用户名: 密码: 验证码:
新型光电振荡器及其在光载射频传输系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波振荡器作为微波信号源、高速通信参考时钟信号以及信号检测的频率标准,是通信系统、导航、雷达、测试仪器、电子对抗等射频应用领域的关键器件。光电振荡器(optoelectronic oscillator,OEO)采用光电反馈环路与光子储能的物理机制,将激光能量转换为微波信号能量,摆脱了传统微波振荡器随频率升高相位噪声显著升高的限制。OEO由于可以取得很低的相位噪声特性,在未来涉及微波/毫米波系统的许多重要领域具有广阔的应用前景。深入开展新型光电振荡器的相关理论与关键技术的研究还具有重要的科学意义与理论价值。
     本文对新型光电振荡器技术进行了深入研究。首先研究了OEO的工作原理,提出了OEO经典理论模型的一些修正。在此基础上,针对高频毫米波信号的产生和宽带可调谐OEO的实现,提出了一些创新的结构方案与关键技术,并进行了相关系统结构的实验验证。最后,结合未来宽带泛在接入网络中的光载射频传输(RoF)系统,研究实现了一种基于OEO的矢量信号上变频技术;并设计了一种适合于未来宽带泛在接入的毫米波RoF接入方案,进行了实验验证。论文的主要创新点和学术贡献如下:
     1.研究了OEO的工作原理,通过分析OEO经典理论模型(Yao-Maleki Model),提出了对Yao-Maleki理论模型的修正,通过实验验证了微波放大器非线性会限制OEO振荡功率,频率相关的闪烁噪声会提高OEO近载波噪声的观点。
     2.利用马赫增德尔调制器(MZM)的非线性实现了高频毫米波信号的产生。首先提出了基于双电极马赫增德尔调制器(DEMZM)来实现OEO二倍频信号输出,具有结构简单、工作稳定、倍频信号质量高等优点。为了提高倍频次数,提出一种基于双平行马赫增德尔调制器(DPMZM)来实现OEO六倍频信号输出的方法,通过仿真证实了方案的可行性。最后,我们还实现了一种利用有理数谐波锁模光纤激光器产生四倍频60GHz信号的方案,可以提高外调制方法的倍频效率。
     3.在研究OEO频率调谐机理的基础上,提出了多种OEO宽带调谐的系统结构方案,丰富和完善了OEO灵活调谐的物理机制。论文首先提出了一种利用受激布里渊散射来实现宽带可调谐OEO的方法,并且通过载波相移双边带调制的方式,同时实现了OEO频率可调谐和倍频输出功能,其中系统固有的布里渊噪声限制了OEO的相位噪声性能。在此基础上,提出另一种基于窄带相移光纤光栅滤波和调节激光波长的方案。在单边带调制器的协助下,带有窄带透射峰的相移光纤光栅等效为一个高Q滤波器来选择振荡频率。通过调节激光器波长,实现了x波段的宽带可调谐输出。该方法具有结构简单、调节速度快等优点,并有可能实现几十GHz的频率调节范围。为了消除使用昂贵的可调谐激光器,论文提出了第三种方案。通过构建一个色散引起的复合腔微波光子滤波器,基于它来实现一种电压控制的、调谐范围达到数GHz的OEO。该方案只需要一个固定频率的激光器、具有电气友好的特性,其短环结构也适合光子集成。
     4.论文提出并实现了一种基于OEO来实现RoF系统中矢量信号上变频的方案。该方案不需要任何的电混频器和外部本振信号,避免了传统RoF系统中的两级调制过程;通过调节DPMZM的直流偏置点还可以轻易对RoF系统中色散引起的功率衰落进行预补偿。该方案结合了低噪声信号的产生和矢量信号的调制,拓展了OEO的应用。论文最后,提出了一个简单、有效的毫米波RoF接入方案,融合了毫米波信号产生,基站简化,抗色散性能、双向链路设计等关键技术,进行了实验验证。
Microwave oscillators are widely used as microwave signal source, clocks in high-speed communication and frequency standards in signal detection. Microwave oscillators are critical components in radio frequency applications such as communication system, navigation, radar, instruments, and electronic countermeasures. Based on electro-optical feedback technique and photonic energy storage mechanism, optoelectronic oscillators (OEOs) convert light energy to microwave signal and overcome the limitation of traditional microwave oscillator in phase noise performance. With the ability of generating low phase noise high frequency signals in both electrical and optical domain, the OEOs have wide applications in many important areas, especially for the microwave/millimeter-wave systems.The study in related theory and key technology of the novel OEO is of scientific significance and great theoretical value.
