用户名: 密码: 验证码:
阿尔泰造山带晚古生代花岗岩年代学、成因及其地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔泰造山带位于世界上最典型的增生造山带—中亚造山带的南缘,是中亚造山带的重要组成部分。它北侧和东北侧是西萨彦岭—蒙古湖区早古生代古岛弧带,西侧为斋桑晚古生代碰撞造山带,南侧以额尔齐斯断裂带与准噶尔即哈萨克斯坦板块相接。同整个中亚造山带一样,它也发育有大量的花岗岩,花岗岩约占全区分布面积的40%。新的锆石U-Pb年龄测定表明,阿尔泰造山带很多原被来认为是海西期的花岗岩,实际上形成于早古生代,而晚古生代花岗岩的时空展布、岩石组合和成因目前尚不清楚,因而有必要加强对晚古生代花岗岩的研究。
     本文在前人研究基础上,通过对区内晚古生代花岗岩的野外特征、岩石学、锆石U-Pb年代学、地球化学以及Sr、Nd、Pb同位素示踪研究,得出如下几点认识:
     1、布尔根碱性花岗岩含有碱性岩暗色矿物钠铁闪石和霓石。高硅(71.46%~77.07%)、富钾(4.41%~5.73%)、富钠(3.91%~5.65%),贫铁、锰、镁(FeOT = 0.3%~1.6%,MnO = 0.03% ~0.13%,MgO = 0.05%~0.44%),具有高的铁镁比值(FeOT/MgO= 14.3~60.4),低磷、钛(P2O5=0.06%。轻稀土富集,重稀土亏损,具有明显的负铕异常,微量元素表现出明显的Ba、Sr、P、Ti的负异常,不具有Nb异常。具有低的Sr初始值(Isr<0.705)和高的εNd(t)值(+1.6~+6.3)。表明布尔根碱性花岗岩可能是由地幔岩浆底侵,导致早期俯冲的洋壳或弧物质重熔,同时加入一部分地幔物质,在经历了强烈的结晶分异作用之后形成的。
     2、本次研究对布尔根碱性花岗岩及其伴生的黑云母二长花岗岩采集了3个样品,进行SHRIMP和La-ICPMS锆石U-Pb测年,分别获得358±4Ma(碱性花岗岩)、353±3Ma(碱性花岗岩)和343±3Ma(黑云母二长花岗岩)。表明布尔根碱性花岗岩形成时代应为早石炭世。布尔根碱性花岗岩与区内早古生代同造山钙碱性花岗岩构成一个从钙碱性-碱性的岩浆旋迴。这意味着在晚古生代早期,阿尔泰造山带构造体制的发生了变化,即由同造山期的区域挤压体制转入到拉张体制,预示着主造山运动的结束。结合区内其它地质事实,一致表明,布尔根碱性花岗岩形成于后造山环境,此时造山作用已经结束,额尔齐斯洋应已闭合。 
     3、本文通过对12个岩体(脉)(11个花岗岩体和1个基性岩脉)的15个样品的锆石U-Pb(TIMS、SHRIMP、La-ICPMS)测定,表明阿尔泰晚古生代花岗岩除早石炭世的布尔根碱性花岗岩外,基本形成于二叠纪,可以分为两期(300Ma~280Ma和280Ma~250Ma)。主要分布在造山带南缘,少量分布在造山带中部。
     4、阿尔泰造山带的二叠纪花岗岩主要岩石类型基本可以分为三种:I型花岗岩、铝质A型花岗岩-正长岩以及I-A过渡型花岗岩。I型花岗岩、铝质A型花岗岩-正长岩主要形成于320Ma~280Ma。岩体内部发育基性岩包体,同时还伴生有大量基性/超基性岩,构成“双峰式”岩浆组合;I-A过渡型花岗岩主要形成280Ma~250Ma。这套钙碱性—碱性的岩浆组合,是在伸展背景下,由统一的地幔底侵,导致不同区块,不同部位的物质发生熔融,并发生不同程度的岩浆分异作用,形成不同类型的花岗岩;同时,一部分底侵的地幔岩浆通过分异作用和岩浆混合作用直接参与了花岗岩浆的形成。
     5、阿尔泰二叠纪花岗岩分布于造山带的南缘和中部,大部分岩体为近圆形或椭圆形,未发生变形,呈被动侵位于围岩之中,往往切割区域构造线,总体显示出典型的后构造特点。说明在这些花岗岩形成之后,阿尔泰造山带在区域尺度上,未发生强烈的区域变形。因此,阿尔泰二叠纪的构造环境是拉张环境而非挤造山环境。尽管额尔齐斯断裂带内的一部分岩体呈线性并发生变形,但变形为走滑性质,未见强烈的推覆挤压。因此,它们限定二叠阿尔泰未发生区域尺度上强烈挤压变形,而仅在额尔齐斯断裂带内发生走滑变形,且该期走滑事件主要发生290Ma~270Ma。
     6、22组Sr、Nd同位素和36组Pb同位素研究显示,阿尔泰造山带晚古生代花岗岩具有高(正)e Nd(t)值(+1.3~ +7.3)、年轻的Nd同位素模式年龄TDM2(546Ma ~995Ma)和低206Pb/204Pb、207Pb/204Pb和208Pb/204Pb特点,说明年轻幔源物质参与了花岗岩的形成,表明阿尔泰造山带在后造山阶段存在一定规模的地壳生长;同时,一部分花岗岩的eNd(t)值大于该时期洋壳的值,暗示阿尔泰造山带不仅存在地壳的水平生长,也存在一定规模的垂向生长。估算的最大生长量约为33,000Km3,约占阿尔泰地区上地壳体积的2.1%;最小生长量为25,000Km3,约占阿尔泰地区上地壳体积的1.5%。通过以上的研究,笔者提出阿尔泰造山带晚古生代构造演化模式如下:
     1)早石炭世,俯冲接近尾声,阿尔泰南缘的D-C1地层发生褶皱变形,主造山期已近结束。约350Ma布尔根碱性花岗岩侵入到已褶皱的D-C1地层,标志着该造山运动的结束。区域转入拉张背景,进入后造山阶段,此时,额尔齐斯洋可能已闭合(?),局部可能存较小的陆表海盆;
     2)中-晚石炭世,区域可能一直处于相对平静期,目前未见区域变质变形,该时期的花岗岩目前报道也很少;
     3)晚石炭世末—早二叠世初,发生强烈的岩浆作用,大型走滑等构造运动。区域进入全面的拉张。该时期,中亚大部分地区,包括东、西准噶尔都发生这期伸展事件。
The Altai orogen in China is a typical region of the Central Asian Orogenic Belt (CAOB), the world’s largest Phanerozoic accretion orogenic belt and the most important site of crustal growth in the Phanerozoic. It is situated between the Sayan and Gorny Altai early Paleozoic arc belt in southern Siberia to the north and the Junggar block to the south. The Altai orogen in China contains very large volumes of granitoids and related rocks as CAOB. The granitoids occupy more than 40% of the present area of the orogen. New zircon U-Pb ages show that these granitoids were mostly emplaced during the early Paleozoic, and few in the late Paleozoic and Mesozoic.
