用户名: 密码: 验证码:
中高温菌组合浸出黄铜矿及细菌种群结构和演替规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国有大量的以黄铜矿为主的低品位硫化铜矿资源,其铜金属的回收主要采取中温硫杆菌堆浸的办法,但浸出率都较低,年浸出率最高也不超过30%;同时企业细菌堆浸生产状况不稳定,往往连续生产若干周期后,生产水平逐渐降低,生产指标离设计水平越来越远,经济效益不理想;实验室的细菌浸出也存在效果起伏变化的情况。究其原因,主要存在以下问题:
     (1)中温硫杆菌对黄铜矿的生物浸出效果差;
     (2)在矿石的细菌堆浸中,矿堆内部发热,局部可高达80℃,最适生长温度为30℃左右的中温硫杆菌属细菌不能成活,堆浸效果受到严重影响;
     (3)微生物以群落的形式存在于各种环境中,微生物群落的种群结构组成决定其生态功能,通过改变微生物群落的结构可以让它的功能达到最佳。但目前细菌冶金领域对微生物群落研究常常采用的平板法研究结果不准确。因为培养基对细菌生长有明显的选择性,99%的细菌不能培养。同时平板法还存在培养周期长(5~8d),无法在线精确反应浸矿体系中微生物种群的动态变化过程等问题,使得人们还不清楚浸矿微生物的种群结构和演替规律,细菌浸矿过程犹如“黑箱”反应。
     为了解决上述问题,本论文重点从以下几个方面开展研究工作:一是分离对黄铜矿有较强氧化浸出能力的嗜热嗜酸菌;二是进行了将耐高温的嗜热嗜酸菌和中温硫杆菌组合浸出以黄铜矿为主的低品位硫化铜矿的研究,以解决矿堆内部发热,中温硫杆菌不能存活的问题,从而有效提高黄铜矿的浸出率;三是利用分子生物学的PCR-16SrDNA序列分析技术和PCR-DGGE变性梯度凝胶电泳分析技术结合传统微生物分离方法研究了以黄铜矿为主的低品位硫化铜矿中温硫杆菌槽浸和柱浸过程细菌种群结构、演替规律及与铜浸出效率之间的关系,优化出了PCR-DGGE分析最佳技术条件,使浸矿过程这个“黑箱”反应变得透明,为优化微生物种群结构、改善浸出效果和实现浸矿过程的人工控制奠定试验基础。
     论文的主要研究内容和研究结果如下:
     1、嗜热嗜酸菌的分离。在云南省内相关热泉采集了酸性温泉菌种,利用高温和高酸在实验室分离培养筛选纯化出一株严格无机化能自养型嗜热嗜酸菌KY-2菌株,该菌株主要生理生化特性类似于嗜酸热硫化叶菌(Sulfolobus acidocaldarius),最适生长繁殖温度65℃、最适pH 2.0,能氧化S°、黄铜矿和黄铁矿中的Fe~(2+)和S~(2-)。
     2、研究嗜热嗜酸菌对以黄铜矿为主的低品位硫化铜矿的氧化浸出规律。
     从云南省某铜矿采集了试验矿样,矿样含铜0.89%,黄铜矿占65.17%。实验室利用摇瓶和槽浸试验分别开展了最佳浸出工艺条件、强化浸出工艺条件和柱浸试验工艺条件研究。试验结果表明:嗜热嗜酸菌对黄铜矿的氧化浸出能力明显强于中温硫杆菌。使用-180目试验矿粉、矿浆浓度10%(W∶V)、搅拌浸出12d,嗜热嗜酸菌对总铜的浸出率达97%,而中温硫杆菌对总铜的浸出率仅为32.43%,嗜热嗜酸菌是中温硫杆菌的3倍。以浸渣中残留黄铜矿计,嗜热嗜酸菌能浸出黄铜矿的97.05%,中温硫杆菌仅能浸出15.43%,前者是后者的6倍。在柱浸试验中,单独采用中温硫杆菌或嗜热嗜酸菌都不能取得好的浸出效果。采用中温硫杆菌柱浸196d对总铜的浸出率仅为22.51%;嗜热嗜酸菌在浸出前期存在“平台期”,196d的总铜浸出率为24.38%;两种细菌结合使用,在中温硫杆菌柱浸近两个月后,再改为嗜热嗜酸菌浸出,浸出率提高明显,196d对总铜的浸出率为32.75%,明显高于单用某一种细菌的总铜浸出率。
     3、研究细菌种群结构、菌群演替规律及与铜浸出效率之间的关系。
     (1)对中温硫杆菌柱浸浸出液的细菌进行PCR-DGGE分析,DGGE电泳图有6个条带,其中有5个条带对应的菌株与已知菌Acidithiobacillus ferrooxidans(嗜酸氧化亚铁硫杆菌)的同源性为98%及以上,均鉴定为嗜酸氧化亚铁硫杆菌同菌种的不同菌株。06条带对应的菌株与嗜酸氧化亚铁硫杆菌的同源性为95%,可鉴定为硫杆菌属细菌。
     随后用9K固体培养基从柱浸浸出液随机分离出来3株纯菌株,3株纯菌株与已知菌Acidithiobacillus ferrooxidans(嗜酸氧化亚铁硫杆菌)的同源性也均为99%,均鉴定为嗜酸氧化亚铁硫杆菌,与柱浸浸出液的细菌PCR-DGGE分析结果相互印证,证明以黄铜矿为主的低品位硫化铜矿生物柱浸过程确以嗜酸氧化亚铁硫杆菌A.f为优势菌种。
     (2)在细菌柱浸的63d中,菌群发生了演替。菌群演替发生在嗜酸氧化亚铁硫杆菌同菌种内的各菌株之间。
     (3)细菌柱浸体系中,不同的矿种选择不同的菌群。柱浸前期易浸的次生硫化铜矿选择了02和05两条带所对应的嗜酸氧化亚铁硫杆菌菌株,此时铜浸出率曲线上升较快。难浸的黄铜矿则选择了01、02、03、04、06五条带所对应的嗜酸氧化亚铁硫杆菌菌株,但此时铜浸出率曲线上升较慢。
     (4)采用9K培养基从槽浸矿浆中随机分离出14株中温硫杆菌。随机抽取氧化浸出能力有较大差异的YK8、YK12及YK14三纯菌株进行16S rDNA序列分析鉴定,三株细菌与已知菌Acidithiobacillus ferrooxidans(嗜酸氧化亚铁硫杆菌)的同源性均为99%,三株细菌均鉴定为嗜酸氧化亚铁硫杆菌。该研究表明以黄铜矿为主的低品位硫化铜矿中温硫杆菌槽浸体系也以嗜酸氧化亚铁硫杆菌A.f为优势菌群。14株纯菌株对Fe~2~+的氧化率有较大差异,说明同菌种的不同菌株其生物氧化能力有较大不同。
