用户名: 密码: 验证码:
复杂生产过程质量控制的智能方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质量作为社会经济发展的关键因素之一,越来越受到社会各界的重视。随着科学技术的发展,实现日渐复杂生产过程的质量管理成为研究者们关注的重大课题。质量管理是根据所制定的质量方针,通过质量策划、质量控制、质量保证和质量改进来实现产品或服务的全部活动。过程质量控制作为质量控制的关键部分,是实现产品创造的主要阶段,因而保证过程质量是实现质量管理的一种有效途径。随着现代生产过程的日益复杂,其过程具有数据高维、非线性,过程模型不确定和各子过程相互干扰并呈现强耦合等特点,因而比传统生产过程质量控制更为困难。本文通过复杂系统理论结合多元化、智能化等方向发展的质量控制方法,实现复杂生产过程的质量控制。
     支持向量机是建立在统计学习理论的VC维理论和最小结构风险基础上的一种机器学习智能方法。通过核函数实现非线性问题向线性问题的转化,能较好的解决小样本、非线性、高维数、局部最小等问题,具有很强的泛化能力。粒子群算法模拟鸟群捕食行为,其算法概念简单,控制参数少,易于实现,同时兼有进化计算和群智能优化的特点,通过个体间的协作与竞争,实现对复杂空间最优解的搜索。粒子群算法是解决整数非线性优化问题、非线性连续优化问题和组合优化问题等方面的有效优化工具。本文利用支持向量机作为建立复杂生产过程质量模型的工具,将粒子群算法及其改进算法应用于支持向量机参数优化、模型最优解选择等问题中,从而实现复杂生产过程的质量控制。
     针对复杂生产过程故障检测问题,本文将小波包分析方法作为过程样本数据的消噪工具,通过多层次划分逼近原信号的方法消除样本数据中的噪音和干扰,提取高效的数据样本,建立基于核主元分析的多变量统计过程监控模型,实现非线性问题向线性问题的转化,从而进行复杂生产过程的故障检测。本文通过1个数值算例和TE复杂化工过程故障分析进行故障检测研究,并与PCA和KPCA故障检测方法进行对比研究,证明所提出方法的可行性和有效性。
     控制图作为统计过程控制的有效工具,控制图模式的识别在处理复杂生产过程质量问题中发挥着重要的作用。针对目前识别较难的控制图混合模式,本文首先提取样本数据的统计特征和形状特征值作为质量信息特征值,再利用主元分析方法进行第二次特征提取,得到高效的样本数据信息。利用支持向量机泛化能力强、识别精度高的特点实现控制图模式的多分类识别,同时采取自适应变异粒子群算法进行多分类支持向量机的参数优化。本文提出利用六种控制图基本模式和四种控制图混合模式对所提出的模型进行分析,通过与神经网络、支持向量机和主元分析-支持向量机这三种方法的对比试验,结果表明本文所建立的控制图模式识别方法能取得更高的分类识别率,为控制图模式识别研究提供一定的参考价值。
     针对复杂生产过程的多输入、多输出、非线性的特点,提出了一种基于局部模型的多工况过程质量预测方法。首先利用K均值聚类方法进行复杂数据处理,实现复杂生产过程工况的划分,利用所需样本小、学习能力强的支持向量机回归原理建立各工况下的局部模型,再利用自适应粒子群算法求得各局部模型最优加权值,建立预测全局多模型,从而实现复杂生产过程的质量预测。通过TE过程的正常模式这一复杂过程对所建立的多模型预测方法进行仿真预测,并与局部模型、BP神经网络模型和支持向量机模型进行对比研究,结果表明本模型的预测效果相对其他预测方法较好,相对误差控制在1%左右,同时表明其预测方法的可行性和有效性。
     复杂生产过程很难用单纯抽象的数学模型进行描述,生产商希望通过虚拟仿真的方式动态模拟生产过程,对生产过程的各质量因素进行分析,得到影响其质量问题的因素。本文在沥青混合料生产过程的级配控制的数学模型框架下,利用Arena仿真软件建立人机交互式界面,根据实际生产情况进行参数设定,模拟特定情况下的沥青混合料生产情况。并通过Arena软件内嵌的编译模块,编写不同的控制方法,实现沥青混合料质量控制的多因素控制逻辑,并利用图像输出实时观察生产状态的变化。模型试验结果表明系统优化控制与控制策略相关,适合的控制策略能使系统大幅度降低质量问题,仿真控制方法为沥青混合料级配的质量控制提供了很好的途径,极大地缩短产品的试验时间,及时控制级配偏差,有利于提高产品的整体质量,表明虚拟过程质量控制方法是复杂生产过程质量控制的一种有效途径。
     本文利用支持向量机、粒子群算法、核主元分析、小波包分析等智能方法以及仿真技术进行复杂生产过程质量控制研究,主要从故障检测、控制图模式识别、质量预测和虚拟控制四个方面实现复杂生产过程质量的智能控制。文中所提的方法具有较高的理论价值和生产实践意义,并为后续的研究奠定了坚实的基础。
Quality, as one of the essential factors of the socio-economic development, has been got more and more people's attention. With the development of science and technology, the quality management of increasingly complex production processes has become a major subject of the researchers. Quality management implements all activities of the products or services of quality planning, quality control, quality assurance and quality improvement, which are based on the formulation of quality policy. Process quality control, as a key part of the quality control, is the main stage of the product creation and an effective way to achieve quality management to ensure process quality. With increasingly complex production process, the process has the characteristics of high-dimensional and non-linear data, the uncertainty process model, sub-process interfere with each other and strong coupling, its quality control is more difficult than the traditional production process. In this paper, the complex system theory combined with the diversified, intelligent quality control methods are used to realize the quality control of the complexity production process.
     Support vector machine (SVM) is an intelligent method of machine learning based on VC-dimensional theory of statistical learning theory and structural risk minimization. SVM uses the kernel function to make the nonlinear problem transform to linear problem, which makes it better to solve the small samples, nonlinearity, high dimension and local minima problems, and has greater generalization ability. Particle swarm optimization (PSO) algorithm simulates birds'predatory behavior to search the optimal solution of complex space by the collaboration and competition between