     Based on previous studies, we made detailed field investigating, and study on zircon U-Pb chronology, mineralogy, petrology, REE and trace elements geochemistry, Nd, Sr and Pb isotopic geochemistry of the late Paleozoic granitoids and basic rocks from the Altai orogen. The following achievements and conclusions have been made.
     1、The Bulgen alkaline granite contains arfvedsonite and aegirine. The rocks are enriched in K ,Na, Al, REE and LILE (Rb , Th , Ba) with negative anomaly in Ba, Sr, Ti ,P and poor in Mg, Fe, Mn with high FeOT/MgO values. They have low Isr and high (positive) eNd(t) value(+ 1.3 ~ + 6.4).All these characteristics suggest that the Bulgen alkaline granite could be formed by the mantle magma underplating, which induced the early subducted oceanic crust or arc remelting, and offered some mantle materials with strong crystal fractionation.
     2、Zircon U-Pb (SRHIMP) dating yielded a ~(206)Pb/~(238)U age of 358±4 Ma (MSWD=1.7) of alkaline granite (4001). Zircon U-Pb (La-ICPMS) dating yielded a ~(206)Pb/~(238)U age of 354±3 Ma(MSWD = 0.96)of alkaline granite (40042) and a ~(206)Pb/~(238)U age of 343±3 Ma (MSWD = 1.6) of biotite monzonitic granite (4053). They are same, so, the Bulgen alkaline granite formed in the early Carboniferous, which just follow the early Paleozoic calcalkali granitoids in time, and have some relationship in space with them. They constitute a calcalkali-alkali magmatic sequence, which show that magma characters changed from calcalkali to alkali during the late Devonian-early Carboniferous. It means that the tectonic setting changed in this period. Accounting for other geological events, all of them indicate that the Bulgen alkaline granite pluton formed in a post-orogenic setting, in which orogenic movement had been finished, and the Erqis Ocean had been closed at that time. After that, the Altai region changed to an extensional setting.
     3、Fifteen zircon U-Pb (TIMS,SHRIMP and La-ICPMS) ages show that, except for the early Carboniferous Bulgen alkaline granite, the late Paleozoic granitoids from the Altai orogen were mainly emplaced in the Permian. The Permian granitoids can be approximately divided into two stages (300 Ma ~ 280 Ma and 280 Ma ~ 250 Ma), they are mostly distributed in the southern part of the Altai orogen and few intruded into the central part of the orogen
     4、The Permian granitoids are composed of three groups: I-type granite, aluminous A-type granite-syenite and I-A intermediate type. I-type granite and aluminous A-type granite-syenite mainly formed during 300 Ma ~ 280 Ma and distribute in the Erqis fault belt, some plutons have been deformed. At the same time, large volume mafic plutons (dykes) were emplaced. These mafic intrusions were composed of a“Bimodal”magma group with the granitoids. I-A intermediate type granitoids were mainly formed during 280 Ma ~ 250 Ma, they were not only emplaced in the southern part of the orogen, but also intruded in the central part of the orogen, and undeformed. This Permian calcalkali-alkali serial magma formed under an uniform mantle underplating background, the mantle magma offer the heat and the material in different positions of different terrane , partly melted of mantle magma directly took part in the form of granitoids by magmatic differentiation and magmatic mixing.
     5、Most plutons of Permian granitoids in the Altai orogen are approximately circular, without deformation, showing passive emplacement. They usually cut the tectonic lineament, showing a typical post-tectonic feature. It shows that there is no strong regional deformation in this area at that time. So, the Permian granitoids in the Altai orogen were emplaced in a post-orogenic setting. Although there are some linear deformed granitoids in the southern part of the Altai orogen, they are only localized in the Erqis fault belt, and the deformation character is strike-slip. So, the dating of the deformed and undeformed pluton in the fault belt defines the Erqis fault belt deformation time (290 Ma ~ 270 Ma).
     6、The late Paleozoic granitoids in the Altai orogen have high (positive) e Nd(t) values (e Nd(t) = + 1.3 ~ + 7.3),and low TDM(2546 ~ 995 Ma). It indicates that mantle-derived material took part in the form of granitoid in the Phanerozoic. The Pb isotopic feature provides further support evidence for this. In addition, the e Nd(t) values of some granitoids are higher then the coeval ocean crust. It indicates that the Altai orogen occurrenced certain scale crustal growth and have both horizontal growth and vertical growth. The maximum amount of growth is 33,000 Km3,about 2.1% volume of the Altai area upper crust, and the minimum amount of growth is 25,000 Km3,about 1.5% volume of the Altai area upper crust.
     Based on the above study, some conclusions about the tectonic evolution modal of the Altai orogen in the Paleozoic can be drawed as follow:
     1) During the early Carboniferous, the Erqis Ocean wane to the close, the D-C1 stratum in the Altai orogen had been folded, the main Paleozoic orogenic epoch wane to the end. At 350 Ma, the Bulgen alkaline granite pluton intruded in the folded D-C1 stratum. It indicates the end of the orogenic event. The setting in this region changed to an extensional background, and turned into post-orogenic stage. The Erqis Ocean would have been closed,there would be some inland seas in some place.