     (5)通过直接法和PCR-DGGE法的试验结果从分子水平上表明:将以自然混菌为菌种的槽浸矿浆接种于以硫粉为能源的Starkey液体培养基中诱导培养并转接5代,其优势菌群依然为嗜酸氧化亚铁硫杆菌A.f,而非传统认为的嗜酸氧化硫硫杆菌A.t,该试验结果与9K培养基从细菌槽浸体系分离细菌鉴定结果互相印证。
     (6)柱浸和槽浸研究结果,传统微生物分离试验结果与现代分子生物学技术PCR-DGGE试验结果均相互印证。本研究在分子水平从种群组成角度证明:以黄铜矿为主的低品位硫化铜矿生物浸出过程嗜酸氧化亚铁硫杆菌A.f为优势菌种,以直接作用机理为主。
     (7)在生物槽浸体系中,经以黄铜矿为主的低品位硫化铜矿长期驯化的自然混菌菌种铜浸出率高于所有源自其菌浸矿浆的纯菌株,自然混菌各菌株之间在浸矿过程中存在协同作用。自然混菌菌种经不同能源富集培养后,其浸矿能力也发生了显著的变化。
     (8)嗜热嗜酸菌在氧化浸出过程中Fe~(3+)浓度一直很低(0.3g/L以下),而铜浸出率却较高,试验结果表明,嗜热嗜酸菌对矿石的作用也以直接作用机理为主。
     (9)本试验结果支持“钝化”层不是S°层的观点。嗜热嗜酸菌黄铜矿浸渣表面层的主要成分是S°,但此S°层并没有降低嗜热嗜酸菌的氧化浸出作用,从而间接证明了阻碍黄铜矿生物浸出作用的表面“钝化”层不是S°层。
     上述研究结果基本解决了以黄铜矿为主的低品位硫化铜矿中温硫杆菌生物堆浸面临的三大难题,获得了技术上的突破。该研究成果对以黄铜矿为主的低品位硫化铜矿的有效开发利用,提供了一条有效的途径。
A high temperature-tolerating thermoacidophilic archae(Sulfolobus acidocaldarius; KY-2 strain)was isolated from water samples collected from a hot sulfur-containing spring in the Yunnan Province,and was used in bioleaching experiments of a low-grade chalcopyrite ore.The KY-2 grow at temperature ranging from 40 to 80℃,with 65℃being the optimum temperature,and at pH values of 1.5 to 4.0,with an optimum pH value of 2.0.The bioleaching experiments of the chalcopyrite ore were conducted in both laboratory batch bioreactors and leaching columns.The results obtained from the bioreactor experiments showed that the KY-2 bioleaching rate of copper reached 97%for a 12-day leaching period,while the bioleaching rate was 32.43%for Acidithiobacillus ferrooxidans (A.f)leaching for the same leaching time.In the case of column leaching,tests of a two-phase leaching(196days),that is,a two-month(56days)A.f leaching in the first phase, followed by a 140-day KY-2 leaching in the second phase were performed.The average leaching rate of copper achieved for the 140-day KY-2 leaching was 195mg/(L.d),while for the control experiments,it was as low as 78mg/(L.d)for the A.f leaching,indicating that the KY-2 possesses a more powerful oxidizing ability to the chalcopyrite than A.f.Therefore,it is suggested that the two-phase leaching process be applied to for the heap leaching operations,whereas,the KY-2 can be used in the second phase when the temperature inside the heap has increased,and the primary copper sulfide minerals have already been partially oxidized with A.f beforehand in the first phase.