     In this dissertation, the novel OEO and its application in RoF are studied. At first, the operation principle of OEO is analyzed and several modifications of the classical theoretical model are proposed. Then, the generation of mm-wave signals and realization of wideband frequency-tunable OEOs are studied. Several novel schemes and key technologies are proposed and validated by experiments. At last, photonic microwave up-conversion of vector signals based on a single optoelectronic oscillator for radio over fiber (RoF) system is proposed and demonstrated; a mm-wave RoF system scheme is proposed and demonstrated for the broadband and ubiquitous access network in the near future. The major innovations and contributions are as follows:
     1. The operation principle of OEO is analyzed. After analyzing the classical theoretical model of OEO, two main modifications to the model are proposed and demonstrated. The first one is that the oscillation power of OEO may be limited by the gain saturation of microwave amplifier. The second one is that the close-in phase noise of OEO will be increased by the frequency dependent flicker noise.
     2. By using the nonlinearity of the Mach-Zehnder Modulator (MZM), generation of mm-wave signal is achieved. At first, a frequency-doubling OEO based on a dual electrode MZM (DEMZM) is proposed and demonstrated. The approach features high stability, simple structure and high signal quality. To further increase the frequency multiply times, a frequency-sextupling OEO based on a DPMZM is proposed and validated by simulation. At last, photonic generation of60GHz mm-wave by frequency quadrupling based on a mode-locking SOA fiber ring laser with a low modulation depth MZM is proposed, the frequency-multiplying efficiency can be improved.
     3. Based on the study on frequency-tunable mechanism of OEO, several novel wideband frequency-tunable OEOs are proposed and the flexible tuning mechanisms of the OEO are improved. At first, a frequency-tunable OEO based on stimulated Brillouin scattering (SBS) and carrier phase-shifted double sideband (CPS-DSB) modulation is proposed and demonstrated. The scheme achieves frequency-doubling and frequency tunability simultaneously for an OEO. However, the phase noise performance of OEO is limited by the Brillouin noise. Therefore, another wideband frequency-tunable OEO based on a narrowband phase-shifted FBG and wavelength tuning of laser is proposed. With assistance of an optical single sideband modulator, the PSFBG with a narrow transmission peak acts like an equivalent high-Q microwave filter to select the oscillation frequency. Frequency tunability of the OEO can be simply realized by tuning the wavelength of a laser source. An X band optoelectronic oscillating signal with frequency tunable at wide range from8.4to11.8GHz is generated. The approach features simple structure, high tuning speed and may realize a tunable range of dozens of GHz. To eliminate the expensive tunable laser, the third scheme is proposed. Based on a dispersion-induced microwave photonic filter (MPF), a GHz tunable range and voltage-controlled OEO is achieved. In this proposal, only a wavelength-fixed laser is required and the frequency tunability is realized by an electricity-friendly method. Besides, due to its short loop structure, it may find potential to integrate the discrete components of the proposed OEO into a chip.
     4. Photonic microwave up-conversion of vector signals based on a single optoelectronic oscillator with dispersion compensation for RoF system is proposed and demonstrated. The OEO incorporating DPMZM simultaneously works as a high-quality local oscillator (LO) and a broadband mixer to directly frequency up-converts vector signals. The common two-stage modulation in RoF system is avoided. Besides, the dispersion-induced power fading for up-conversion signal can be compensated by properly setting one DC bias of the DPMZM. The proposed approach combines the function of low phase noise microwave generation and vector signal modulation, develops the application of OEO. In the end, a simple and effective bidirectional mm-wave RoF system scenario for access network is proposed and demonstrated, involving the key technologies such as mm-wave generation, base station simplify, dispersion compensation, bidirectional transmission and so on.
引文
[1]J. Capmany, D. Novak, "Microwave photonics combines two worlds," Nature Photonics,2007,1(6):319-330.
    [2]A. J. Seeds, K. J. Williams, "Microwave photonics," Journal of Lightwave Technology,2006,24(12):4628-4641.
    [3]C. H. Lee. Microwave Photonics. New York:CRC Press,2007.
    [4]A. Madjar, T. Berceli. Microwave generation by optical techniques-A review: Proceedings of the 36th European Microwave Conference, Manchester UK,2006.
    [5]X. S. Yao, L. Maleki, "Optoelectronic microwave oscillator," Journal of the Optical Society of America B-Optical Physics,1996,13(8):1725-1735.
    [6]M. Sauer. A. Kobyakov, J. George, "Radio over fiber for picocellular network architectures," Journal of Lightwave Technology,2007,25(11):3301-3320.