individuals, which has the characteristics of simple concept, few control parameters, easy to implement, evolutionary computation and swarm intelligence optimization. PSO is an effective optimization tool to solve integer nonlinear optimization, nonlinear continuous optimization problems and combinatorial optimization problems. In this paper, support vector machine as a tool to create complex production process quality model, the particle swarm algorithm and its improved algorithm are adopted to optimize the parameters of support vector machine and select model optimal solution, so that implement the quality control of complex production process.
     The fault detection of complex production process is a significant problem of quality control. In this paper, wavelet packet transform is chosen as the denoising tools of the process sample data, which uses a multi-hierarchical division method to eliminate the noise and interference of sample data to get the approximation of the original signal, so that extracts the effective data samples. And then, multivariate statistical process monitoring model, which use kernel principal component analysis to make the nonlinear problem transform to linear problem, is proposed to realize the fault detection of complex process. A numerical example and a case study of the Tennessee Eastman (TE) process are used to verify the proposed model, PCA and KPCA fault detection methods are chosen to comparative study, the results show that the proposed method is feasible and efficient; and evidently improves the effect of fault detection.
     Control charts as an effective tool of the statistical process control, the patterns recognition plays an important role in dealing with the complex production process quality problems. For the identification difficulty of control chart mixture pattern, statistical and sharp features of observation data are used as the eigenvalue of quality information, and then principal component analysis as the second feature extraction to get the effective data for the classifier. Multi-class support vector machines apply for recognizing the control chart patterns. And adaptive mutation particle swam optimization is used to optimize the SVM classifier by searching the best values of the parameters of SVM. The six basic patterns and four mixed patterns are used to analyze the proposed model, and the other three methods for comparative study, respectively, neural networks, support vector machine and support vector machines based on principal component analysis. The simulation results show the proposed method has better recognition accuracy compared with other methods. It provides reference value for the control chart pattern recognition research.
     According to the complex production process characteristics of multi-input, multi-output, nonlinear, a multi-model quality prediction approach based on local models is proposed. Firstly, classify the operation condition using the K-means clustering algorithm; then establish the local quality prediction models using support vector machine based on the multiple loading conditions; finally, get the local model weights using the adaptive mutation particle swam optimization, so that obtain the global model to realize the production process quality prediction. A complex processe, the normal mode of the TE process, is used to simulate and verify the proposed multi-model, and then uses local model, BP and SVM model as the comparative study. The results show that the prediction of the model evidently improves the prediction accuracy, which compared to other forecasting methods, and the relative error is controlled about1%. At the same time, the results also show that the proposed method is feasible and efficient.