     In order to find out the reaction mechanism of the bacteria with chalcopyrite,the bacterial population composition in a bioleaching system of a low grade copper sulphide ore consisting mainly of chalcopyrite was investigated.By using a 9K culture medium,14 pure strains of mesophiles were isolated from the batch stirred leaching pulp of the ore.It was found that the copper leaching efficiencies for these pure strains were all lower than before isolating,indicating that there exists a synergistic effect between these strains of the domestic bacteria in the batch stirred bioleaching process of the ore.It was also found that by the sequence analysis of 16S rDNA,three of the 14 strains,strain YK8,strain YK12 and strain YK14,which were random-sampled from the 14 strains,were highly relatived to Acidithiobacillus ferrooxidans,with 99%sequence similarity,though were very different in the oxidation power from each other.Therefore these three strains should be all identified as the species of Acidithiobacillus ferrooxidans,exhibiting the diversity of singleness of the bacteria community.The fact that the bacterial population composition of the batch stirred bioleaching system was dominated by the species of Acidithiobacillus ferrooxidans indicates that the mechanism of the bacterial oxidation in this case is a direct reaction.There were the marked differences of Fe~(2+)oxidation rate of various pure strains at different period of time and notable change about the copper leaching efficiency for various bacteria induced by different culture medium containing different energy sources of the batch stirred bioleaching system.
     By the direct approach and PCR-DGGE analysis,these results indicate at molecular level that the batch stirred bioleaching pulp of the ore was inoculated and cultivated and transferred 5 times in Starkey culture medium containing sulfur powder(S°)as energy sources,whose dominant bacteria was Acidithiobacillus ferrooxidans A.f,rather than Acidithiobacillus thiooxidans A.t that people were used to think of.
     By the PCR-DGGE analysis,there were 6 bands in DGGE patterns of PCR amplified 16S rDNA(V3-V6)of bacterial sample of different period of time in column bioleaching process,such as 01 band,02 band,03 band,04 band and 05 band whose corresponding to bacteria all were Acidithiobacillus ferrooxidans A.f.The dominant bacteria in the column bioleaching process of a low grade copper sulphide ore consisting mainly of chalcopyrite was Acidithiobacillus ferrooxidans A.f.
     During the column bioleaching process of 63-day,the bacterial population succession took place.For all 6 bands corresponding to bacteria were Acidithiobacillus ferrooxidans A.f. The bacterial succession came about among bacterial strains of Acidithiobacillus ferrooxidans A.f.
     Using a 9K culture medium,3 pure strains of mesophiles were isolated which were random-sampled from the column bioleaching pulp of the ore.By the sequence analysis of 16S rDNA,it was found that 3 pure strains were highly relatived to Acidithiobacillus ferrooxidans,with 99%sequence similarity and all were identified as the species of Acidithiobacillus ferrooxidans A.f.These results were as same as the PCR-DGGE analysis and indicate that the dominant bacteria in the column bioleaching process of a low grade copper sulphide ore consisting mainly of chalcopyrite was Acidithiobacillus ferrooxidans A.f.
     During batch stirred bioleaching process using thermoacidophilic archae(KY-2),The Fe~(3+)concentration in solution was very low at all the time,but copper leaching rate was very high.This case indicates that the mechanism of the thermoacidophilic archae oxidation is a direct reaction.
     In the early stages of the column bioleaching of a low grade copper sulphide ore consisting mainly of chalcopyrite,the secondary copper sulphide ore which is dissolved easily chose 02 band and 05 band corresponding to bacterial strains of Acidithiobacillus ferrooxidans A.f,the primary copper sulphide ore which is dissolved hardly selected 01 band, 02 band,03 band,04 band and 05 band corresponding to the bacterial strains of Acidithiobacillus ferrooxidans A.f.
     This study supports that the sulfur(S°)layer doesn't arise the passivation of chalcopyrite during batch stirred bioleaching process using thermoacidophilic archae(KY-2).The superficial layer of bioleaching residue of chalcopyrite consisted mainly of sulfur(S°)and didn't weaken the oxidation efficiency of thermoacidophilic archae for copper leaching rates were very high in whole bioleaching process.
引文
[1]邱冠周,王军,钟康年等.浸矿细菌的育种及工业应用[J].国外金属矿选矿,1998.6:29-33.
    [2]张在海.王淀佐.嗜酸氧化亚铁硫杆菌遗传选育方法探讨[J].湿法冶金,1999,(4):28-31.
    [3]张在海,王淀佐,邱冠周,等.细菌浸矿的细菌学原理[J].湿法冶金,2000,19(3):16-21.
    [4]胡岳华,康自珍.嗜酸氧化亚铁硫杆菌的细菌学描述[J].湿法冶金,1996.(4):36-40.
    [5]徐浩.工业微生物学基础及其应用[M].北京:科学出版社,1991,57-60.
    [6]Murr,L E,Torma A E,Brierly J A.Metallurgical Application of Bacrerial Leaching and Related Microbiological Phenomena[J].Academic,1978,82(6):104-105.
    [7]Bryner L.G.,et al.Microorganisms in leaching of sulfide minerals[M].Industrial and Engineering Chemistry,1954,46:2587-2592.
    [8]张雁生,覃文庆,王军,等.中温嗜酸硫杆菌浸出低品位硫化铜矿[J].矿冶工程,2007,27(4):25-30.
    [9]Shoemaker R.S.,Darrah R.M..The economics of heap leaching[J].Mining Engineering,1968,20(12):90-92.
    [10]Karavaiko G.I.,et al.,Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans[J].Int J Syst Evol Microbiol,2003.53(Pt 1):113-119.
