger, David R.Woods, Douglas E.Rawings. Complementation of escherichia coli σ 54 (NtrA)-dependent formate hydrogenlyase activity by a cloned Thiobacillus ferrooxidans ntrA gene[J]. Journal of Bacteriology, 1990,172(8) : 4399-4406
    [66] Ji-bin Peng, Wang-ming Yan, Xue-Zhen Bao. Expression of heterogenous arsenic resistance genes in the obligately autotrophic bioming bacterium Thiobacillus ferrooxidans[J]. Applied and Environmental Microbiology, 1994, 60(7) : 2653-2656
    [67] K.Nakamura, T.Noike, J.Matsumoto. Effect of operational conditions on biological Fe( ?) oxidation with rotating bioloical contactors[J]. Water Resource, 1986,20: 73-77
    [68] A.Mazuelos, R.Romero, I.Palencia et al. Continuous ferrous iron biooxdation in flooded packed bed reactors[J], Minerals Engineering, 1999, (12) : 559-564
    [69] A.Mazuelos, R.Romero, I.Palencia et al. Oxygen transfer in ferric iron biological production in a packed bed reactor[J]. Hydromeytallurgy, 2002,65:15-22
    [70] D.GKaramanev. Model of the biofilm structre of thiobacillus ferrooxidans[J]. Biotechnol, 1991,20:51-64.
    [71] 方兆珩.生物氧化浸矿反应器的研究进展[J].黄金科学技术,2002,10(6) :1-7
    [72] 孟运生,樊保团,刘建等.铀矿细菌堆浸的生物接触氧化槽[J].铀矿冶,2004,23(4) :182-186
    [73] 姚英杰,张永奎,赖庆柯.氧化亚铁硫杆菌对硫化矿物作用机理的研究进展.湿法冶金,2004,23(3) :122-126
    [74] 张在海,王淀佐,邱冠周.细菌浸矿的细菌学原理[J].湿法冶金,2000,19(3) :16-21
    [75] 陈世琯.生物浸出及其在有色冶金中的应用[J].上海有色金属,2000,21(3) :137-146
    [76] F.K.Xrundwell. The indirect mechanism of bacterial leaching[J]. Min.Pro.Ext.Met.Rev., 1998,19:117-128
    [77] M.Boon. Short communication: the mechanism of 'direct' and 'indirect' bacterial oxidation of sulphide minerals[J]. Hydrometallurgy, 2001,62: 67-70
    [78] 姜成林,徐丽华.微生物资源学[M].北京:科学出版社,1997
    [79] Robert W. Bartleet. Solution mining: leaching and fluid recovery of materials [M]. Gordon and breach scirnce publishers, 1998
    [80] A.P.Mehta, L.E.Murr. Fundamental studies of the contribution of galvanic interaction to acid bacterial leaching of mixed metal sulfides[J]. Hydrometallurgy, 1983, (9) : 235-256
    [81] K.A.Natarajan, I.Iwasaki. Role of galvanic interactions in the bioleaching of Duluth Gabbro copper nickel sulfides[J]. Sep.Sci.Tech, 1983,18: 1095-1111
    [82] 李宏煦,邱冠周,胡岳华等.原电池效应对混合硫化矿细菌浸出的影响[J].中国有色金属学报.2003,13(5) :1283-1287
    [83] M.Boon, C.Ras, JJ.Heijnen. The ferrous iron oxidation kinetics of thiobacillus ferrooxidans in batch cultures[J]. Appl Microbio Biotechnol, 1999,51: 813-819
    [84] M.Boon, T.A.Meeder. The ferrous iron oxidation kinetics of thiobacillus ferrooxidans in continuous cultures[J]. Appl Microbio Biotechnol, 1999,51: 820-826
    [85] 常志东,张晨鼎,王红旺等.氧化亚铁硫杆菌对硫铁矿和含铜硫铁矿浸矿动力学研究[J].湿法冶金,1997,63(3) :4-8
    [86] 闵小波,柴立元,钟海云等.氧化亚铁硫杆菌生长动力学参数[J].中国有色金属学报,2000,10(3) :440-443