     The complexity production process is difficult to describe by a purely abstract mathematical model, and manufacturers hope to simulate the production process by virtual simulation, which can analyze the quality factors of the production process and find the factors of its quality problems. Hot mix asphalt (HMA) aggregate gradation control, which based on the frame work of mathematical model, simulates HMA mix aggregates gradation under different production utilizing discrete event simulation software Arena. Multi-factors control logic is established by the embedded compiler module of Arena software, and then image output is used to observe the production status changes. The simulations results show that system optimize control results are related with control strategies, the suitable control strategy can make a significant reduction in the quality problems. Simulation control method provides a good way for HMA quality control. It greatly shortens the test time, timely controls gradation deviation, and improves the overall quality of the product. It can be better to reduce the deviation for improving the production quality and provides an efficient way for HMA gradation control in the real world.
     In this paper, the intelligent methods, like support vector machines, particle swam optimization, kernel principal component analysis, wavelet packet analysis and simulation technology, are used for quality control of complex production process, Control chart pattern recognition, fault detection, quality prediction and virtual intelligent control are adopted to implement quality control of complex production process. The proposed methods have high theoretical value and production practical significance, and laid a solid foundation for the future study.
引文
[1]赵家黎.基于SOV理论的过程质量控制方法研究[D].天津大学博士学位论文,2006.
    [2]杜云,吴学礼,田强等.复杂工业过程智能协调控制系统的设计与应用[J].河北科技大学学报,2005,26(2):146-149.
    [3]卢荣德,陈宗海,王雷.复杂工业过程计算机建模、仿真与控制的综述[J].系统工程与电子技术,2002,24(1):52-57.
    [4]Benveniste A, Astrom K J. Meeting the challenge of computer science in the industrial applications of control:An introductory discussion to the special issue [J]. IEEE Trans. Aut. Control,1993,38(7):1004-1010.
    [5]Patton R J, Frank P M, Clark R N. Fault diagnosis in dynamic systems:theory and application [M]. Englewood Clifs:Prentice Hall,1989.
    [6]Frank P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy:A survey and some new results [J]. Automatica,1990,26(3):459-474.
    [7]葛建华,孙优贤.容错控制系统的分析与综合[M].杭州:浙江大学出版社,1994.
    [8]周东华,孙优贤.控制系统尚未故障检测与诊断技术[M].北京:清华大学出版社,1994.
    [9]Iri M, Aoki K, O'Shima E, et al. An algorithm for diagnosis of system failures in the chemical process [J]. Computers and Chemical Engineering,1979,3(4):489-493.
    [10]Wang H Q, Song Z H, Li P. Improved PC A with optimized sensor locations for process monitoring and fault diagnosis [C]//Proceedings of the 39th IEEE Conference on Decision and Control, Sydney,2000:4353-4358.
    [11]Wang H Q, Song Z H, Li P. Fault detection behavior and performance analysis of principal component analysis based process monitoring methods [J]. Industrial & Engineering Chemistry Research,2002,41(10):2455-2464.
    [12]Scholkopf B, Smola A J, Miiller K R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation,1998,10(5):1299-1319.
    [13]姜万录,吴胜强,刘思远.指数加权动态核主元分析法及其在故障诊断中应用[J].机械工程学报,2011,47(3):63-68.
    [14]Chiang L H, Russel E L, Braatz R D. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems,2000,50(2):243-252.
    [15]陈亚华,蒋丽英,郭明等.基于多向Fisher判据分析的间歇过程性能监控[J].吉林大学学报(信息科学版),2004,22(4):384-387.
    [16]He Q Peter, Qin S Joe. A new fault diagnos is method using fault directions in fisher discriminant analysis [J]. AIChE Journal,2005,51(2):555-571.
    [17]赵忠盖,刘飞.因子分析及其在过程监控中的应用[J].化工学报,2007,58(4):970-974.
    [18]Yoo C K, Lee J M, Vanrolleghem P A, et al. On line monitoring of batch processes using multi-way independent component analysis [J]. Chemometrics and Intelligent Laboratory Systems,2004,71(2):151-163
    [19]Kano M, Tanaka S, Hashimoto I, et al. Monitoring independent component for fault detection [J]. AIChE Journal,2003,49(4):969-976.