     2) During the middle-late Carboniferous, this region might be turned into a relative quiet stage. There have not been found regional metamorphism and deformation and few granitoids emplaced at this stage have been discovered now.
     3) During the late Carboniferous-early early Permian, there are strong magmatic activities and large scale strike-slip tectonic movement, etc. The area entered in a full pull-apart setting. Actually, Most parts of the CAOB have strong magmatism during this period
引文
1. Armstrong RL, 1968. A model for the evolution of strontium and lead isotopes in a dynamic Earth. Rev. Geophys., 6: 175–199.
    2. Armstrong RL. 1991. The persistent myth of crustal growth. Aust. J. Earth Sci. 38: 613–640.
    3. Barbarin B.1999.A review of the relationsh ip s between granitoid types,their o rigins and their geodynamic environments.Lithos,46:605~ 626
    4. Barbarin,B.,1999,A review of the relationships between granitoid types,their origins and their geodynamic environments,Lithos,46,605-626.
    5. Bernard Griffiths J et al.1997.Continental Lithospheric contribution to alkaline magmatism:isotopic (Nd,Sr,Pb) and geochemical (REE ) evidence from Derra de Monchique ant Mount O rnconde Complexs.J.Petrol.,38:115~ 132
    6. Bird P. 1979. Continental delamination and Colorado Plateau. J. Geophy. Res., 84: 2561-2571
    7. Bonin B. 1990. From orogenic to anorogenic settings: evolution of granitoid suites after a major orogenesis. Geol. J.,
    25: 261-270
    8. Bowring SA and Housh T. 1995. The Earth’s early evolution. Science, 269: 1535–1540.
    9. Chappell,B.W.,1999,Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites,Lithos,46,535-552.
    10. Chen B and Arakawa Y.2005.Elemental and Nd~Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China),with implications for Phanerozoic continental growth.Geochimica et Cosmochimica Acta,69(5):1307~1320
    11. Chen B,Jahn B.M.2002.Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications.Geol Mag.,139(1):1~13
    12. Chen B,Jahn B.M.2004.Genesis of post~collisional granitoids and basement nature of the Junggar Terrane,NW China:Nd~Sr isotope and trace element evidence.Journal of Asian Earth Sciences,23,691~703
    13. Chen F,Hegner E,Todt W,2000.Zircon ages,Nd isotopic and chemical compositions of orthogneisses from the Black Forest,Germany-evidence for a Cambrian magmatic arc.International Journal of Earth Sciences,88:pp.791~802.
    14. Chen J F,John B M.1998.Crustal evolution of southeastern China:Nd and Sr isotopic evidence.Tectonophys,284:101~133.
    15. Chen J F,Zhou T X,Xie Z,Zhang X,Guo X S.2000.Formation of positive eNd(T)granitoid from the Alatai Mountains,Xinjiang,China,by mixing and fractional crystallization:implication for phanerozoic crustal growth.Tectonopysics.328:53~67
    16. Chen J S.1991.Characteristics of Pb,Sr isotopic compositions in west Yunnan granites discussion on the age and nature of the basement in west Yunnan.Chinese Journal of Geology,2:16~85
    17. Claoue~Long J C,Compston W,Roberts J,Fanning C M.1995.Two Carboniferous ages:a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis,In:Berggren W A,Kent D V,Aubry M P,Hardenbol J.,eds.,Geochronology,time scales and global stratigraphic correlation :SEPM special publication,5(4):3~31.
    18. Coleman RG.1989.Continental growth of Northwest China.Tectonics,8:521~635
    19. Collins,W.J.,Beams,S.D.,White,A.J.R.,Chappell,B.W.,1982.Nature and origin A~type granites with particular reference to Southeastern Australia.Contrib.Mineral.Petrol.80,189~ 200.
    20. Compston W,Williams I S,Kirschvink J L,et al.1992.Zircon U~Pb ages for the Early Cambrian time~scale.J.Geol.Soc.,149:171~184.
    21. Condie, K.C. 1998. Episodic continental growth and supercontinents: a mantle avalanche connection. EPSL., 163: 97–108.
    22. Creaser RA, Price RC, Womald RJ. 1991. A-type granites revisited: assessment of aresidual-source model. Geology, 19: 163-166
    23. Defant M J & Drummond M S,. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(18):662~665
    24. Doe B R and Zartman R E.1979.Plumbotectonics I.The Phanerozoic.In:Barnes HI,(ed.),Geochemistry of Hydrothermal Ore Deposites,2 nd,ed.Chap 2,pp.22~70
    25. Eby,G.N.,1990.The A~type granitoids:a review of their occurrence and chemical characteristics and speculations on their petrogenesis.Lithos 26,115~ 134.
    26. Eby,G.N.,1992.Chemical subdivision of the A~type granitoids:petrogenetic and tectonic implications.Geology 20,641~ 644.
    27. Gariepy C,Allegre C,Xu R The Pb isotoPe geochemistry of granitoids from the Himalaya~Tibet collision zone:implications for crustal evolution,Earth Planet Sci.Lett.,1985,74:20~34.