    [7]J. Capmany, B. Ortega, D. Pastor, "A tutorial on microwave photonic filters," Journal of Lightwave Technology,2006,24(1):201-229.
    [8]G. C. Valley. Photonic analog-to-digital converters:A tutorial:Optical Fiber Communication, (OFC 2009),2009.
    [9]L. V. T. Nguyen, D. B. Hunter. "A photonic technique for microwave frequency measurement." IEEE Photonics Technology Letters,2006,18(10):1188-1190.
    [10]J. D. Shin, B. S. Lee, B. G. Kim, "Optical true time-delay feeder for X-band phased array antennas composed of 2x2 optical MEMS switches and fiber delay lines," IEEE Photonics Technology Letters,2004,16(5):1364-1366.
    [11]J. P. Yao, "Microwave photonics," Journal of Lightwave Technology,2009,27(3): 314-335.
    [12]T. Berceli, P. Herczfeld, "Microwave photonics-A historical perspective," IEEE Transactions on Microwave Theory and Techniques,2010,58(11):2992-3000.
    [13]L. A. Coldren. Photonic integrated circuits for microwave photonics:IEEE Topical Meeting on Microwave Photonics (MWP2010),2010.
    [14]U. Gliese, T. N. Nielsen, M. Bruun, et al, "A wide-band heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers," IEEE Photonics Technology Letters,1992,4(8):936-938.
    [15]L. A. Johansson, A. J. Seeds, "Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop," IEEE Photonics Technology Letters,2000,12(6):690-692.
    [16]D. Wake, C. R. Lima, P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,' IEEE Transactions on Microwave Theory and Techniques,1995,43(9): 2270-2276.
    [17]X. F. Chen, Z. C. Deng, J. P. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Transactions on Microwave Theory and Techniques,2006,54(2):804-809.
    [18]S. L. Pan, J. P. Yao, "A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation," Optics Express,2009,17(7):5414-5419.
    [19]J. J. O'Reilly, P. M. Lane, R. Heidemann, et al, "Optical generation of very narrow linewidth millimetre wave signals," Electronics Letters,1992,28(25): 2309-2311.
    [20]J. J. O'Reilly, P. M. Lane, "Fibre-supported optical generation and delivery of 60 GHz signals," Electronics Letters,1994,30(16):1329-1330.
    [21]G. H. Qi, J. P. Yao, J. Seregelyi, et al, "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Transactions on Microwave Theory and Techniques, 2005,53(10):3090-3097.
    [22]X. J. Yin, A. J. Wen, Y. Chen, et al, "Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators," Journal of Modern Optics,2011,58(8):665-673.
    [23]C. C. Renaud, L. Ponnampalam, F. Pozzi, et al. Photonically enabled communication systems beyond 1000 GHz (Invited Paper):2008 International Topical Meetings on Microwave Photonics and 2008 Asia-Pacific Microwave Photonics Conference,2008.
    [24]A. Khanna, "Microwave oscillators:The state of the technology," Microwave Journal.2006.49(4):22-28.
    [25]O. Llopis, G. Cibiel. Phase noise metrology and modeling of microwave transistors applications to the design of state of the art dielectric resonator oscillators:SPIE's First International Symposium on Fluctuations and Noise, France,2003.
    [26]M. Kaba, H. W. Li, A. S. Daryoush, et al, "Improving thermal stability of opto-electronic oscillators," IEEE Microwave Magazine,2006,7(4):38-47.
    [27]D. A. Howe, A. Hati. Low-noise X-band oscillator and amplifier technologies: Comparison and status:Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, New York,2005.
    [28]江阳.光电振荡器与参量放大的性能及应用研究[学位论文].天津大学,2008.
    [29]C. W. Nelson, A. Hati, D. A. Howe, et al. Microwave optoelectronic oscillator with optical gain:IEEE International Frequency Control Symposium, New York, 2007.
    [30]D. Eliyahu, D. Seidel, L. Maleki. Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system: 2008 IEEE International Frequency Control Symposium, New York,2008.
    [31]C. W. Nelson, A. Hati, D. A. Howe, "Relative intensity noise suppression for RF photonic links," IEEE Photonics Technology Letters,2008,20(18):1542-1544.
    [32]J. Hong, C. Yang, "Effects of the biasing voltage of modulator on the phase noise of opto-electronic oscillator," Microwave and Optical Technology Letters,2012, 54(3):689-692.