    [87] 龙中儿,蔡昭铃,丛威.微生物浸出金属硫化矿的动力学研究进展[J].矿冶工程,2002,22(1) :6-10
    [88] M.A.Blancarte-Zurita, R.M.R.Branion. Particle size effects in the microbiological leaching of sulfide concentrates by Thiobacillus ferrooxidans[J]. Biotechnol Bioeng, 1986,28:751-755
    [89] 关自斌.提高我国铀矿堆浸经济效益的主要途径和适用技术[J].铀矿冶,2000,19(4) :233-242
    [90] 钟永明.提高堆浸浸出率的方法和途径的探讨[J].铀矿冶,2001,20(3) :157-160
    [91] 寇建军.我国堆浸提金技术的创新和发展[J].矿产综合利用,1997,(1) :29-33
    [92] 王玉棉,李军强.微生物浸矿的技术现状及展望[J].甘肃冶金,2004,26(1) :36-39
    [93] Hector MXizama. Copper bioleaching behaviour in an aerated heap[J]. Int. J. Miner. Process, 2001,62 :257-269
    [94] W.C.Louis. Vat leaching: historic gold processing technique again viable[J]. Mining Engineering, 1991,43 (9) : 1131-1132
    [95] 邱显扬,杨永斌,戴子林.氰化提金工艺的新进展[J].矿冶工程,1999,19(3) :7-9
    [96] D.GDixon. Analysis of heat conservation during copper sulphide heap leaching[J]. Hydrometallurgy, 2000, 58: 27-41
    [97] 童雄,钱鑫.国外强化金矿堆浸技术的最新进展[J].国外金属矿选矿,1996,33(5) :1-3
    [98] 张通,张志全,张冬艳.硫化铜矿超声波预处理提高细菌浸铜浸出率[J].过程工程学报.2001,1(3) :315-317
    [99] L.B.Sukla,K.M.Swamy,K.L.Narayana. Bioleaching of Sukinda laterite using ultrasonics[J]. Hydrometallurgy, 1995, 37: 387-391
    [100] Y.A.Attia, M.El-Zeky. Effects of galvanic interactions of sulfides on extraction of precious metals from refractory complex sulfides by bioleaching[J]. International Journal of Mineral Processing, 1990,30: 99-111
    [101] 邱廷省,夏青.难选金矿细菌预处理技术理论与实践[J].南方冶金学院学报,2004,25(2) :6-11
    [102] 刘晓荣,李宏煦,胡岳华等.生物浸矿的电化学催化[J].湿法冶金,2000,19(3) :22-27
    [103] A.P.Mehta. Kinetic study of sulfide leaching by galvanic interaction between chalcopyrite, pyrite and sphalerite in the presence of T.ferrooxidans(30 癈) and thermophilic microorganism(55癈)[J]. Biotech Bioeng, 1982,24(4) : 919-940
    [104] L.Ahonen, O.H.Tuovinen. Catalytic effects of silve in the microbiological leaching of finely ground chalcopyrite-containing ore material in shake flasks[J]. Hydrometallurgy, 1990,24(2) : 219-236
    [105] L.Ahonen, O.H.Tuovinen. Silver catalysis of the bacterial leaching of chalcopyrite containing ore material in column reactor[J]. Miner Eng, 1990, 3(5) : 437-445
    [106] K.A.Natarajan. Bioleaching of sulphides under applied potentials[J]. Hydrometallurgy, 1992,29(1-3) : 161-172
    [107] 黎维中,查克兵,吴志军.德兴铜矿堆浸厂生产影响因素分析与探讨[J].铜业工程,2000,(2) :17-20
    [108] 刘久清.德兴铜矿湿法炼铜工艺现状及存在问题[J].湿法冶金,2001,20(3) :123-132
    [109] 桂斌旺,刘全军,李壮阔.铜的生物湿法冶金在德兴铜矿的应用[J].湿法冶金,2001,20(2) :72-75
    [110] 徐茗臻.湿法炼铜技术在江西铜业公司的应用[J].湿法冶金,2000,19(4) :26-30
    [111] 谢永金.江西铜业公司堆浸生产现状及发展前景[J].江西有色金属,2000,14(2) :19-21
    [112] 陈林.堆浸厂实现达产目标的可行性分析[J].铜业工程,2002,(4) :41-44
    [113] 尹启华.德兴铜矿堆浸厂达产达标影响因素分析与探讨[J].有色金属:选矿部分,2000,(6) :5-8