    28. Han B F,He G Q,Wang S G,Hong DW .1998.Postcollisional mantle~derived magmatism and vertical growth of the continental crust in north Xinjiang.Geological Review 44(4):396~406
    29. Han B F,Wang S G,Jahn B M,Hong,D W,Kagami H,Sun Y L.1997.Depleted~mantle magma source for the Ulungur River A~type granites from north Xinjiang China:Geochemistry and Nd~Sr isotopic evidence,and implication for Phanerozoic crustal growth.Chem.Geol.138:135~159
    30. Han B FWang S G,Jahn B M,Hong D W,et al.1997.The Nd isotope of Wulunguhe alkaline granite from Xinjiang and the significance to the Phanerozoic crust growth.Chinese Science Bulletin,17(42):1829~1831
    31. Han BF,Wang SG,Bor-ming Jahn,Hong Dawei,Hiroo Kagami,and Sun Yuanlin.1997.Depleted~mantle source for the Ulungur river A~type granites from North Xinjiang,China:geochemistry and Nd~Sr isotopic evidence,and implications for Phanerozoic crustal growth.Chemical Geology,138:135~159
    32. Harris NBW, Marzouki FMH, Ali S. 1986. The Jabal Sayid Complex, Arabian Shield, geochemical constraints on the origin of peralkaline and related granites. J. Geol. Soc. London, 183: 287–295
    33. He G Q,Li M S,Liu D Q,Tang Y L,Zhou R H.1994.Paleozoic Crustal Evolution and Mineralization in Xinjiang of China.Urumuqi:Xinjiang People’s Publishing House,1~437
    34. Heinhorst J,Lehmann B,Ermolov P,Serykh V,Zhurutin S.2000.Soure magmatic~hydrothermal ore systems of central Kazakhstan.Tectonophysics,328:69~87
    35. Hoffman, FP. 1989. Speculations on Laurentia’s first gigayear (2.0 to 1.0 Ga). Geology, 17: 135– 138
    36. Hong D W,Wang S G,Xie X L,Zhang J S and Wang T.2001.The Phanerozoic continental growth in central Asia and the evolution of Laurasia supercontinent.Gondawn Research,4:632~633
    37. Hong D W,Wang S G,Xie X L,Zhang J S and Wang T.2003.On the metallogenic province derived from mantle sources— Nd,Sr,S,Pb isotope evidence from the Central Asian Orogenic Belt.Gondawn Research,6(4):711~728
    38. Hong D W,Wang S G,Xie X L,Zhang J S.2000.Genesis of positiveeNd(t)granitoids in the Da Hinggar-mongolia oroganic belt and continental crustal growth.Earth Science Frontiers,7(2):441~456
    39. Hong D W,Zhang J S,Wang T,Wang S G,Xie X L.2004.Continental crustal growth and the supercontinental cycle:evidence from the Central asian orogenic belt.Journal of asian earth sciences,23:799~813
    40. Hong DW,Wang SG,Xie XL,Zhang JS,Wang T.2004.Continental crustal growth and the supercontinental cycle:evidence from the Central Asian Orogenic Blet.J.Asian Earth Sci.,23(5):799~813.
    41. Honglin Yuan ,Shan Gao,Xiaoming Liu,Huiming Li,Detlef Gunther,Fuyuan Wu,2004.Accurate U~Pb age and trace element determinations of zircon by Laser Ablation~Inductively coupled plasma~mass spectrometry.Geostandards and geoanalytical research.25(3):353~370
    42. Hu A Q,Jahn B M,Zhang G X,Chen Y B,Zhang Q F.2000.Crustal evolution and Phanerozoic crustal growth in northern Xinjiang:Nd isotopic evidence,Part I.Isotopic characteristics of basement rocks.Tectonophysics,328:15~51
    43. Hu AQ,Bor-ming Jahn,Zhang GX,Chen YB,and Zhang QF.2000.Crustal evolution and Phanerozoic crustal growth in northern Xinjiang : Nd isotopic evidence , Part I . Isotopic characteristics of basement rocks.Tectonophysics,328:15~51
    44. Jahn B M,Wu F,Hong D.2000a.Important crustal growth in the Phanerozoic:Isotopic evidence of granitoids from east~central Asia.Proc.Indian Acad.Sci.(Earth Planet Sci.),109(1):5~20.
    45. Jahn,B M,Wu F Y,Chen B.2000b.Masssive granitoid generation in central Asia:Nd isotopic evidence and implication for continental growth in the Phanerozoic.Episodes,23:82~92.
    46. Jahn,B.M.,Capdevilaa,R.,Liub,D.,Vernona,A.; and Badarch,G.2004.Sources of Phanerozoic granitoids in the transect Bayanhongor~Ulaan Baatar,Mongolia:geochemical and Nd isotopic evidence,and implications for Phanerozoic crustal growth.J.Asian Earth Sci.23:629~653.
    47. Kay R W and Kay S M . 1991. Cration and destruction of lower continental crust. Geologische Rundschau, 80 (2) : 259~278
    48. King,P.L.,White,A.J.R.,Chappell,B.W. and Allen,C.M., 1997,characterization and origin of aluminous A-type granites from the Lachlan Fold Belt,southeastern Australia,J.Petrol,,38,371-391.
    49. Kononova V A et al.1999.Mantle hererogeneity beneath the northern part of the East European platform (infered from the Sr and Nd isotopic compositions of the high~Mg alkaline rocks).Dokl A kad N auk,364:810~ 812
    50. Kovalenko V I,Yarmolyuk V V,Kovach V P et al.1996.Source of Phanerozoic granitoids in central asia :Sm~Nd isotope data.Geochemistry international,34(8):628~640(In Russian)
    51. Kovalenko V I,Yarmolyuk V V,Thareva G M.1997.Sources of granitic magma in southern Dthir mineralized area,southeastern Mongolia:data of Nd,Sr,Pb and O isotope composition.Rep.Acad.Sci.,353:659~662.(in Russian)
    52. Kovalenko VI,Yarmolyuk VV,Kovach VP,Kotov AB,Kozakov IK,Sal'nikova EB and Larin AM.2004.Isotope provinces,mechanisms of generation and sources of the continental crust in the Central Asian Mobile Belt:geological and isotopic evidence.Journal of Asian Earth Sciences,23 (5):605~627
    53. Kozakov I K,Kovach V P,Yarmolyuk V V.2003.Crust~forming processes in the geologic development of the Tuva~Mongolia massif:Sm~Nd isotopic and geochemical data for granitoids.Petrology,11(5):444~463(In Russian)
    54. Krogh T.E.1973.A low~contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination .Geochim.et cosmochim.acta.37:485~494.