    [33]P. S. Devgan, V. J. Urick, J. F. Diehl, et al, "Improvement in the phase noise of a 10 GHz optoelectronic oscillator using all-photonic gain," Journal of Lightwave Technology,2009,27(15):3189-3193.
    [34]D. Eliyahu, D. Seidel, L. Maleki, "RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator," IEEE Transactions on Microwave Theory and Techniques,2008,56(2):449-456.
    [35]A. A. Savchenkov, V. S. Ilchenko, J. Byrd, et al. Whispering-gallery mode based opto-electronic oscillators:2010 IEEE International Frequency Control Symposium,2010.
    [36]I. Ozdur, M. Akbulut, N. Hoghooghi, et al, "Optoelectronic loop design with 1000 finesse Fabry-Perot etalon," Optics Letters,2010,35(6):799-801.
    [37]D. Strekalov, D. Aveline, N. Yu, et al, "Stabilizing an optoelectronic microwave oscillator with photonic filters," Journal of Lightwave Technology,2003,21(12): 3052-3061.
    [38]X. S. Yao, L. Maleki, "Multiloop optoelectronic oscillator," IEEE Journal of Quantum Electronics,2000,36(1):79-84.
    [39]K. H. Lee, J. Y. Kim, W. Y. Choi, "A 30-GHz self-injection-locked oscillator having a long optical delay line for phase-noise reduction," IEEE Photonics Technology Letters,2007,19(24):1982-1984.
    [40]Y. Jiang, J. L. Yu, Y. T. Wang, et al, "An optical domain combined dual-loop optoelectronic oscillator," IEEE Photonics Technology Letters,2007,19(11): 807-809.
    [41]E. Shumakher, G. Eisenstein, "A novel multiloop optoelectronic oscillator," IEEE Photonics Technology Letters,2008,20(22):1881-1883.
    [42]W. M. Zhou, G. Blasche, "Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level," IEEE Transactions on Microwave Theory and Techniques,2005,53(3):929-933.
    [43]D. Eliyahu, K. Sariri, J. Taylor, et al, "Opto-electronic oscillator with improved phase noise and frequency stability," Photonic Integrated Systems,2003,4998: 139-147.
    [44]D. Eliyahu, K. Sariri, M. Kamran, et al. Improving short and long term frequency stability of the opto-electronic oscillator:Proceedings of The 2002 IEEE International Frequency Control Symposium & PDA Exhibition,2002.
    [45]W. H. Tseng, K. M. Feng, "Enhancing long-term stability of the optoelectronic oscillator with a probe-injected fiber delay monitoring mechanism," Optics Express,20\2,20(2):1597-1607.
    [46]S. H. Huang, L. Maleki, T. Le. A 10 GHz optoelectronic oscillator with continuous frequency tunability and low phase noise:Proceedings of the 2001 IEEE International Frequency Control Symposium and PDA Exhibition, New York,2001.
    [47]S. Poinsot, H. Porte, J. P. Goedgebuer, et al, "Continuous radio-frequency tuning of an optoelectronic oscillator with dispersive feedback," Optics Letters,2002, 27(15):1300-1302.
    [48]J. Yu, X. S. Yao, L. Maleki, "Compact optoelectronic oscillator with ultra-low phase noise performance," Electronics Letters,1999,35(18):1554-1555.
    [49]A. Madjar, P. R. Herczfeld, W. D. Jemison, et al. Optoelectronic oscillator experiment utilizing a self mode-locked Nd:YVO4/MgO:LiNbO3 microchip laser, MWP meeting, Nefertiti Workshop,2003.
    [50]C. Gunn, D. Guckenberger, T. Pinguet, et al. A low phase noise lOGHz optoelectronic RF oscillator implemented using CMOS photonics:IEEE International Solid-State Circuits Conference,2007.
    [51]D. K. Yoo, Y. F. Li, S. M. Goldwasser, et al, "Coupled optoelectronic oscillation via fundamental mode-locking in a composite-cavity electro-optic microchip laser," Journal of Lightwave Technology,2008,26(7):824-831.
    [52]B. Romeira, J. M. L. Figueiredo, T. J. Slight, et al, "Nonlinear dynamics of resonant tunneling optoelectronic circuits for wireless/optical interfaces," IEEE Journal of Quantum Electronics,2009,45(11):1436-1445.
    [53]B. Romeira, J. M. L. Figueiredo, C. N. Ironside, et al, "Optical control of a resonant tunneling diode microwave-photonic oscillator," IEEE Photonics Technology Letters,2010,22(21):1610-1612.
    [54]B. Romeira, J. Figueiredo. Optoelectronic oscillators for communication systems: International Federation for Information Processing 2010, Berlin,2010.