    [11]Lane D.J.,.Pace B,Olsen G J,et al.Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses[J].Proc Natl Acad Sci U S A,1985,82(20):6955-6959.
    [12]Kelly D P,Wood A P.,Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen.nov.,Halothiobacillus gen.nov.and Thermithiobacillus gen.nov[J].Int J Syst Evol Microbiol,2000,50:511-516.
    [13]Matlakowska R,Skudlarska E,Sklodowska A.The growth,ferrous iron oxidation and ultrastructure of Acidithiobacillus ferrooxidans in the presence of dibutyl phthalate[J].Pol J Microbiol,2006,55(3):203-210.
    [14]Nicomrat D,Dick W A,Tuovinen O H.Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage[J].Microb Ecol,2006,51(1):83-89.
    [15]Selenska-Pobell S.,Kampf G;Hemming K,et al.,Bacterial diversity in soil samples from two uranium waste piles as determined by rep-APD,RISA and 16S rDNA retrieval[J].Antonie Van Leeuwenhoek,2001,79(2):149-161.
    [16]Ageeva S.N.,T.F.Kondrat'eva,G.E.Karavaiko,et al.,Phenotypic characteristics of Thiobacillus ferrooxidans strains[J].Mikrobiologiia,2001.70(2):226-234.
    [17]徐海岩,颜望明.细菌抗砷特性研究进展.微生物学通报[J].1995,22(4):228-231.
    [18]徐海岩,颜望明,刘振盈等.抗砷载体的构建及在亚铁硫杆菌中的表达[J].应用与环境生物学报,1995,1(3):238-241.
    [19]汪青梅,邱木清.微生物浸矿技术在处理低品位铜矿中的应用现状[J].湿法冶金,2005,24(1)5-8.
    [20]柳建设,邱冠周.硫化矿物细菌浸出机理探讨[J].湿法冶金,1997,(3):1-3.
    [21]刘晓荣,李宏熙.生物浸矿的电化学催化[J].湿法冶金,2000,19(3):22-27.
    [22]李雅芹,蔡文六,陈秀珠等.以黄铜矿为主的低品位硫化铜矿生物氧化的研究[J].微生物学报,1983,23(2):156-162.
    [23]胡岳华,康自珍,王军等.黄铜矿的细菌氧化[J].国外金属矿选矿,1997(8):42-45.
    [24]张维庆,魏德洲,沈俊.嗜酸氧化亚铁硫杆菌对黄铜矿的的氧化作用[J].矿冶工程,1999,19(3)330-333.
    [25]项拥军.嗜酸氧化亚铁硫杆菌对黄铜矿的氧化作用[J].金属矿山,2000,292(10)24-26.
    [26]张东艳,张通.细菌浸出黄铜矿过程中黄铁矿的影响行为[J].湿法冶金,1997.(2):4-7
    [27]Wyckoff R.W.G.,Dovldson F.D.,GBF Conference Bacterial Leaching[M].Verlag.chemie,Weinheim-new York,1977:67-84.
    [28]Heing J.Int.J.Miner.Process,1991,31:247-326.
    [29]彭琴秀.德兴铜矿含铜废石细菌浸出研究[J].湿法冶金,2002年21(2):83-87.
    [30]王卉,刘小平.永平铜矿5000t级细菌浸铜现场试验研究[C].中国优势和特色矿产资源及二次资源综合利用学术研讨会论文集,2007,221-230.
    [31]童雄,郭学军.细菌法浸出中甸某硫化铜矿的试验研究[J].矿冶,1998,7(2):54-57.
    [32]李宏熙,邱冠周,胡岳华等.大宝山废矿堆铜矿细菌浸出铜的研究[J].矿产综合利用,2000,(5):31-34.
    [33]雷云,贾云芝,邹平.低品位高铁黄铜矿的细菌堆浸试验研究[J].有色金属,2000,52(4)166-168.
    [34]柳建设,夏海波,王海东.低品位硫化铜矿细菌浸出[J].中国有色金属学报,2004,14(2):286-290
    [35]Ballester A.Hydrometallurgy.1992,29(1/3):145-160.
    [36]中泽广.金川铜镍硫化矿的浸出[J].资源と素材,1992,(10)731-735.
    [37]邱冠周,王军,钟康年等.银催化铜矿石的细菌浸出[J].矿冶工程,1998(18)3:22-26.
    [38]王康林,韩效钊,汪模辉等.银离子在细菌浸出黄铜矿中的催化行为研究[J].矿冶工程,2003(23)5:60-62.
    [39]邱冠周,柳建设,胡岳华等.一种以黄铜矿为主的低品位硫化铜矿型硫化铜矿细菌浸出用催化剂[P].中国.公示日:2002.7.24.
    [40]李宏熙,温健康,阮仁满等.适用于生物堆浸提取金属的造粒工艺[P].中国.公示日:2004.02.18.
    [41]邱冠周,张燕飞,杨宇等.嗜酸氧化亚铁硫杆菌冷冻干燥保护剂[P].中国.公示日:2007.08.08.
    [42]邱冠周:张燕飞:杨宇等.嗜酸氧化亚铁硫杆菌冷冻保藏保护剂[P].中国.公示日:2007.08.08.
    [43]Escobar B.Hydrometallurgy.1996,40(1/2)1-10.
    [44]尹华群,邱冠周,罗海浪.嗜酸氧化亚铁硫杆菌亚铁氧化活性与其对低品位铜矿浸矿速率关系的研究[J].现代生物医学进展,2007,7(5)641-646.