    55. Kroner A. 2002. Geochronology of the Hengshan, Wutai and Fuping Complexes. In: A late Archean to Paleoproterozoic lower to upper crustal section in the Hengshan-Wutaishan area of North China(ed. Kroner A et al.), Guidebook for Penrose Conference Field Trip, Penrose Conference, pp. 28-32
    56. Kusky TM and Polat A. 1999. Growth of granite–greenstone terranes at convergent margins,and stabilization of Archean cratons. Tectonophysics, 305: 43-73
    57. Kusky TM, Li JH, Tucker RT. 2001. The Dongwanzi ophiolite complete Archean ophiolite with extensive sheeted dike complex, North China craton. Science, 292: 1142-1145
    58. L i XH,Gui X T,L iu J Y.1987.Three “component mixing model of Pb and Sr isotopic compositions for the origin of Quxu batholith,Xizang.Geochimica,16(1):60~66
    59. Le Fort,P.,Cunney,M.,Deniel,C. et al,1987,Crustal generation of the Himalayan leucogranites,Tectonophysics,134,39-57.
    60. Le Maitre,R.W.,1989,A classification of igneous rocks and glossary of terms:Recommendations of the International Union of Geological Sciences on the Systematics of Igneous Rocks .Blackwell Scientific Publications.193pp
    61. Li J Y,Xiao W J,Wang K Z,Sun G H,Gao L M.2003.Neoproterozoic~Paleozoic tectonostratigraphy,magmatic activities and tectonic evolution of eastern Xinjiang,NW China.In:Mao JW,Goldfarb,Seltman,Wang,Xiao & Hart (eds),Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan,IAGOD Guidebook Series 10:CERCAM/NHM,London,pp.31~74
    62. Liu J Y,Yuan K R.1996.A discussion on the genesis and tectonic of alkali granites in the Ulungur alkali~rich granite belt,Xinjiang.Geological Journal of China Universities,2(3):257~271
    63. Liu W.1990.Petrogentic epochs and peculiarities of genetic types of granitoids in the Altai Mts.,Xinjiang Uygur Autonomous region,China.Geotectonica et Metallogenia,14(1):43~56
    64. Ludwig K.R.1999.ISOPLOT/Ex.Version 2.06.A geochronological toolkit for Microsoft Excel.Berkley Geochronology Center Sp.Publ.? 1a.49 pp.
    65. Ludwig KR. 2001. Squid 1.02: A user manual, Berkeley Geochronological Center Special Publication, 2: 19
    66. Ludwig KR. 2003. A geochronological Toolkit for Microsoft Execl, Berkeley Geochronology Center Special Publication No.4, 25-32
    67. Mao D B,Zhong C T,Chen Z H,Hu X D.2001.Pb isotope characteristics of Pb~Zn~(Ag) Deposits in the Minddlen north margin of north china block:constraints on source process.Progress in precambrian research,24(4):193~200
    68. Mattinson J. M . 1994.A study of complex discordance in zircons using step~wise dissolution techniques.Contrib.Mineral.Petrol.116:117~129.
    69. McCulloch MT and Bennett VC. 1993. Evolution of the early Earth: constraints from 143Nd–142Nd isotopic systematics. Lithos, 30: 237–255.
    70. Mchone J G.1996.Constraints on the mantle plume model for Mesozoic alkaline instrusions in northeastern North America.Can.Mineral.,34 (part 2) :325~ 334
    71. Noble S R,Tucker T C,Pharaoh T C.Lower Palaeozoic and Precambrian igneous rocks from eastern England,and their bearing on late Ordovician closure of the Tornquist Sea:Constraints from U~Pb and Nd isotopes.Geol Mag,1993,130:835~846
    72. Norman,Marc D,Garcia,Michael O.1999.Primitive magmas and source characteristics of the Hawaiian plume:petrology and geochemistry of shield picrites.Earth and Planetary Science Letters ,168:27~44
    73. Parrish R R,Roddick J C,Loveridge W D,et al.Uranium~leadanalytical techniques at the geochronology laboratory,Geological Survey of Canada.Geol Surv Canada Paper,1987,87(2):3~7
    74. Pearce JA, Harris NBW, Tindle AG. 1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25: 956–983.
    75. Pearce JA. 1983. Role of the sub-continental lithosphere in the magma genesis at active continental margins. In: Hakesworth, CJ, Norry, M.J. Eds., Continental Basalts and Mantle Xenoliths Shiva Publishing, Nantwich, pp. 230–272.
    76. Pervov V A et al.1997.Potassic magmatism of the Aldan Shield,southeastern Siberia:an indicator of the multistage evolution of the lithospheric mantle.Petrology,5:415~ 430
    77. Philippe and Stephan,2002.Investigating the sources of the labile fraction in sediments from silicate~drained rocks using trace elements,and strontium and lead isotopes.The Science of the Total Environment,298:163~181
    78. Pitcher. WS. 1997. The nature and origin of granite. Chapman & Hall, London: 280-298
    79. Qu G S,Chong M Y.1991.Lead isotope geology and its tectonic implications in altaides,China.Geoscience,5(1):100~110
    80. Roberts M P and Clemens J D. 1993. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology, 21:825-828.
    81. Rogers JJW, Greenberg JK. 1990. Late-orogenic, post-orogenic, and anorogenic granites: distinction by major-element and trace-element chemistry and possible origin. J. Geol., 98: 291-309
    82. Seng?r AMC,Natal’in BA,and Burtman VS.1993.Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia.Nature,364:299~307
    83. Simonetti A et al.1998.Geochemical and Nd,Pb and Sr iso tope data from Deccan alkaline comp lexes — inferences for mantle sources and plum~lithosphere interaction.J.Petrol.,39:1847~1864
    84. Stacey J.S.,Kramers I.D.1975.Approximation of terrestrial lead isotope evolution by a two~stage model .Earth Planet.Sci.Lett.26(2):207~221.
    85. Steiger R H,J?ger E.1977.Subcommission on Geochronology:Convention on the use of decay constants in geo~ and cosmochronology.Earth Planetary Sci Lett,36:359~362
    86. Steiger R.H.,Jager E.1976.Subcomission of Geochronology:convension of the use of decay constants in geo~ and cosmochronology.Earth Planet.Sci.Lett.36(2):359~362.