    [114] 柳建设,夏海波,王兆慧.德兴铜矿堆浸厂浸出率低的原因探讨[J].铜业工程,2004,(1) :23-26
    [115] 陈林.德兴铜矿废石排放与堆浸料筑堆的优化[J].世界采矿快报,2000,16(8) :264-266
    [116] 方金渭,黎维中.溶浸提铜技术发展概况及前景分析[J].湿法冶金,1998,(4) :15-19
    [117] 王瑞梅.江西铜业公司所属矿山铜堆浸规模化探讨[J].铜业工程,2000,(2) :5-6
    [118] 李青松,吴爱祥,姜立春等.堆中布液浸出高泥矿堆的机理研究[J].2003,23(2) :23-26
    [119] J.A.Brierley, C.L.Brierley. Present and future commercial applications of biohydrometallurgy[J]. Hydrometallurgy, 2001,59: 233-239
    [120] 郭正训.加拿大直布罗陀矿生产电铜概况[J].江西铜业工程,1995,(1) :61-63
    [121] Ross W.Smith, Manoranjan Misra. Resent development in the bioprocessing of mineral processing and extract metallurgy review[J]. Academic, 1993, (12) : 37-60
    [122] 招国栋,伍衡山,刘清等.浅论低品位铜矿的浸出技术及其发展趋势[J].西部探矿工程,2004,93(2) :65-69
    [123] 刘光尧.渗透系数要领的发展回顾[J].工程勘察,1997,(2) :34-38
    [124] 薜禹群.地下水动力学[M].北京:地质出版社,2001
    [125] 周创兵,熊文林.论岩体渗透性[J].工程地质学报,1996,4(2) :69-74
    [126] 邹佩麟,王惠英.溶浸采矿[M].长沙:中南大业大学出版社,1990
    [127] 吴爱祥,李青松,尹升华.改善高泥矿堆渗透性的机理研究[J].湘潭矿业学院学报,2003,18(4) :1-5
    [128] 苑莲菊,李振栓,武胜忠等.工程渗流力学及应用[M].北京:中国建材工业出版社,2001
    [129] 黄广龙,周建,龚晓南.矿山排土场散体岩土的强度变形特性[J].浙江大学学报,2000,34(1) :54-59
    [130] 马俊伟.堆浸工艺中矿岩散体介质的渗透特性试验研究[D].长沙:中南大学,2005
    [131] Mitsubishi. Copper expected to improve in 2001. Mining Engineering, 2001, 54(4) : 13-17
    [132] L.E.Murr. Theory and practice of copper sulphide leaching in dumps and in-situ [J]. Min.Sci.Eng., 1980,12(3) : 121-189.
    [133] 邱木清,张卫民,荆秀艳.永平铜矿浸矿细菌最佳生长条件的研究[J].有色金属:冶炼部分,2004,(2) :5-7
    [134] 荆秀艳.永平铜矿酸性矿坑水中的浸矿细菌培养试验研究[J].湿法冶金,2004,23(1) :19-24
    [135] J.A.munoz, A.Ballster, F.Gonzalez, et al. A study of the bioleaching of a Spanish uranism ore. Part 2: orbital shaker experiment[J]. Hydrometallurgy, 1995,38: 59-78
    [136] Graham Andrews. The optimal design of bioleaching process. Min.Pro.Ext.Met.Rex., 1998,19:149-165
    [137] 普仓风,樊建云.硫化铜矿细菌浸出试验研究[M].有色金属:冶炼部分,2003,(6) :13-14
    [138] J.A.munoz, M.L.Blazquez, A.Ballster et al. A study of the bioleaching of a Spanish uranism ore. Part 3: column experiment[J]. Hydrometallurgy, 1995,38: 79-97
    [139] H.M.Lizama, J.R.Harlamovs, D.J.McKay, et al. Heap leaching kinetics are proportional to the irrigation rate divided by heap height[J]. Minerals Engineering, 2005,18: 623-630
    [140] James A. Brierley. Response of microbial systems to thermal stress in biooxidation-heap pretreatment of refractory gold ores[J]. Hydrometallurgy, 2003, 71:13-19
    [141] A.W.Breed, GS.Hansford. Studies on the mechanism and kinetic of bioleaching[J]. Minerals Engineering, 1999,12(4) : 383-392
    [142] C.L.Lin, J.D.Miller, C.Garcia. Saturated flow characteristics in column leaching as described by LB simulation[J]. Minerals Engineering, 2005,18:1045-1051