    [55]C. N. Ironside, M. Haji, L. P. Hou, et al. Review of optoelectronic oscillators based on modelocked lasers and resonant tunneling diode optoelectronics: International Conference on Applications of Optics and Photonics,2011.
    [56]L. Maleki, "SOURCES The optoelectronic oscillator," Nature Photonics,2011, 5(12):728-730.
    [57]B. Romeira, K. Seunarine, C. N. Ironside, et al, "Self-synchronized optoelectronic oscillator based on an RTD photo-detector and a laser diode," IEEE Photonics Technology Letters,2011,23(16).
    [58]A. A. Savchenkov, W. Liang, A. B. Matsko, et al, "Tunable optical single-sideband modulator with complete sideband suppression," Optics Letters, 2009,34(9):1300-1302.
    [59]J. Lasri, P. Devgan, R. Y. Tang, et al, "Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10GHz or higher) optical pulses," Optics Express,2003,11(12):1430-1435.
    [60]Y. K. Chembo, A. Hmima, P. A. Lacourt, et al, "Generation of ultralow jitter optical pulses using optoelectronic oscillators with time-lens soliton-assisted compression," Journal of Lightwave Technology,2009,27(22):5160-5167.
    [61]E. Salik, N. Yu, L. Maleki, "An ultralow phase noise coupled optoelectronic oscillator," IEEE Photonics Technology Letters,2007,19(6):444-446.
    [62]X. S. Yao, G. Lutes, "A high-speed photonic clock and carrier recovery device,' IEEE Photonics Technology Letters,1996,8(5):688-690.
    [63]F. Cisternino, R. Girardi, R. Calvani, et al, "A regenerative prescaled clock recovery for high-bit-rate OTDM systems." Optical Fiber Technology,1999,5(3): 260-274.
    [64]L. Huo, Y. Dong, C. Y. Lou, et al, "Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,' IEEE Photonics Technology Letters,2003,15(7):981-983.
    [65]J. Lasri, P. Devgan, R. Y. Tang, et al, "Ultralow timing jitter 40-Gb/s clock recovery using a self-starting optoelectronic oscillator," IEEE Photonics Technology Letters,2004,16(1):263-265.
    [66]H. Tsuchida, "160-Gb/s optical clock recovery using a regeneratively mode-locked laser diode," IEEE Photonics Technology Letters,2006,18(16): 1687-1689.
    [67]S. L. Pan, J. P. Yao, "Optical clock recovery using a polarization-modulator-based frequency-doubling optoelectronic oscillator," Journal of Lightwave Technology,2009,27(16):3531-3539.
    [68]S. L. Pan, Y. Jianping, "Multichannel optical signal processing in NRZ systems based on a frequency-doubling optoelectronic oscillator," IEEE Journal of Selected Topics in Quantum Electronics,2010,16(5):1460-1468.
    [69]P. S. Devgan, M. W. Pruessner, V. J. Urick, et al, "Detecting low-power RF signals using a multimode optoelectronic oscillator and integrated optical filter," IEEE Photonics Technology Letters,2010,22(3):152-154.
    [70]M. H. Shin, P. Kumar, "Optical microwave frequency up-conversion via a frequency-doubling optoelectronic oscillator," IEEE Photonics Technology Letters,2007,19(21):1726-1728.
    [71]P. Zhou, Z. Z. Tang, S. L. Pan, et al, "Photonic microwave up-conversion using optoelectronic oscillator based on polarisation modulator," Electronics Letters, 2012,48(5):271-272.
    [72]D. Zhu, S. L. Pan, S. H. Cai, et al, "High-performance photonic microwave downconverter based on a frequency-doubling optoelectronic oscillator," Journal of Lightwave Technology,2012,30(18):3036-3042.
    [73]L. D. Nguyen, K. Nakatani, B. Journet, "Refractive index measurement by Using an optoelectronic oscillator," IEEE Photonics Technology Letters,2010,22(12): 857-859.
    [74]A. B. Matsko, D. Strekalov, L. Maleki, "Magnetometer based on the opto-electronic microwave oscillator," Optics communications,2005,247(1-3): 141-148.
    [75]Z. Jia, J. Yu, G. Ellinas, et al, "Key enabling technologies for optical-wireless networks:Optical millimeter-wave generation, wavelength reuse, and architecture," Journal of Lightwave Technology,2007,25(11):3452-3471.
    [76]D. Wake, A. Nkansah, N. J. Gomes, "Radio over fiber link design for next generation wireless systems," Journal of Lightwave Technology,2010,28(16): 2456-2464.