    [45]邱冠周,周洪波,符波.利用硫氧化细菌消除黄铜矿浸出过程钝化膜的方法[P].中国.公示日:2007.08.15.
    [46]邱冠周,胡岳华,柳建设.一种浸矿用菌种培育方法[P].中国.公示日:2002.05.22.
    [47]邱冠周,周洪波,黄菊芳等.利用磁黄铁矿筛选浸矿菌种的方法[P].中国.公示日:2003.03.12.
    [48]温健康,阮仁满,孙雪南.耐酸诱变浸矿菌种的选育方法[P].中国.公示日:2004.02.18.
    [49]徐晓军,宫磊,孟云生.硫杆菌的化学诱变及对以黄铜矿为主的低品位硫化铜矿的浸出[J].金属矿山,2004,338(8)42-44.
    [50]徐晓军,宫磊,赵丙辰.嗜酸氧化亚铁硫杆菌的亚硝酸化学诱变及对黄铜矿的生物浸出[J].有色金属(选矿部分),2004,(6)20-24.
    [51]徐晓军,宫磊,孟云生.嗜酸氧化亚铁硫杆菌的微波诱变及对以黄铜矿为主的低品位硫化铜矿的生物浸出[J].有色金属,2005,57(2)93-97.
    [52]徐晓军,孟云生,宫磊.嗜酸氧化亚铁硫杆菌的紫外线诱及对以黄铜矿为主的低品位硫化铜矿的浸出[J].矿冶工程,2005,25(2)34-36.
    [53]沈璧蓉、吴学玲、杜修桥等.抗Cu~(2+)嗜酸氧化亚铁硫杆菌的驯化及诱变育种[J].现代生物医学进展,2007,7(4):507-510.
    [54]邱冠周,周洪波,杨宇.硫化矿浸矿菌株的原生质体融合技术[P].中国.公示日:2003.03.12.
    [55]张在海,王淀佐,邱冠周等.嗜酸氧化亚铁硫杆菌亚铁氧化活性诱变育种理论探讨[J].铜业工程,2001,1:12-14.
    [56]沈萍主编.微生物学[M].北京:高等教育出版社.2000.
    [57]Wiegel J,Canganella F.Extreme Thermophiles,Encyclopedia of life science[M],Nature.Publishing Group,2001.
    [58]和致中,彭谦,陈俊英.高温菌生物学[M].北京:科学出版社.2001.
    [59]Thomas D.Brock.Thermophiles:General,Molecular,and Applied microbiology[M].a wiley-interscience publication John Wiley & Sons,Inc.New York.1986.
    [60]Macelory R D.Some comments on the evolution of extremophie[J],Biosystems.1974(6):74-75.
    [611 David R.Boone,Richard W.Castenholz.BERGEY's MANUAL OF Systematic bacteriology,2th ed.Volume one:The Archaea and the Deeply Branching and Phototrophic Bacteria[M].Springer.2001.
    [62]曹军卫,沈萍,李朝阳.嗜极微生物[M].武汉大学出版社。2004,1-3.
    [63]Blochl E,Rachel R,Burggraf S,et al.Pyrolobus fumarii,gen.and sp.nov.,represents a novel group of archaea,extending the upper temperature limit for life to 113℃[J].Extremophiles.1997,1(1):14-21.
    [64]Huber H,Michael J H,Rachel R,fuchs T,Wimmer V C & Stetter K O.A new phylum of archaea represented by a nanosized hyperthermophilic symbiont[J].Nature.2002,417:63-68.
    [65]Kazem Kashefi & Detek Lovley.Extending the Upper Temperature Limit for life [M].Science.2003:934.
    [66]郭春雷,彭谦.高温菌研究进展[J].生物学杂志,2003,20(4):1-3.
    [67]大岛太郎著,好热性细菌[M].北京:科学出版社,1983.1-43
    [68]Brierley C.L.,Brierley J.A.,《Can.J.Microbiol.》,1973,19:133-188.
    [69]Brock T.D.et al.,《Arch.Microbiol.》.1972,84:54-68.
    [70]le Roux N.W.,Wakerley D.S.,Hunt S.D.,《J.Gen.Microbiol.》,1977,100:197-201.
    [71]周洪波,曾伟民,李莹等.硫化矿高温生物浸出工艺研究和应用进展[J].金属矿山,2006,364(10)5-12.
    [72]Brierley C.L.,Murr L.E.,《Science》,1973,179:488-490.
    [73]Brierley C.L.,《Dev.Ind.Microbiol.》,1977,18:273-284.
    [74]Rubio A,Garcia Frutos F J.Bioleaching capacity of an extremely thermophilic culture for chalcopyritic materials[J].Minerals Engineering,2002,15:689-694.
    [75]Dew D W,Van buuren C,Mewan K.Bioleaching of base metal sulphide concentrate:A comparison of mesophile and thermophile bacterial cultures[C].Biohydrometallurgy and the Environment Toward the mining of the 21~(th)century.Amsterdam:Elsevier,1999.229-238.
    [76]Gerike M,Pinches A.Bioleaching of a chalcopyrite concentrate using an extremely thermophilic culture[J].Mineral Processing,2002,62:243-255.
    [77]Gomez E.Hydrometallurgy.1999,51(1)37-46.