    [20]Lee J M, Yoo C K, Lee I B. Statistical process monitoring with independent component analysis [J]. Journal of Process Control,2004,14(5):467-485.
    [21]Bach F R, Jordan M I. Kernel independent component analysis [J]. Journal of Machine Learning Research,2002, (3):1-48.
    [22]李晗,箫德云.基于数据驱动的故障诊断方法综述[J].控制与决策,2011,26(1):1-10.
    [23]Kano M, Nagao K, Hasebe S. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem [J]. Computers and Chemical Engineering,2002,26(2):161-174.
    [24]Bakshi B R. Multiscale PCA with application to multivariate statistical process monitoring [J]. American Institute of Chemical Engineering Journal,1998, 44(7):1596-1610.
    [25]Kramer M A. Non-linear principal component analysis using auto-associative neural networks [J]. AIChE Journal,1991,37(2):233-243.
    [26]Dong D, Mcavoy T J. Nolinear principal component analysis-based on pricipal curves and neural networks [J].Computers and Chemical Engineering,1996,2(1):65-78.
    [27]Antory D, Kruger U, Irwin G W, et al. Industrial process monitoring using nonlinear principal component models[C]//Proceedings of Second IEEE in Ernational Conference on Intelligent Systems, Kine,2004:293-298
    [28]Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science,2004,59(1):223-234.
    [29]Cho J H, Lee J M, Choi S W, et al. Fault identification for process monitoring using kernel principal component analysis[J]. Chemical Engineering Science,2005,60(1): 279-288.
    [30]Choi S W, Lee I B. Nonlinear dynamic process monitoring based on dynamic kernel PCA [J]. Chemical Engineering Science,2004,59(24):5897-5908.
    [31]HyVarinen A, Oja E. Independent component analysis:algorithms and applications [J]. Neural Networks,2000,13(4-5):411-430.
    [32]Duncan A J. Quality control and industrial statistics (5th edition) [M]. Homewood: Irwin,1986.
    [33]Cheng C S, Hubele N F. Design of knowledge-base expert system for statistical process control [J].Computers and Industrial Engineering,1992,22(4):501-517.
    [34]Swift J A, Mize J H. Out-of-control pattern recognition and analysis for quality control charts using lisp-based systems [J]. Computers and Industrial Engineering,1995, 28(1):81-91.
    [35]Guh R S. Integrating artificial intelligence into on-line statistical process control [J]. Quality and Reliability Engineering International,2003,19(1):1-20.
    [36]Chang S L, Aw C A. A neural fuzzy control chart for detecting and classifying process mean shifts [J]. International Journal of Production Research,1996,34(8):2265-2278.
    [37]Anagun A S. A neural network applied to pattern recognition in statistical process [J]. Control. Computers&Industrial Engineering,1998,35(1-2):185-188.
    [38]Wang C H, Kuo W. Identification of control chart patterns using wavelet filtering and robust fuzzy clustering [J]. Journal of Intelligent Manufacturing,2007,18 (3): 343-350.
    [39]Wang C H, Guo R S, Chiang M H, et al. Decision tree based control chart pattern recognition [J]. International Journal of Production Research,2008,46(17):124-134.
    [40]杨世元,吴德会,苏海涛.基于PCA和SVM的控制图失控模式智能识别方法[J].系统仿真学报,2006,18(5):1314-1318.
    [41]吴常坤,赵丽萍.基于小波分析和SVM的控制图模式识别[J].中国机械工程,2010,21(13):1572-1576.
    [42]Ranaee V, Ebrahimzadeh A. Control chart pattern recognition using a novel hybrid intelligent method [J]. Applied Soft Computing,2011,11(2):2676-2686.
    [43]Montgomery D C. Introduction to Statistical Quality Control [M]. New York:John Wiley &Sons,2001.
    [44]Guh R S, Tannock J D T. Recognition of control chart concurrent patterns using a neural network approach [J]. International Journal of Production Research,1999,37(8): 1743-1765.
    [45]Chen Z, Lu S, Lam S. A hybrid system for SPC concurrent pattern recognition [J]. Advanced Engineering Informatics,2007,21(3):303-310.