    [77]A. J. Seeds, T. Ismail, "Broadband access using wireless over multimode fiber systems," Journal of Lightwave Technology,2010,28(16):2430-2435.
    [78]C. Lim, A. Nirmalathas, M. Bakaul, et al, "Fiber-wireless networks and subsystem technologies," Journal of Lightwave Technology,2010,28(4): 390-405.
    [79]昌庆江Radio over Fiber宽带无线接入网络的关键技术研究[学位论文].上海交通大学,2009.
    [80]L. Chen, Y. F. Shao, X. Y. Lei, et al, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photonics Technology Letters,2007,19(6):387-389.
    [81]Y. Jianjun, J. Zhensheng, W. Ting, et al, "A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection," IEEE Photonics Technology Letters,2007, 19(3):140-142.
    [82]T. T. Pham, X. B. Yu, T. B. Gibbon, et al, "A WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation," IEEE Photonics Journal,2011,3(1):13-19.
    [83]M. Lv, A. Y. Yang, Y. Hua, et al, "Simultaneous modulation and transmission of 10-Gb/s baseband and 60-GHz microwave signals in a radio-over-fiber system," Optics Communications,2010,283(21):4203-4207.
    [84]W. H. Lehr, J. M. Chapin, "On the convergence of wired and wireless access network architectures," Information Economics and Policy,2010,22(1):33-41.
    [85]Y. Y. Won, H. S. Kim, Y. H. Son, et al, "Full colorless WDM-radio over fiber access network supporting simultaneous transmission of millimeter-wave band and baseband gigabit signals by sideband routing," Journal of Lightwave Technology,2010,28(16):2213-2218.
    [86]L. Xu, C. W. Chow, H. K. Tsang, "Bidirectional colorless wired and wireless WDM-PON with improved dispersion tolerance for radio over fiber," Optics Communications,2011,284:3518-3521.
    [87]G. K. Chang, A. Chowdhury, Z. S. Jia, et al, "Key technologies of WDM-PON for future converged optical broadband access networks [invited]," IEEE/OSA Journal of Optical Communications and Networking,2009,1:C35-C50.
    [88]P. T. Shih, C. T. Lin, W. Jiang Jr, et al, "Transmission of 20-Gb/s OFDM signals occupying 7-GHz license-free band at 60 GHz using a RoF system employing frequency sextupling optical up-conversion," Optics Express,2010,18(12): 12748-12755.
    [89]H. Chi, J. P. Yao, "Frequency quadrupling and upconversion in a radio over fiber link," Journal of Lightwave Technology,2008,26(15):2706-2711.
    [90]G. H. Smith, D. Novak, Z. Ahmed, "Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators," IEEE Transactions on Microwave Theory and Techniques,1997,45(8):1410-1415.
    [91]J. Y. Zhang, A. N. Hone, T. E. Darcie, "Limitation due to signal-clipping in linearized microwave-photonic links," IEEE Photonics Technology Letters,2007, 19(14):1033-1035.
    [92]G. Zhang, X. Zheng, S. Li, et al, "Postcompensation for nonlinearity of Mach--Zehnder modulator in radio-over-fiber system based on second-order optical sideband processing," Optics Letters,2012,37(5):806-808.
    [93]B. Hraimel, X. P. Zhang, Y. Q. Pei, et al, "Optical single-sideband modulation with tunable optical carrier to sideband ratio in radio over fiber systems," Journal of Lightwave Technology,2011,29(5):775-781.
    [94]H. C. Ji, H. Kim, Y. C. Chung. Cost-effective radio-over-fiber systems employing phase-modulated downlink and intensity-modulated uplink:2009 Conference on Optical Fiber Communication, New York,2009.
    [95]J. J. Yu, Z. S. Jia, L. L. Yi, et al, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photonics Technology Letters, 2006,18(1):265-267.
    [96]H. Louchet, K. Kuzmin, A. Richter, "Efficient BER estimation for electrical QAM signal in radio-over-fiber transmission," IEEE Photonics Technology Letters,2008,20(2):144-146.
    [97]Z. Cao, F. Li, C. M. Okonkwo, et al, "Synchronized signaling delivery for broadband 60 GHz in-building optical wireless network based on digital frequency division multiplexing and digital Nyquist shaping," Optics Express, 2013,21(1):270-275.
    [98]A. J. Seeds, A. A. A. Desalles, "Optical control of microwave semiconductor-devices," IEEE Transactions on Microwave Theory and Techniques,1990,38(5):577-585.