    [78]Gomez E.Miner.Eng.1996,9(9)985-999.
    [79]McCready R.G.Progress in the bacterial leaching of metals in Canada.In:Norris P.R.,Kelly D.P.eds.Biohydrometallurgy.Kew Surrey:Science Technology letters,1988.177-195.
    [80]Rohwerder T.,Gehrke T.,Kinzler K.,et al.Bioleaching review part A:Progress in bioleaching:fundamentals and mechanismsof bacterial metal sulfide oxidation.Appl Microbiol Biotechnol,2003,63:239-248.
    [81]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].北京:冶金工业出版社,2003:18.
    [82]钟慧芳,陈秀珠,李雅芹等.一个嗜热嗜酸细菌的新属--硫球菌属[J].微生物学报.1982,22(1):1-7
    [83]李雅芹,徐毅,蔡文六等.嗜酸热硫球菌的一些古细菌特征[J].微生物学报,1988,28(2)109-114.
    [84]徐毅,李雅芹,蔡文六等.嗜酸热硫球菌细胞外被的生物化学特征[J].微生物学报,1988,28(3):221-225.
    [85]何正国,李雅芹,周培瑾等,极端嗜酸热古菌S5菌株的重新分类研究[J].微生物学报,2001,41(3)259-264.
    [86]李雅芹,钟慧芳,陈秀珠等.嗜酸热硫球菌(S-5)对硫化物的氧化[J].微生物学报,1987,23(3)271-276.
    [87]李雅芹,刘国振,钟慧芳等.热原体属的一个新种[J].微生物学报,1994,34(4):255-260.
    [88]李雅芹,何正国.一株中度嗜热嗜酸铁氧化细菌特性研究[J].微生物学报.2001,28(6):45-47.
    [89]赵月峰,方兆衍.极度嗜热菌Acidianus brierleyi浸出镍铜硫化矿精矿[J].过程工程学报,2003,3(2):161-164.
    [90]骆海朋,杨秀山.中度嗜热氧化硫细菌及中度嗜热氧化亚铁细菌在难处理铜精矿浸出中的应用[J].湿法冶金,2003,22(2)79-81.
    [91]石贤爱,李聪颖,林晖等.嗜热布氏酸菌对梅州黄铜矿的生物浸出过程特性[J].过程工程学报.2005,5(3)332-336.
    [92]李宏熙,董清海,苍大强等.高温浸矿菌Sulfolobus的生长及浸矿性能[J].北京科技 大学学报,2007,29(1)20-24.
    [93]郭养浩,林晖,孟春.嗜酸嗜热菌FD-LH对高矿浆浓度黄铜矿的生物氧化[J].福州大学学报(自然科学版)2007,35(1)133-136.
    [94]何正国,李雅芹,周培瑾.克隆高温元素硫氧化还原酶基因的引物[P].中国.公示日:2002.1.16.
    [95]何正国,李雅芹,周培瑾.一种高效表达高温元素硫氧化还原酶基因的方法[P].中国.公示日:2002.1.16.
    [96]徐晓春,孙雪南,阮仁满等.高温浸矿微生物的选育探索[J].稀有金属,2002,26(3)210-213.
    [97]Brierley C.L.,《CRC Critical Reviews in Microbiology》,1978,6(3):207-262.
    [98]周洪波,邱冠周,邬长斌等.嗜酸微生物生态学与矿物生物浸出技术[J].应用与环境生物学报,2005,11(6):784-788.
    [99]Amann R I,Ludwig W,Schleifer K H.Phylogenetic identification and in situ detection of individual microbiol cells without cultivation[J].Microbiol Rev,1995,59:143-169.
    [100]刘飞飞,周洪波,符波等.不同能源条件下中度嗜热嗜酸细菌多样性分析[J].微生物学报,2007,47(3):381-386.
    [101]王世梅,周立群.提高嗜酸氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法[J].环境科学学报,2005,25(10):1418-1420.
    [102]Gu X,Wong J W C.Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge[J].Environmental Science and Technology,2004,38(10):2934-2939.
    [103]Brierley C.L..Bacterial succession in bioheap leaching[J].Hydrometallurgy,2001,59:249-255.
    [104]Brierley J A,Brierley C.L.,Present and future commercial applications of biohydrometallurgy[J].Hydrometallurgy,2001,59:233-239.
    [105]邱冠周,刘学端,覃文庆等.一种基因芯片及利用该芯片鉴别高效浸矿菌株的方法[P].中国.公示日:2007.09.12.
    [106]Rebecca B.,Franzmann D.,et al.Moderate thermopHiles including "Ferroplasma cupricumulans" sp.nov,dominate an industrial-scale chalcocite heap bioleaching operation[J].Hydrometallurgy,2006,83:229-236.
    [107]Cecilia S.,Pedro A.,Galleguillos P.,et al.Molecular characterization of microbial populations in a low-arade copper ore bioleaching test heap[J].Hydrometallurgy,2005,80:241-253.
    [108]M.Dopson,E.B.Lindstrom.Analysis of Community Composition during Moderately Thermophilic Bioleaching of Pyrite,Arsenical Pyrite,and Chalcopyrite[J].Microbial Ecology,2004,48(4):19-28.
    [109]舒荣波,阮仁满,温健康.黄铜矿生物浸出中钝化现象研究进展[J].稀有金属,2006(30)3:395-399.