    [143] 张在海.铜硫化矿生物浸出高效菌种选育及浸出机理[D].长沙:中南大学,2002
    [144] 魏以和,王军,钟康年.矿物生物技术的微生物学基本方法[J].国外金属矿选矿,1996,(1) :14-27
    [145] 马胜利.溶浸采矿最优化问题分析与探讨[J].矿业研究与开发,1998,(3) :12-14
    [146] 方开泰.均匀设计[J].应用数学学报,1980,(3) :363-372
    [147] S.C.Bouffard, D.G.Dixon. On the rate-limiting steps of pyritic refractory gold ore heap leaching: results from small and large column tests[J].Minerals Engineering, 2002, 15: 859-870
    [148] H.M.Xizama. A kinetic description of percolation bioleaching[J]. Minerals Engineering, 2004,17: 23-32
    [149] 李文超.冶金与材料物理化学[M].北京:冶金工业出版社,2001
    [150] 王昌汉.矿业微生物与铀铜金等细菌浸出[M].长沙:中面大学出版社,2003
    [151] 陈崇希,林敏.地下水动力学[M].武汉:中国地质大学出版社,1996
    [152] 林杰斌,陈湘,刘明德.SPSS11统计分析实务设计宝典[M].北京:中国铁道出版社,2002
    [153] 谢海云,刘中华,周峨.高铁离子浓度下氧化亚铁硫杆菌的生长行为[J].过程工程学报,2004,4(1) :43-46
    [154] 谭昌盛.原地浸出采铀在新疆512矿的应用[J].中国矿业,1994,(3) :22-25
    [155] 姚益轩,葛加明,苏学斌.新疆某矿床酸法地浸采铀现场试验[J].铀矿冶,2004,23(3) :119-125
    [156] 查克兵.德兴铜矿堆浸生产影响因素的分析与探讨[J].采矿技术,2003,3(3) :4-6
    [157] 李壮阔,桂斌旺,段希祥.德兴铜矿堆浸厂的生产实践及技术研究[J].矿冶工程,2002,22(1) :46-48
    [158] 朱国山.祝家排土场堆浸排土台阶高度优化研究[J].金属矿山,2003,330(12) :16-18
    [159] J.贝尔.多孔介质流体动力学[M].李竞生译.北京:建筑工业出版社,1983
    [160] R.A弗里泽.地下水[M].吴静方译.北京:地震出版社,1987
    [161] 徐天有,张晓宏,孟向一.堆石体渗透规律的试验研究[J].水利学报,1998,(1) :80-83
    [162] 王西文.确定地浸钻孔的最佳间距的原则和方法[J].铀矿冶,1999,18(2) :73-85
    [163] J.贝尔.地下水水力学[M].许涓铭译.北京:地质出版社,1985
    [164] 周玉新,周志芳.矿山边坡地下水浸润线的简便计算[J].矿冶工程,2004,24(3) :18-21
    [165] 邵再良.地下储气洞室勘察中的注(压)水试验[J].西部探矿工程,2004,95(4) :15-16
    [166] 胡瑾.从压水试验参数分析承压水的埋藏分布规律[J].地质灾害与环境保护,2001,12(2) :49-51
    [167] 国际原子能机构著.酸法地浸采铀工艺手册[M].马飞,张书成,潘燕等译.北京:原子能出版社,2003
    [168] 姚约东,葛家理.石油非达西渗流的新模式[J].石油钻采工艺,2003,25(5) :40-43
    [169] 王君连.用势函数法计算渗流干扰区的地下水流态[J].水利水电技术,1999,30(2) :19-25
    [170] 李文斌.大型露天矿高台阶排土工艺及安全管理措施[J].采矿技术,2003,3(2) :61-63
    [171] 谢学斌,潘长良.露天矿排土场散体岩石粒度分布的分形特征[J].湘潭矿业学院学报,2003,18(3) :56-59
    [172] 白晨光,曹文贵.南芬露天矿庙儿沟排土场堆料粒度的分形度量[J].江西冶金,1996,16(6) :29-31
    [173] 张德政.排土场废石块度分布的分形特征[J].中国矿业,1995,4(3) :49-54
    [174] 屈智炯,何昌荣,刘双光等.新型石渣坝-粗粒土筑坝的理论与实践[M].北京:中国水利水电出版社,2002
    [175] 郭庆国.粗粒土的工程特性及应用[M].北京:黄河水利出版社,1999
    [176] 王国华.砂砾岩风化土作为堤坝填筑料的研究及应用[J].岩土工程界,2004,(4) :68-69
    [177] 刘可任.充填理论基础[M].北京:冶金工业出版社,1982
    [178] 毛昶熙.渗流计算分析与控制[M].北京:中国水利水电出版社,2003
    [179] 吴爱祥,孔业志,刘湘平.散体动力学理论及应用[M].北京:冶金工业出版社,2002
    [180] 张英杰,杨显万.硫化矿生物浸出过程的热力学[J].贵金属,1998,19(3) :26-29
    [181] 童雄,孙永贵.微生物浸出难浸黄铜矿的研究[J].矿产综合利用,1999,(4) :6-10
    [182] 闫森,童雄.强化难处理硫化铜矿物微生物浸出过程的研究[J].国外金属矿选矿,2000, (11) : 13-18
    [183] A.Sand, T.Gerke, R.Hallmann et al. Sulfur chemistry, biofilm, and the (in)direct attack mechanism-a critical evaluation of bacterial leaching[J]. Appl Microbio Biotechnol, 1995,43:961-966