    [46]Yang J H, Yang M S. A control chart pattern recognition scheme using a statistical correlation coefficient method [J]. Computers & Industrial Engineering,2005,48(2): 205-221.
    [47]Lu C J, Shao Y E, Li P H. Mixture control chart patterns recognition using independent component analysis and support vector machine [J]. Neurocomputing,2011, 74(11):1908-1904.
    [48]Yule G U. On a method of investigating periodicities in disturbed series with special reference to Wolfer'sunspot numbers [J]. Phil. Trans. R. Soc. London, A,1927,226: 267-298.
    [49]Walker G. On Periodicity in series of related terms [J]. Proc. R. Soc. London. A,1931, 131:518-532.
    [50]Hawkins D M. Multivariate quality control based on regression adjusted variables [J]. Technometrics,1991,33(1):61-75.
    [51]Mason R L, Tracy N D, Young J C. Decomposition of T2 for multivariate control chart interpretation [J]. Journal of Quality Technology,1995,27(2):99-108.
    [52]Hawkins D M. Regression adjustment for variables in multivariate quality control [J]. Journal of Quality Technology,1993,25(3):170-182.
    [53]Wade M R, Woodall W H. A review and analysis of cause selecting control charts [J]. Journal of Quality Technology,1993,25(3):161-169.
    [54]陈冰,李山,吴宝海等.基于尺寸关联和偏最小二乘回归的多工序质量分析与预测[J].计算机集成制造系统,2009,15(2):389-398.
    [55]王惠文,王劼,黄海军.主成分回归的建模策略研究[J].北京航空航天大学学报,2008,34(6):661-664.
    [56]谢代梁,王保良,黄志尧等.主成分回归在中药过程软测量中的应用研究[J].仪器仪表学报,2004,25(S3):671-672.
    [57]Klir G J, Yuan B. Fuzzy sets and fuzzy logic theory and applications [M]. New Jersy: Prentice Hall,1995.
    [58]Nauck D, Klawonn F, Kruse R. Foundations of neuro-fuzzy systems [M]. New York: Wiley and Sons,1997.
    [59]Ge Z, Chen T, Song Z. Quality prediction for polypropylene production process based on CLGPR model [J]. Control Engineering Practice,2011,19(5):423-432.
    [60]左宪章,康健,李浩等.故障预测技术综述[J].火力与指挥控制,2010,35(1):1-5.
    [61]邓聚龙.灰理论基础[M].武汉:华中理工大学出版社,2002.
    [62]Shu L J, Tsung F, Tsui K L. Run-length performance of regression control charts with estimated parameters [J]. Journal of Quality Technology,2004,36(3):280-292.
    [63]Hornik K, Stinchcombe M, White H. Multilayer feed forward networks are universal approximators [J]. Neural Networks,1989,5(5):78-93.
    [64]Poggio T, Girosi F. Networks for approximation and learning [C]//Proceedings of the Institute of Electrical and Electronics Engineers (IEEE),1990,78(9):1481-1497.
    [65]王伟,吴敏,雷琪等.炼焦生产过程质量产量能耗的集成优化控制[J].化工学报,2008,59(7):1749-1754.
    [66]刘洪波,张宏伟,闫静静.基于模糊聚类理论的水量短期预测方法[J].哈尔滨工业大学学报,2009,41(12):162-165.
    [67]董华,杨世元,吴德会.基于模糊支持向量机的小批量生产质量智能预测方法[J].系统工程理论与实践,2007,27(3):98-104.
    [68]Bates J M, Granger C W J. The combination of forecasts [J]. Operations Research Quarterly,1969,20(4):451-468.
    [69]Fu M Y. Minimum switching control for adaptive tracking[C]//Proceedings of the IEEE Conference on Decision and Control,1996,4:11-13.
    [70]Narendra K S, George K. Adaptive control of simple nonlinear systems using multiple models[C]//Proceedings of the American Control Conference,2002:8-10.
    [71]刘吉臻,陈彦桥,曾德良等.500MW单元机组模糊多模型协调控制系统[J].动力工程,2003,23(6):2790-2793.
    [72]李柠,李少远.基于LPE算法的多模型建模方法[J].控制与决策,2002,17(1):11-14.
    [73]Narendra K S, Balakrishnan J. Adaptive control using multiple models [J]. IEEE Trans on Automatic Control,1997,42(2):171-187.