    [99]D. B. Leeson, "A simple model of feedback oscillator noise spectrum," Proceedings of the Institute of Electrical and Electronics Engineers,1966,54(2): 329-330.
    [100]E. Salik, N. Yu, L. Maleki, et al.Dual photonic-delay line cross correlation method for phase noise measurement:Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition,2005.2005.
    [101]I. Ozdur, D. Mandridis, N. Hoghooghi, et al, "Low noise optically tunable opto-electronic oscillator with Fabry-Perot etalon," Journal of Lightwave Technology,2010,28(21):3100-3106.
    [102]D. Lu, X. F. Zhao, C. Y. Lou, et al, "Synchronized clock multiplication through optical subharmonic injection locking of an optoelectronic oscillator," Optics Communications,2011,284(12):2742-2746.
    [103]M. Shin, P. Kumar. Millimeter-wave generation via frequency quadrupling in an optically-injected optoelectronic oscillator:Optical Fiber Communication and the National Fiber Optic Engineers Conference,2007.
    [104]L. Wang, N. Zhu, W. Li, et al, "A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach-Zehnder modulator and a chirped fiber Bragg grating," IEEE Photonics Technology Letters,2011,23(22):1670-1688.
    [105]S. L. Pan, J. P. Yao, "A frequency-doubling optoelectronic oscillator using a polarization modulator," IEEE Photonics Technology Letters,2009,21(13): 929-931.
    [106]M. Shin, V. S. Grigoryan, P. Kumar, "Frequency-doubling optoelectronic oscillator for generating high-frequency microwave signals with low phase noise," Electronics Letters,2007,43(4):242-244.
    [107]Y. Jiang, J. Yu, H. Hu, et al, "Phase-modulator-based optoelectronic oscillator for generating short optical pulse and microwave signal," Optical Engineering, 2007,46:90502.
    [108]T. Sakamoto, T. Kawanishi, M. Izutsu, "Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation," Optics Letters,2006,31(6):811-813.
    [109]L. N. Binh, "Lithium niobate optical modulators:Devices and applications," Journal of Crystal Growth,2006,288(1):180-187.
    [110]T. Kawanishi, T. Sakamoto, M. Izutsu, "High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect," IEEE Journal of Selected Topics in Quantum Electronics,2007,13(1):79-91.
    [111]史培明.基于MZ集成调制器无光滤波产生高质量毫米波信号的研究[学位论文].北京邮电大学,2011.
    [112]J. Wang, F. Zeng, J. P. Yao, "All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion," IEEE Photonics Technology Letters,2005,17(10):2176-2178.
    [113]M. G. Larrode, A. M. J. Koonen, J. J. V. Olmos, et al, "Microwave signal generation and transmission based on optical frequency multiplication with a polarization interferometer," Journal of Lightwave Technology,2007,25(6): 1372-1378.
    [114]B. Yang, X. F. Jin. A novel frequency-doubling Brillouin optoelectronic oscillator:IEEE International Topical Meeting on Microwave Photonics (MWP2012), Noordwijk, The Netherland,2012.
    [115]B. Yang, X. F. Jin, H. Chi, et al, "Optically tunable frequency-doubling brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation," IEEE Photonics Technology Letters,2012,24(12):1051-1053.
    [116]F. Zhang, X. F. Jin, X. M. Zhang, et al, "Fibre-optic comb filter with tunable central wavelength and channel isolation at sub-microsecond speed," Electronics Letters,2010,46(1):71-73.
    [117]N. Onodera. A. J. Lowery, L. Zhai, et al, "Frequency multiplication in actively mode-locked semiconductor lasers," Applied Physics Letters,1993,62(12): 1329-1331.
    [118]C. M. Wu, N. K. Dutta, "High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser," IEEE Journal of Quantum Electronics,2000,36(2):145-150.
    [119]Z. Deng, J. P. Yao, "Photonic generation of microwave signal using a rational harmonic mode-locked fiber ring laser," IEEE Transactions on Microwave Theory and Techniques,2006,54(2):763-767.
    [120]A. P. S. Khanna, J. Buenrostro.2-22 GHz low phase noise silicon bipolar YIG tuned oscillator using composite feedback:IEEE MTT-S International Microwave Symposium Digest,1992.
    [121]V. R. Supradeepa, C. M. Long, R. Wu, et al, "Comb-based radiofrequency photonic filters with rapid tunability and high selectivity," Nature Photonics, 2012,6(3):186-194.