    [110]Parker A.,et al.An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite[J].Hydrometallurgy,2003,71:265.
    [111]Dutrizac J E..Elemental sulphur formation during the ferric sulphate leaching of chalcopyrite[J].Can.Metall Q,1989,28:337.
    [112]Craig Klauber,et al.Sulphur speciation of leaching chalcopyrite surface as determined by X-ray photoelectron spectroscopy[M].Int.J Miner.Process,2001,62:65.
    [113]Lazaro I.,Nicol M..The mechanism of the dissolution and passivation of chalcopyrite:an electrochemical study[C].In:Proceedings of the TMS Fall Extraction and Processing Conference,2003,13:405.
    [114]Parker A J,et al.Electrochemistry of the oxidative leaching of copper from chalcopyrite[J].Electroanal.Chem.,1997,118:305.
    [115]Smart R St C,et al.XPS of sulphide mineral surfaces:metaldeficient,polysulphides,defects and elemental sulphur[J].Surf.Interface Anal,1999,28:101.
    [116]Gomez E,et al.Study by SEM and EDS of chalcopyrite bioleaching using a new thermophilic bacteria[J].Minerals Engineering,1996,19:985.
    [117]Ahonen L,et al.Catalytic effects of silver in the microbiological leaching of finely ground chalcopyrite-containing ore materials in shake flasks chalcopyrite[J].Hydrometallurgy,1990,24:219.
    [118]Mier J L,et al.Influence of metallic ions in the bioleaching of chalcopyrite by Sulfolobus BC Experiments using pneumatically stirred reactors and massive samples[J].Minerals Engineering,1995,8:949.
    [119]Hugues P D,et al.Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture[J].Int.J.Miner.Process,2002,66:107.
    [120]David Dreisinger.Copper leaching from primary sulfides:options for biological and chemical extration of copper[A].STL Garruson,DE Rawlings and J Petersen.Proceeding of the 16~(th)International Biohydrometallurgy,Symposium[C].Cape Town,South Africa,2005.Xli.
    [121]张洪勋,郝春博,白志辉.嗜酸菌研究进展.微生物学杂志[J].2006,26(2):68-72.
    [122]李雅芹.嗜酸菌及其应用[J].微生物学通报,1998,25(3)170-172.
    [123]何正国,李雅芹,周培瑾.极端环境微生物[J].微生物学报,1999,26(6):452.
    [124]Edwards K J,Bond P L,Gihring T M,et al.An archaeal ironoxidizing extreme acidophile important in acid mine drainage[J].Science,2000,287:1796-1799.
    [125]Vossenberg J L C M,Dressen A J M.Bioenergetics and cytoplamic membanne stability of the extremely acidophilic,thermophilic archaeon Picrophilus oshimae[J].Extremophiles,1998,2:67-74.
    [126]Matin.A,Keeping a neutral cytoplasm:the bioenergetics of obligate acidophiles[J].FEMS Microbiol Rev,1990,75:307-318.
    [127]Dopson M,Lindstrom E B,Hallberg K B.ATP generation during reduced inorganic sulfur compound oxidation by Acidithiobacillus caldus is exclusively due to electron transport phosphorylation[J].Extremophiles,2002,6:123-129.
    [128]Noguchi,A.et al.,《Arch.Microbiol.》 1977,112:163-168.
    [129]Amelunxen,R.E.,Murddock,A.L.,《CRC Critical Reviews in Microbiology》,1978,6(4),348-393.
    [130]Galtier N,Lobry J R,J Mol Evol,1997,44:632-636.
    [131]Huber H,Stetter k O.FEBS Letters,1998,64:39-52.
    [132]郭春雷,成妮妮,刘明河等.高温菌16S rRNA与耐热性关系的初步研究[J].微生物学通报,2005,32(5):114-117.
    [133]郭春雷,彭谦.高温菌研究进展[J].生物学杂志,2003,20(4)1-3.
    [134]Jaenicke R.,Sremer R.Life at High Temperatures[M],Springer,The Procaryotes,2003
    [135]Daniela R M.,Cowanb D A.Biomolecular stability and life at hing temperatures[J],Cell Mol Life Sci.2000,57:250-264.
    [136]童雄,孙永贵.微生物浸出难浸黄铜矿的研究[J].矿产综合利用,1999,4(4)6-9.
    [137]李宏熙,邱冠周,胡岳华等.原电池效应对混合硫化矿细菌浸出的影响[J].中国有色金属学报,2003,13(5)1283-1287.
    [138]张英杰,杨显万.硫化矿细菌浸出机理[J].,有色金属,1997,49(4)39-43.
    [139]Murr L.and Berry V.K.《Hydrometallurgy》,1976(2):11-24.
    [140]Wyckoff R.W.G.,Dovldson F.D.,《GBF Conference Bacterial leaching》,Verlag.Chemie,Weinheim-New York,1977:67-84.
    [141]小西康裕,浅井悟,德重雅彦,等.好性酸·好热性细菌Acidianus brierleyi による黄铜矿の浸出[J].资源与素材.1999,115(5):585-590.
    [142]Y.Rodriguez.《Hydrometallurgy》 2003.71(1-2):37-66.
    [143]闫森,童雄.强化难处理硫化铜矿物微生物浸出过程的研究[J].国外金属矿选矿,2000,11:13-18.