    [74]孙建平,苑一方.复杂过程的多模型建模方法研究[J].仪器仪表学报.2011,32(1):132-137.
    [75]李小宁.制造系统建模与仿真软件研究及进展[J].兵工自动化,1996,(3):1-6.
    [76]陈旭,武振业.敏捷制造环境下基于面向对象的柔性裁剪仿真建模研究[J].计算机应用研究,2000,(12):44-46.
    [77]王志凌,黎志成,胡斌.辅助企业促销组合决策的Arena模拟系统研究[J].华中科技大学学报(自然科学版),2002,30(7):77-79.
    [78]孙宝凤,李星,李建华等Arena和System Dynamics在供应链仿真领域的应用[J].吉林大学学报,2006,36(5):829-834.
    [79]侯杨,范秀敏.基于仿真的制造系统对象建模及其应用[J].计算机集成制造系统,2001,7(5):42-46.
    [80]张炎亮.面向大规模定制生产的质量控制问题研究[D].天津大学博士学位论文,2006.
    [81]樊树海,肖田元,楼佩煌.一个虚拟质量控制系统的设计与实现[J].机械科学与技 术,2004,23(10):1178-1180.
    [82]Kabadurmus O, Pathak O, Smith, J S, et al. A simulation methodology for online process control of hot mix asphalt (HMA) production [C]//Proceedings of the 2010 Winter Simulation Conference,2010:1522-1533.
    [83]修春波.人工智能原理[M].北京:机械工业出版社,2011.
    [84]丁世飞.人工智能[M].北京:清华大学出版社,2011.
    [85]段海滨,张祥银,徐春芳.仿生智能计算[M].北京:科学出版社,2011.
    [86]彭勇刚.模糊控制工程应用若干问题研究[D].浙江大学博士学位论文,2008.
    [87]Zadeh L A. Fuzzy sets [J]. Information and control,1965,8(3):338-353.
    [88]Mandani E H. Application of fuzzy algorithms for the control of a dynamic plant [J]. Proc.IEEE,1974,121(12):158-1588.
    [89]Holmblad L P, Ostergard J J. Control of cement kiln by fuzzy logic [J]. Journal of Mathematical Analysis and Application,1979,67:490-512.
    [90]李平.非线性系统自适应模糊控制方法研究[D].东北大学博士学位论文,2009.
    [91]张青贵.人工神经网络导论[M].北京:中国水利水电出版社,2004.
    [92]李海生.支持向量机回归算法与应用研究[D].华南理工大学博士学位论文,2005.
    [93]Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters,1999,9(3):293-300.
    [94]Olvi L M, David RM. Successive over relaxiation for support vector machines [J]. Neural Networks,1999,10(5):1032-1037.
    [95]Lau K W, Wu Q H. Online training of support vector classifier [J]. Pattern Recognition, 2003,36(8):1913-1920.
    [96]鄂加强.智能故障诊断及其应用[M].长沙:湖南大学出版社,2006.
    [97]Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks, Washington,1995:1942-1948.
    [98]段晓东,王存睿,刘向东.粒子群算法及其应用[M].沈阳:辽宁大学出版社,2007.
    [99]Shi Y, Eberhart R C. A modified particle swarm optimizer [C]//Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage,1998:1945-1950.
    [100]Shi Y, Eberhart R C. Empirical study of particle swarm optimization [C]//Proceedings of the Congress on Evolutionary Computation,1999:1945-1950.
    [101]Suresh S, Sujit P B, Rao A K. Particle swam optimization approach for multi-objective composite box-beam design [J]. Composite Structures,2007,81(4):598-605.
    [102]Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swam optimization [J]. Natural Computing,2002, 1(2-3):235-306.
    [103]Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proceedings of the Congress on Evolutionary Computation, San Diego,2000:84-88.
    [104]刘衍民.粒子群算法的研究及应用[D].山东师范大学博士学位论文,2011.
    [105]蔡自兴,徐光祐.人工智能及其应用[M].北京:清华大学出版社,2004.
    [106]杨海澜,吴毅雄.焊接质量控制的主成分分析人工神经网络[J].上海交通大学学报,2003,37(10):1536-1539.
    [107]吴少雄.智能统计工序质量控制的体系研究[J].计算机集成制造系统,2006,12(11):1832-1837.