    [184] A.W.Breed, S.T.L.Harrison, GS.Hansford. A Preliminary inverstigation of the ferric leaching of a pyrite/aesenopyrite floation concentrate[J]. Minerals Engineering, 1997, 10(9) : 1023-1030
    [185] M.Boon, J.J.Heijnen, G.S.Hansford. The Mechanism and kinetic of bioleaching suifide minerals[J]. Min.Pro.Ext.Met.Rev., 1998,19:107-115
    [186] Jayant M.Modak, K.A.Natarajian, Sanghamitra Mukhopadhyay. Development of temperature-tolerant strains of Thiobacillus ferroxidans to improve bioleaching kinetics[J]. Hydrometallurgy, 1996,42: 51-56
    [187] 高仁喜,关自斌,田胜军.国内外铀、金矿石微生物浸出的技术进展[J].铀矿冶,2000,19(1) :38-44
    [188] 童雄,魏以和.细菌氧化硫化矿物的机理及探讨[J].云南冶金,1996,(4) :19-22
    [189] 张英杰,杨显万.硫化矿细菌浸出机理[J].有色金属,1997,49(4) :39-44
    [190] 项拥军.氧化亚铁硫杆菌对黄铜矿的氧化作用[J].金属矿山,2000,(10) :24-26.
    [191] 柳建设,邱冠周,王淀佐.硫化矿物细菌浸出机理探讨[J].湿法冶金,1997,63(3) :1-3
    [192] 张广积,方兆珩.生物氧化浸矿机理和动力学[J].国外金属矿选矿,2000,(6) :17-19
    [193] 魏庆成.冶金热力学[M].重庆:重庆大学出版社,1996
    [194] K.A.兰特拉金.硫化矿生物浸出电化学[J].国外金属矿选矿,1997,(2) :44-54
    [195] 叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002
    [196] 刘天和,赵梦月.NBS化学热力学性质表[M].北京:中国标准出版社,1998
    [197] #12
    [198] 刘媛媛.铜矿峪低品位铜矿细菌浸铜研究[J].有色金属,2004,56(1) :51-54
    [199] 胡世丽,王观石.细菌浸铜技术在紫金山铜矿的应用[J].江苏地质,2003,27(1) :31-33
    [200] 裴世红,张翔,王红心等.湿法炼铜(生物菌浸出法)的近况及展望[J].当代化工,2003,22(3) :166-168
    [201] 罗廉明,王军,徐竞等.提高细菌浸矿速度的方法研究[J].矿产保护与利用,1999,(4) :40-43
    [202] S.D.Kim, Y.Kang. Heat and mass transfer in three-phase fluidized-bed reactors[J]. Chem. Engng Sci., 1997,52(21-22) : 3639-3660
    [203] MLSampson, J.W.Van der Merwe, TJ.Harvey. Testing the ability of a low grade sphalerite concentrate to achieve autothermality during biooxidation heap leaching[J]. Minerals Engineering, 2005,18: 427-437
    [204] 梅炽.冶金传递过程原理[M].长沙:中南工业大学出版社,1987
    [205] 齐起生.工程热力学[M].成都:西南交通大学出版社,1996
    [206] 任泽霈,蔡睿贤,热工手册[M].北京:机械工业出版社,2002
    [207] 林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995
    [208] Robert W.Bartlett, Keith A.Prisbrey. Convection and diffusion limited areation during biooxdation of shallow ore heaps[J]. Int.J.Miner.Process, 1996,47: 75-91
    [209] Anders B.Jensen, Colin Webb. Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a Review[J]. Process Biochemistry, 1995,30(3) : 225-236
    [210] 王周谭.温度及溶解氧对氰化法浸金的影响[J].陕西地质,1998,16(2) :58-63
    [211] 谢峰,杨立.充氧对含砷金矿细菌氧化过程影响的研究[J].沈阳黄金学院学报,1995,14(3) :346-351
    [212] C.L. Brierley. Bacterial succession in bioheap leaching[J]. Hydrometallurgy, 2001, 59: 249-255
    [213] Walter Krebs, Christoph Brombecher, Philipp P.Bosshard et al. Microbial recovery of metals from solid[J]. FEMS Microbiology Review, 1997,20: 650-617
    [214] A.S.Myerson. Oxygen mass transfer requirements during the growth of Thiobacillus ferrooxidans on iron pyrite[J]. Biotechnol Bioeng, 1981,23:1413-1416.