    [144]邱冠周,柳建设,王淀佐.氧化亚铁硫杆菌生长过程铁的行为[J].中南工业大学学报,1998,29(3)226-228.
    [145]Foucher S.,Battaglia-Brunet F.,et aI.Evolution of the bacterial population during the batch bioleaching of a cobaltiferous pyrite in a suspended-solids bubble column and comparison with a mechanically agitated reactor[J].Hydrometallurgy,2003,71:5-12.
    [146]杨显万,邱定蕃.湿法冶金[M].北京:北京工业出版社,1997,282-366.
    [147]王利岩,低品位铜矿石资源的回收[J],矿冶工程,1992,12(4):70-72.
    [148]Acevedo F.Present and future of bioleaching in developing countries[J].EJB Electron J Biotechnol,2002,5(2):196.
    [149]Suzuki I.Microbial leaching of metals from sulfide minerals[J].Biotechnol Adv,2001,19:119.
    [150]Johnson D.B..Importance of microbial ecology in the development of new mineral technologies[J].Hydrometallurgy,2001,59:147-157.
    [151]柳建设,夏海波,王兆慧.德兴铜矿堆浸厂浸出率低的原因探讨[J].铜业工程,2004,1:23-26.
    [152]王涛,柴丽红,崔晓龙等.免培养法对-热泉细菌多样性的初步研究[J].微生物学报,2003,43(5)541-546.
    [153]肖琳,杨柳燕,尹大强等.环境微生物试验技术[M].北京:中国环境科学出版社,2004,174-179.
    [154]宫曼丽,任南琪,邢德峰.DGGE/TGGE技术及其在微生物分子生态学中的应用[J].微生物学报,2004,44(5):845-848.
    [155]Battaglia-Brunet F.,Clarens M.,et al.Monitoring of a pyrite-oxidizing bacterial population using DNA single-strand conformation polymer pH Hismand microscopic techniques.Application Microbiology Biotechnology[J],2002,60:206-211.
    [156]邢德峰,任南琪.应用DGGE研究微生物群落时的常见问题分析[J].微生物学报,2006,46(2)331-335
    [157]张在海,邱冠周,胡岳华等.嗜酸氧化亚铁硫杆菌的菌落分离研究[J].矿产综合利用,2002,1:19-23.
    [158]Knickerbocker C.,Nordstrom D.K.,Southam G..The role of "blebbing" in overcoming the hydrophobic barrier during biooxidation of elemental sulfur by Thiobacillus thiooxidans.Chemical Geology,2000,169:425-433.
    [159]Lin,C.C.,Casida L.E..GELRITE as a Gelling Agent in Media for the Growth of Thermophilic Microorganisms.Appl Environ Microbiol,1983,47(2):427-429.
    [160]Casamayor E.O.,Pedros-Alio C.,Muyzer G.,Amann R.,Microheterogeneity in 16S ribosomal DNA-defined bacterial populations from a stratified planktonic environment is related to temporal changes and to ecological adaptations.Applied and Environmental Microbiology,2002,68(4):1706-1714.
    [161]Muyzer G.,Brinkhoff T.,Nubel U.,Santegoeds C.,Schafer H.,Wawer C..Denaturing gradient gel electrophoresis(DGGE)in microbial ecology.Molecular Microbial Ecology Manual,1996,1-27.
    [162]Andreas T.,Pavel S.,Yehuda C.,Gerard M..Molecular Identification of Bacteria from a Coculture by Denaturing Gradient Gel Electrophoresis of 16S Ribosomal DNA Fragments as a Tool for Isolation in Pure Cultures.Applied and Environmental Microbiology,1996,62(11):4210-4215.
    [163]刘珍.化验员读本-化学分析上册[M].北京:化学工业出版社 1992,100-394.
    [164]南京大学编写组.无机及分析化学试验[M].北京:高等教育出版社 1998,105-166.
    [165]R.E.布坎南,N.E.吉本斯.伯杰细菌鉴定手册(第八版)[M].北京:科学出版社 1984,631-638.
    [166]闫森,童雄.强化难处理硫化铜矿物微生物浸出过程的研究[J].国外金属矿选矿,2000,11:13-18.
    [167]Ballester A.在细菌浸出中采用催化离子[J].Hydrometallurgy.1992,29(1/3)145-160
    [168]M.L.Blazquez,A.Alvarez,A.Ballester,F.Gonzalez and J.A.Munoz,Bioleaching behaviors of chalcopyrite in the presence of silver at 35℃ and 68℃.In:R.Amils,A.Ballester eds.Biohydrometallyrgy and the Environment Toward the Mining of the 21~(st)Century,Part A.Amsterdam.Lausanne.New York.Oxford.Shannon.Singapore.Tokyo:Elsevier,1999.137-147.
    [169]胡岳华,张在海,邱冠周等.细菌的氧化生理与其浸矿机理研究[J].矿冶工程,2004,24(2)24-26.
    [170]孙家寿,罗惠华,周菊容.铜精矿的硫酸熟化-催化氧化浸出工艺研究[J].国外金属矿选矿,2000,7:40-41.
    [171]王绍文,任美端,朱凤娟等.国产制霉菌素主要组分的抗真菌活性.中国抗生素杂志,1987,2:12-15.
    [172]罗海峰,齐鸿雁,薛凯等.在PCR-DGGE研究土壤微生物多样性中应用GC发卡结构的效应[J].生态学报,2003,23(10):2170-2175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700