    87. Sun SS ,McDonough W F.1989.Chemical and isotopic systematics of oceanic basalts :implications for mantle composition and process.in:Magmatism in the Ocean Basins.Saunders AD and Norry MJ,Eds.Geological Society Special Publication ,42 :313~345.Taylor SR and McLennan SM. 1985. The Continental Crust: Its Composition and its Evolution. Blackwell, Oxford.
    88. Taylor SR and McLennan SM. 1995. The geochemical evolution of the continental crust. Rev. Geophys., 33: 241–265.
    89. Taylor, R.P., Strong, D.F., Fryer, B.J., 1981. Volatile control of contrasting trace element distributions in peralkaline granitic and volcanic rocks. Contrib. Mineral. Petrol. 77, 267–271.
    90. Turner SP, Foden JD and Morrison RS. 1992. Derivation of an A-Type magma by fractionation of basaltic magma and an example from the Padthaway Ridge, South Australia: Lithos,28:151-179
    91. V?is?nen M,M?ntt?ri I,Kriegsman LM,Holtt? P.2000.Tectonic setting of post.~collisional magmatism in the Palaeoproterozoic Svecofennian Orogen,SW Finland.Lithos,54:63~81
    92. Wang T.,Hong D.W.,Jahn B.M,Tong Y.,Wang Y.B.,Han B.F.,Wang X.X. 2006a Zircon U~Pb geochronology and geochemistry of Paleozoic syn~orogenic intrusions from the Chinese Altai:implications for subduction~accretion processes.Journal of Geology (in press)
    93. Wang T.,Tong Y.,Jahn B.M.,Zou T.R.,Hong D.W.,Wang Y.B.,Han B.F.2006b SHRIMP U~Pb Zircon geochronology of the Altai No.3 Pegmatite,NW China,and its implications for the origin and tectonic setting of the pegmatite.Ore Geological review (in review)
    94. Wang Tao,Zheng Yadong,Li Tianbing,Gao Yongjun.2004.Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and their implications for crustal growth.J.Asia Earth Science,2004,23:715~729
    95. Wang Z G,Zhao Z H,Zou T R,et al.1998.Geochemistry of granitic rocks in Altay,Beijing:Science Press,p152
    96. Wang Z G,Zhao Z H.1990.Origin and evolution of the granitoids in Altay.Geoscience of Xinjiang No.1,69~77
    97. Whalen,J.B.,Currie,K.L.,Chappell,B.W.,1987.A~type granites:geochemical characteristics,discrimination and petrogenesis.Contrib.Mineral.Petrol.95,407~ 419.
    98. Williams I S,Claesson S.1987.Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss from the Seve Nappes ,Scandinavian Caledonides,Ⅱ.Ion microprobe zircon U~Th~Pb.Contrib.Mineral.Petrol.,97:205~217.
    99. Williams, G.E., Gostin, V.A. 2000. Mantle plume uplift in the sedimentary record: origin of kilometre-deep canyons within late Neoproterozoic successions, South Australia. Journal of the Geological Society, London, 157: 759–768.
    100. Windley BF. 1984. The evolving continents(2Ed). John Willy and Sons, Chichester, 45-100
    101. Windley BF. 1995. The evolving continents(3Ed). John Willy and Sons, Chichester.
    102. Windley FB,Kroner A,Guo J,Qu G ,Li Y,Zhang C.2002.Neoproterozoic to Paleozoic geology of the Altai orogen,NW China:New zircon age data and tectonic evolution.The Journal of Geology,110:719~737
    103. Wu F Y,Jahn B M,Wilde S A,Sun D Y.2000.Phanerozoic continental crustal growth:U~Pb and Sr~Nd isotopic evidence from the granites in northeastern China.Tectonophysics,328:89~113
    104. Wu FY,Sun DY,Li HM,Jahn Bor-ming,Wilde S.2002.A~type granites in northeastern China:age and geochemical constraints on their petrogenesis.Chemical Geology,187:143~ 173
    105. Wu K X,Hu R Z,Bi X W,Peng J T,Tang Q L.2002.Ore lead isotopes as a tracer for ore~forming material sources:A review.Geology~geochemistry,30(3):73~81
    106. Xiao W,Windley BF,Badarch G,Sun S,Li J,Qin K,Wang Z.2004.Palaeozoic accretionary and convergent tectonics of the southern Altaids:implications for the growth of Central Asia.Journal of the Geological Society,London,161:339~342
    107. Yuan F,Zhou T F,Yue X C.2001b.Plumbum isotope geochemistry of Aketishikan gold deposit,Xinjiang.Journal off Hefei University of thechnology,24(1):12~16
    108. Zartman R E,Doe B R.1981.Plumbotectonics~the model.in:Zartman R E,Taylor S Reds.Evolution of the upper mantle,Tectonophysics,75:135~162
    109. Zhang L G.1988.Feldspar lead and ore lead isotopic compositions and their geological significance.Mineral Deposits,7(2):55~64
    110. Zhao J.2003.The preparation of strontium,neodymium and lead isotopic samples.Acta Petrologica ET Mineralogica,22(1):97~98
    111. Zou T R,Cao H Z,Wu B Q.1989.Orogenic and anorogenic granitoids of Altay mountains of Xinjiang and their discrimination criteria.Acta Geologica Sinica,2(1):45~64
    112. 陈斌,Bor-ming Jahn,王式洸.1998.新疆阿尔泰古生代变质沉积岩的 Nd 同位素特征及其对地壳演化的制约,中国科学,31(3):226~232
    113. 陈吉琛.1991.滇西花岗岩类 Pb、Sr同位素组成特征及其基底时代和性质.地质科学,2:16~85
    114. 邓晋福、赵海玲、莫宣学、吴宗絮、罗照华,1996,中国大陆根-柱构造— —大陆动力学的钥匙,地质出版社。
    115. 韩宝福,何国琦,王式洸.1999.后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质,中国科学(D辑),29(1):16~21
    116. 韩宝福,何国琦,王式洸等.1998.新疆北部后碰撞幔源岩浆活动与陆壳纵向生长.地质论评,44:396~409
    117. 韩宝福,季建清,宋彪,等.2006.新疆准噶尔晚古生代陆壳垂向生长(I)—后碰撞深成岩浆活动的时限,
    118. 韩宝福,王式洸,洪大卫,等.1998.正 eNd ( T) 值的准铝~过铝花岗岩:新疆也布山花岗岩体.科学通报,43 (12) :1323~1328
    119. 韩宝福,王式洸,江博明,等.1997.新疆乌伦古河碱性花岗岩 Nd 同位素特征及其对显生宙地壳伸展的意义.科学通报,17(42):1829~1831
    120. 何国琦,李茂松,刘德权,等.1994.中国新疆古生代地壳演化及成矿.乌鲁木齐.新疆人民出版社和香港文化教育出版社.1~437
    121. 洪大卫,黄怀曾,肖宜君,等.1994.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义.地质学报,68(3):219~230
    122. 洪大卫,王式洸,谢锡林,等.2000.兴蒙造山带正ε(Nd,t)值花岗岩的成因和大陆地壳生长.地学前缘,7(2):441~456
    123. 洪大卫,王涛,童英,等,2003,华北地台和秦岭—大别—苏鲁造山带的中生代花岗岩与深部地球动力学过程,地学前缘,10(3):231~256
    124. 胡霭琴,王中刚,涂光炽,等.1997.新疆北部地质演化及成矿规律.北京:科学出版社,52~62
    125. 张湘炳,隋静霞,李志纯,等.1992.额尔齐斯构造带构造演化与成矿系列.北京:科学出版社,202pp.