    [108]吴少雄.基于小波概率神经网络的控制图模式识别[J].中国机械工程,2006,17(s):135-139.
    [109]吴少雄,黄恩洲.基于支持向量机的控制图在线检测和分析系统的研究[J].中国机械工程,2006,17(24):2562-2567.
    [110]吴德会.基于多分类支持向量机的智能辅助质量诊断研究[J].系统仿真学报,2009,21(6):1689-1696.
    [111]王晶,靳其兵,柳林.面向多输入输出系统的支持向量机回归[J].清华大学学报(自然科学版),2007,47(S2):1737-1741.
    [112]徐辰华,吴敏.铅锌烧结过程质量产量的智能集成优化控制[J].控制理论与应用,2008,25(4):688-692.
    [113]姜兴宇,王世杰,赵凯等.面向网络化制造的智能工序质量控制系统[J].机械工程学报,2010,46(4):186-194.
    [114]张根保,纪富义,任显林等.面向产品制造过程的关键质量特性免疫预防控制模型[J].计算机集成制造系统,2011,17(4):791-799.
    [115]张赤斌,王海燕.多工序质量检验计划的多目标优化蚁群算法研究[J].中国机械工程,2006,17(11):1166-1169.
    [116]郭于明,孙延明,郑时雄.基于遗传算法的制造网络服务质量优化[J].华南理工大学学报(自然科学版),2007,35(8):59-64.
    [117]王建国,阳建宏,云海滨等.改进粒子群优化神经网络及其在产品质量建模中的应用[J].北京科技大学学报,2008,20(10):1188-1193.
    [118]杨耿煌,温渤婴.基于量子行为粒子群优化-人工神经网络的电能质量扰动识别[J].中国电机工程学报,2008,28(10):123-129.
    [119]李钢.基于SPC的计算机集成质量控制系统研究[D].合肥工业大学博士学位论文,2007.
    [120]张猛.基于统计过程控制方法的生产提前期优化与控制[D].天津大学博士学位论文,2009
    [121]张炎亮.面向农业机械大规模定制的质量管理问题研究[J].农机化研究,2007, (8):43-45.
    [122]龚益鸣.现代质量管理(第二版)[M].北京:清华大学出版社,2007.
    [123]韩直能,李喜军,郑志宏.现代质量管理统计方法[M].北京:科学出版社,2007.
    [124]郑唯唯.过程质量控制智能化体系与方法研究[D].西北工业大学博士学位论文,2006.
    [125]李昊.现代质量管理在永磁电机制造中的应用研究[D].沈阳工业大学硕士学位论文,2007.
    [126]仲崇权,董西路,张立勇等.基于累积和控制图的自适应沸腾状态检测[J].计量学报,2007,28(1):52-55.
    [127]Castagliola P, Maravelakis P E. A CUSUM control chart for monitoring the variance when parameters are estimated [J]. Journal of Statistical Planning and Inference,2011, 141(4):1463-1478.
    [128]张黎.(?)控制图和EWMA控制图的灵敏性分析[J].辽宁工程技术大学学报,2005,24(4):602-504.
    [129]Chang C C, Pan T H, Wong D SH et al. A G&P EWMA algorithm for high-mix semiconductor manufacturing processes [J]. Journal of Process Control,2011,21(1): 28-35.
    [130]李荣雨.基于PCA的统计过程监控研究[D].浙江大学博士学位论文,2007.
    [131]Woodall W H, Adams B M. The statistical design of CUSUM charts [J]. Quality Engineering,1993,5(4):55-57.
    [132]Alwan L C, Roberts H V. Time-series modeling for statistical Process control [J]. Journal of Business and Economic Statistics,1988,6(1):87-95.
    [133]Lucas J M, Saccucci M S. Exponentially weighted moving average control schemes: properties and enhancements [J]. Technometrics,1999,24(3):199-205.
    [134]Wang C C. A comparison study between fuzzy time series model and ARIMA model for forecasting Taiwan export [J]. Expert Systems with Applications,2011,38(8): 9296-9304.
    [135]苏卫星,朱云龙,胡琨元等.基于模型的过程工业时间序列异常值检测方法[J].仪器仪表学报,2012,33(9):2080-2087.
    [136]余建波.基于智能学习模型的制造过程质量控制理论与方法论研究[D].上海交通大学博士学位论文,2009.