    [215] 胡家骏,周群英.环境工程微生物学[M].北京:高等教育出版社,2000
    [216] 魏德洲.资源微生物技术[M].北京:冶金工业出版社,1996
    [217] R.T.柯乃普.空化与空蚀[M].水利水电科学院译.北京:水利出版社,1981
    [218] 蔡悦斌,鲁传敬,何有声.瞬态空化泡的成长与溃灭[J].水动力学研究与进展,1995,10(6) :653-660
    [219] 李根生,沈晓明,施立德等.空化和空蚀机理及其影响因素[J].石油大学学报,1997,21(1) :97-102
    [220] T.K.修伍德,R.L.皮克福特,C.R.威尔基.传质学[M].时钧译.北京:化学化工出版社,1988
    [221] 张展适.堆浸法回收露采铜矿山排土场废石中的铜[J].湿法冶金,1997,(2) :20
    [222] 李广胜.综合利用酸性废水浸出含铜废石的分析[J].有色矿山,1995,(4) :57-61
    [223] A. Mazuelos, F. Carranza, I. Palencia et al. High efficiency reactor for the biooxidation of ferrous iron[J]. Hydrometallurgy, 2000,58: 269-275
    [224] L.R.P.de Andrade Lima , D.Hodouin. Optimization of reactor volumes for gold cyanidation[J]. Minerals Engineering, 2005,18: 671-679
    [225] 王昌汉,朱红兵,李旭.就地破碎浸矿法的矿块结构参数的确定原则及特点[J].中南工学院学报,2000,14(4) :6-12
    [226] 郭熙灵,李思慎.水布垭水利枢纽页岩风化料击实和渗透特性试验研究[J].人民长江,1996,27(12) :18-21
    [227] 吴普特,牛文全,郝宏科.现代高效节水灌溉设施[M].北京:化学工业出版社,2002
    [228] 郑仕忠.原地浸出采铀中若干技术问题的探讨[J].铀矿冶,2000,19(1) :11-16
    [229] D.G弗雷德隆德,H.拉哈乐佐.非饱和土土力学[M].陈仲颐译.北京:中国建筑工业出版社,1997
    [230] 李茂芳.水文地质压水试验[M].北京:水利水电出版社,1985
    [231] 张凤华,廖振方,唐川林等.空化水射流的化学效应[J].重庆大学学报,2004,27(1) :32-35
    [232] 蒋雅林,张军英.白银有色金属公司采选二次资源开发利用设想[J].中国有色冶金,2004,33(4) :61-66
    [233] 胡福成,王成彦,詹惠芳等.从稀铜浸出液生产优质电解铜的技术经济评述[J].湿法冶金,1996,57(1) :51-53
    [234] 王成彦,詹惠芳,陈枫.我国低品位铜矿浸出-萃取-电积铜厂投资概况及效益分析[J].矿冶,1999,8(1) :45-49
    [235] 王瑞梅,彭晓华,叶贞健.德兴铜矿细菌堆浸厂的工程设计及投产[A].中国有色金属学术铜镍湿法冶金技术交流及应用推广会[C].福建:厦门,2002
    [236] M.Sidborn, J.Casas, J.Marti'nez et al. Two-dimensional dynamic model of a copper sulphide ore bed[J]. Hydrometallurgy. 2003,71: 67-74
    [237] 邱冠周,刘晓荣,胡岳华.萃取有机相对浸矿细菌的影响[J].中南工业大学学报,2001,32(3) :243-246
    [238] 余斌.用浅床逆旋离子交换与快速循环电积技术处理浸铜贫液[J].国外金属矿选矿,2005,(4) :39-41
    [239] 陈学俊.两相流与传热:原理及应用[M].北京:原子能出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700