    126. 胡霭琴,韦刚建,邓文峰,等.2006.阿尔泰地区青河县西南片麻岩中锆石 SHRIMP U~Pb 定年及其地质意义,岩石学报,22(1):1~10
    127. 简平,刘敦一,孙晓猛.2003.滇川西部金沙江石炭纪蛇绿岩 SHRIMP测年:古特提斯洋盆演化的同位素年代学制约.地质学报,77(2):217~228.
    128. 姜常义,穆艳梅,白开寅,等,1999,南天山花岗岩类的年代学、岩石学、地球化学及其构造环境,岩石学报,15(2):298~307
    129. 金成伟,张秀棋.新疆西准噶尔花岗岩类的时代及其成因.地质科学,1993 ,28 :28~36
    130. 康旭,王淑珍,1992..新疆可可托海地区花岗岩成因的研究.新疆地质,1992,10(3):261~271
    131. 李华芹,谢才富,常海亮等.1998.新疆北部有色金属矿床成矿作用年代学.北京:地质出版社,46~176
    132. 李龙,郑永飞,周建波.2001.中国大陆地壳铅同位素演化的动力学模型.岩石学报,17(1):61~68
    133. 李献华,桂训唐,刘菊英.1987.西藏曲水岩基的 Pb、Sr同位素组成及其三元混合成因模式.地球化学
    134. 李辛子,韩宝福,季建清,等,2004,新疆克拉玛依中基性岩墙群的地质地球化学和 K~Ar 年代学,地球化学,33(6):574~584
    135. 李宗怀,韩宝福,宋彪,2004,新疆东准噶尔二台北花岗岩体和包体的 SHRIMP 锆石 U~Pb 年龄及期地质意义,岩石学报,20(5):1263~1270
    136. 梁云海,李文铅,李卫东,2004,新疆准噶尔造山带多旋回开合构造特征,地质通报,23(3):279~285
    137. 刘敦一,简平,张旗等.2003.内蒙古图林凯蛇绿岩中埃达克岩 SHRIMP测年:早古生代洋壳消减的证据.地质学报,77(3):317~327.
    138. 刘敦一,简平,张旗等.2003.内蒙古图林凯蛇绿岩中埃达克岩 SHRIMP测年:早古生代洋壳消减的证据.地质学报,77(3):317~327.
    139. 刘家远,袁奎荣,吴郭泉,等.1996.新疆准噶尔富碱花岗岩类及其成矿作用.中南工业出版社,13~170
    140. 刘家远,袁奎荣.1996.新疆乌伦古富碱花岗岩成因及其形成构造环境.高校地质学报,2(3):257~271
    141. 刘伟,1993,新疆阿尔泰地区岩浆岩类的等时线年龄、地壳构造运动以及构造环境的发展演化 .新疆地质科学(第 4辑).北京:地质出版社,35~50
    142. 刘伟.1990.中国新疆阿尔泰花岗岩的时代及成因类型特征.大地构造与成矿学,14(1):43~56
    143. 陆松年,李怀坤,李惠民等.2003华北克拉通南缘龙王花岗岩 U~Pb 年龄及其地质意义.地质通报,22(2):62~68
    144. 毛德宝,钟长汀,陈志宏,等.2001.铅同位素特征对成矿物质来源的制约.前寒武纪研究进展,24(4):193~200
    145. 莫宣学,董国臣,赵志丹,等,2005,西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息,高校地质学报,11(3):281~290
    146. 曲国胜,崇美英.1991.阿尔泰造山带的铅同位素地质及其构造意义.现代地质,5(1):100~110
    147. 饶冰,沈渭州.1988.华南两类不同成因花岗岩的铅同位素组成特征.岩石学报,4:29~34
    148. 童英,洪大卫,王涛,等.2006.阿尔泰造山带南缘富蕴后造山线形花岗闪长岩的锆石 U~Pb 年龄及其地质意义.岩石矿物学杂志,25(2):85~89
    149. 涂光炽,1989,关于富碱侵人岩,矿产与地质,13(3):1一 4.
    150. 王登红,陈毓川,徐志刚等.2002.阿尔泰成矿省的成矿系列及成矿规律.原子能出版社,北京,1~498
    151. 王式洸,韩宝?榇笪溃龋?994.新疆乌伦古河碱性花岗岩的地球化学及其构造意义.地质科学,29(4):373~383
    152. 王涛,童英,洪大卫,韩宝福,杨之青.2005.中国阿尔泰造山带后造山喇嘛昭花岗岩体锆石 SHRIMP年龄、成因及陆壳垂向生长意义,岩石学报,21(3):640~650
    153. 王涛.2000.花岗岩研究与大陆动力学.地学前缘,7(增):137~146.