    [122]E. Chan, R. A. Minasian, "Novel coherence-free RF/microwave photonic bandpass filter," IEEE Photonics Technology Letters,2009,21(4):197-199.
    [123]X. Yi, R. A. Minasian, "Microwave photonic filter with single bandpass response," Electronics letters,2009,45(7):362-363.
    [124]R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Transactions on Microwave Theory and Techniques,2006,54(2):832-846.
    [125]M. Li, W. Li, J. Yao, "Tunable Optoelectronic Oscillator Incorporating a High-Q Spectrum-Sliced Photonic Microwave Transversal Filter," Photonics Technology Letters, IEEE,2012,24(14):1251-1253.
    [126]Z. Z. Tang, S. L. Pan, D. Zhu, et al, "Tunable optoelectronic oscillator based on a polarization modulator and a chirped FBG," IEEE Photonics Technology Letters, 2012,24(17).
    [127]B. Yang, X. F. Jin, X. Zhang, et al, "A wideband frequency-tunable optoelectronic oscillator based on a narrowband phase-shifted FBG and wavelength tuning of laser," IEEE Photonics Technology Letters,2012,24(1): 73-75.
    [128]S. Fedderwitz, A. Stohr, S. Babiel, et al, "Optoelectronic K-band oscillator with gigahertz tuning range and low phase noise," IEEE Photonics Technology Letters, 2010,22(20):1497-1499.
    [129]W. Z. Li, J. P. Yao, "An optically tunable optoelectronic oscillator," Journal of Lightwave Technology,2010,28(18):2640-2645.
    [130]S. L. Pan, J. P. Yao, "Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection," Optics Letters,2010,35(11):1911-1913.
    [131]A. A. Savchenkov, V. S. Ilchenko, W. Liang, et al, "Voltage-controlled photonic oscillator," Optics Letters,2010,35(10):1572-1574.
    [132]E. Shumakher, S. O. Duill, G. Eisenstein, "Optoelectronic oscillator tunable by an SOA based slow light element," Journal of Lightwave Technology,2009, 27(18):4063-4068.
    [133]X. Bao, L. Chen, "Recent progress in Brillouin scattering based fiber sensors," Sensors,2011,11(4):4152-4187.
    [134]A. Loayssa, D. Benito, M. Jos E Garde, "Applications of optical carrier Brillouin processing to microwave photonics," Optical Fiber Technology,2002,8(1): 24-42.
    [135]沈一春.受激布里渊散射在RoF系统中的应用研究[学位论文].浙江大学,2005.
    [136]R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin-scattering," Applied Optics,1972, 11(11):2489.
    [137]R. Kashyap, P. F. Mckee, D. Armes, "UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks," Electronics Letters,1994,30(23):1977-1978.
    [138]Y. T. Dai, X. F. Chen, D. J. Jiang, et al, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photonics Technology Letters,2004,16(10):2284-2286.
    [139]倪娟.光纤光栅在微波光子学中的应用[学位论文].浙江大学,2011.
    [140]Y. Painchaud, M. Aub E, G. Brochu, et al. Ultra-narrowband notch filtering with highly resonant fiber Bragg gratings:Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. Optical Society of America,2010.
    [141]S. Pan, D. Zhu, D. Ben, "Tunable frequency-quadrupling dual-loop optoelectronic oscillator," IEEE Photonics Technology Letters,2012,24(3): 194-196.
    [142]Z. Z. Tang, S. L. Pan, D. Zhu, et al, "Tunable optoelectronic oscillator based on a polarization modulator and a chirped FBG," IEEE Photonics Technology Letters, 2012,24(17):1487-1489.
    [143]K. Bucket, M. Moeneclaey, "Effect of random carrier phase and timing errors on the detection of narrowband M-PSK and bandlimited DS/SS M-PSK signals," IEEE Transactions on Communications,1995,43(234):1260-1263.
    [144]Y. K. Seo, C. S. Choi, W. Y. Choi, "All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers," IEEE Photonics Technology Letters,2002,14(10):1448-1450.
    [145]H. J. Kim, J. I. Song, "Photonic frequency upconversion technique using electro-absorption modulator for radio-over-fibre applications," Electronics Letters,2010,46(22):1512-1513.
    [146]X. S. Yao, L. Maleki, "Optoelectronic oscillator for photonic systems," IEEE Journal of Quantum Electronics,1996,32(7):1141-1149.
    [147]D. Zhu, S. F. Liu, D. Ben, et al, "Frequency-quadrupling optoelectronic oscillator for multichannel upconversion," IEEE Photonics Technology Letters, 2013,25(5):426-429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700