    154. 王有学,韩果花,姜枚,等.2004.阿尔泰—阿尔金地学断面地壳结构,地球物理学报,47 (2) :240~249
    155. 王中刚,赵振华,邹天人,等 1998.阿尔泰花岗岩类地球化学.科学出版社.1~152
    156. 王中刚,赵振华,1990.阿尔泰花岗岩类的成因与演化.新疆地质科学(第1辑):69~77.地质出版社
    157. 王中刚,赵振华,邹天人,等.1998.阿尔泰花岗岩类地球化学.科学出版社,北京,152页
    158. 吴福元,江博明(JahnBor-ming) ,林强.1997.中国北方造山带花岗岩的同位素特点与地壳生长意义.科学通报,42:2188~2192
    159. 吴福元,孙德有,林强.1999.东北地区显生宙花岗岩的成因与地壳增生.岩石学报,15(2):181~189
    160. 吴开兴,胡瑞忠,毕献武,等.2002.矿石铅同位素示踪成矿物质来源综述.地质地球化学,30(3):73~81
    161. 夏林圻,夏祖春,徐学义,等.2002.天山古生代洋陆转化特点的几点思考,西北地质,35(4):9~12
    162. 夏林圻,夏祖春,徐学义,等.2004.天山石炭纪大火成岩省与地幔柱,地质通报,23(9~10):903~910
    163. 夏祖春,徐学义,夏林圻,2005,天山石炭~二叠纪后碰撞花岗质岩石地球化学研究,西北地质,38(1):1~14
    164. 肖庆辉,邓晋福,马大铨等,2002.花岗岩研究思维与方法.北京:地质出版社,102~118
    165. 肖庆辉,邢作云,张昱,等,2003,当代花岗岩研究的几个重要前沿,10(6):221~229
    166. 肖序常,汤耀庆,冯益民,等.1992.新疆北部及其邻区大地构造.北京:地质出版社,169
    167. 徐学义,马中平,夏祖春,等,2005,天山石炭—二叠纪后碰撞花岗岩的 Nd、Sr、Pb 同位素源区示踪,西北地质,38(2):1~18
    168. 许保良,王式洸,韩宝?龋?998.富集型与亏损型A型花岗岩—以燕山和新疆乌伦古河地区岩石为例.北京大学学报,34:352~362
    169. 许继峰,陈繁荣,于学元,等.2001.新疆北部阿尔泰地区库尔提蛇绿岩:古弧后盆地系统的产物.岩石矿物学杂志,20(3):344~352
    170. 杨新岳,李志纯,谢国源.1994.新疆阿尔泰造山带南缘萨勒巴斯推覆体的变形和变质作用.地球科学-中国地质大学学报.19(4):461~470
    171. 于津生,桂训唐.1997.花岗岩类同位素地球化学.见:于津生,,李耀菘主编,中国同位素地球化学研究.北京:科学出版社,174~178
    172. 袁峰,周涛发,岳书仓.2001a.阿尔泰诺尔特地区花岗岩形成时代及成因类型.新疆地质,19(4):292~296
    173. 袁峰,周涛发,岳书仓.2001b.新疆阿克提什坎金矿床铅同位素地球化学.合肥工业大学学报(自然科学版),24(1):12~16
    174. 袁旭音,周化平,1998,阿尔泰晚古生代两类火山岩建造及成矿特征,新疆地质,16(2):125~133
    175. 岳永君,王式洸,何国琦,1990,中国阿尔泰造山带中花岗岩类的成因类型及其在地壳演化中的意义.新疆地质科学(第 2辑).北京:地质出版社,72~85
    176. 张国伟,董云鹏,姚安平,2002,关于中国大陆动力学与造山带研究的几点思考,中国地质,29(1):7~13
    177. 张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社,2 1.1~855.
    178. 张宏飞,张本仁,赵志丹,等.1997.东秦岭造山带花岗岩类长石铅同位素组成及其构造学意义.地质学报,71(2):142~149
    179. 张理刚,王可法,陈振胜等.1993.中国东部中生代花岗岩长石铅同位素组成及铅同位素省的划分.科学通报,38(3):254~257
    180. 张理刚.1988.长石铅和矿石铅同位素组成及其地质意义.矿床地质,7(2):55~64
    181. 张湘炳,隋静霞,李志纯,刘伟,杨新岳,刘顺生,黄怀勇.1996.额尔齐斯构造带构造演化与成矿系列.北京:科学出版社.139 ~162
    182. 张招崇,闫升好,陈柏林,等.2006.新疆东准噶尔北部俯冲花岗岩:SHRIMP U~Pb 锆石年龄证据,中国科学(D辑),in press
    183. 赵娟.2003.锶、钕、铅同位素样品准备方法介绍.岩石矿物学杂志,22(1):97~98
    184. 赵振华,王中刚,邹天人,等.1993.阿尔泰花岗岩类 REE及 O、Pb、Sr、Nd 同位素组成及成岩模型,新疆北部固体地球科学新进展(涂光炽主编),北京:科学出版社,239~266
    185. 赵振华,王中刚,邹天人,等.1996.新疆乌伦古河富碱侵入岩成因探讨.地球化学,25(3):205~220
    186. 钟大贲,丁林,张进江,等,2002,中国造山带研究的回顾和展望,48(2):147~152
    187. 周新民,李武显,2000,中国东南部晚中生代火成岩成因:岩石圈消减和玄武岩底侵相结合的模式,自然科学进展,10(3):240~247
    188. 朱炳泉.1998.地球科学中同位素体系理论与应用— —兼论中国大陆壳幔演化.北京:科学出版社,120~254
    189. 庄育勋.1990.中国阿尔泰造山带热动力时空演化和造山过程.长春:吉林科学技术出版社,283~335
    190. 邹天人,曹惠志,吴柏青.1988.新疆阿尔泰造山和非造山花岗岩及其判别标志.地质学报,62(3):229~243 备注:未列各 1:20万地质图资料

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700