    [137]李英伟.基于增量改进BP神经网络微波深度干燥模型及应用研究[D].昆明理工大学博士学位论文,2011.
    [138]朱锦杰,童树庭,郭凤姣.BP神经网络模型对浮法退火窑内玻璃温度的预测[J]. ,2006,9(3):377-380.
    [139]Chen W C, Tai P H, Wang M W. A neural network-based approach for dynamic quality prediction in a plastic injection molding process [J]. Journal of Process Control,2008, 35(3):843-849.
    [140]初红艳,李鹏,蔡力钢.基于控制图和神经网络的印刷过程质量智能监控技术[J].北京工业大学学报,2012,38(3):340-344.
    [141]张国翊,胡铮.改进BP神经网络模型及其稳定性分析[J].中南大学学报(自然科学版),2011,42(1):115-124.
    [142]张永胜.基于模糊控制理论的同步带张力控制系统[D].西南交通大学硕士学位论文,2012.
    [143]黄赞武,魏学业,刘泽.基于模糊神经网络的轨道电路故障诊断方法研究[J].铁道学报,2012,34(11):54-59.
    [144]肖燕彩,张清.基于模糊支持向量机的变压器故障诊断[J].北京交通大学学报,2012,36(1):117-121.
    [145]Xie L J, Gu N, Li D L et al. Concurrent control chart patterns recognition with singular spectrum analysis and support vector machine [J]. Computers & Industrial Engineering, 2013,64(1):280-289.
    [146]Wu Q, Law R, Wu S Y. Fault diagnosis of car assembly line based on fuzzy wavelet kernel support vector classifier machine and modified genetic algorithm [J]. Journal of Process Control,2011,38(8):9096-9104.
    [147]白鹏,张喜斌,张斌等.支持向量机理论及工程应用实例[M].西安:西安电子科技大学出版社,2008.
    [148]邓乃扬,田英杰.支持向量机—理论、算法与拓展[M].北京:科学出版社,2009.
    [149]杨志民,刘广利.不确定性支持向量机原理及应用[M].北京:科学出版社,2007.
    [150]Blanchard G, Bousquet O, Massar P. Statistic performance of support vector machines [J]. Annals of Statistics,2008,36(2):489-531.
    [151]Li D C, Fang Y H. An algorithm to cluster data for efficient classification of support vector machines [J]. Expert Systems with Applications,2008,34(3):2013-2018.
    [152]Lin C J. Formulations of support vector machines:A note from an optimization point of view [J]. Neural Computation,2001,13(2):307-317.
    [153]崔伟东,周志华,李星.支持向量机研究[J].计算机工程与应用,2001,(1):58-61.
    [154]Nello C, John S. An introduction to support vector machines and other kernel-based learning methods [M]. Cambridge:Cambridge University Press,2000.
    [155]安金龙.支持向量机若干问题的研究[D].天津大学博士学位论文,2004.
    [156]张春华.支持向量机中最优化问题的研究[D].天津大学博士学位论文,2004.
    [157]邓乃扬,田英杰.数据挖掘中的新方法—支持向量机[M].北京:科学出版社,2004.
    [158]郑严.基于智能算法的结构可靠性分析及优化设计研究[D].西南交通大学博士学位论文,2011.
    [159]沈林成,霍霄华,牛轶峰.离散粒子群优化算法研究现状综述[J].系统工程与电子技术,2008,30(10):1986-1994.
    [160]Clerc, M. The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C]//Proceedings of the Congress on Evolutionary Computation, Washington. IEEE Service Center,1999:1927-1930.
    [161]吕振肃,侯志荣.基于自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420.
    [162]Hu X H, Eberhart R C. Adaptive particle swarm optimization:detection and response to dynamic systems [C]//Proceedings of the 2002 Congress on Evolutionary Computation, 2002,2:1666-1670.
    [163]He R, Wang Y J, Wang Q, et al. Improved particle swarm optimization based on self-adaptive escape velocity [J]. Journal of Software,2005,16(12):2036-2044.
    [164]蒋毅,张勤.基于自适应变异粒子群算法的分布式电源规划[J].电力学报,2012,27(3):194-198.
    [165]蔡志端,毛建华.基于模拟退火粒子群算法的钎焊炉调度优化[J].制造业自动化,2012,34(10):78-84.
    [166]葛志强.复杂工况过程统计监测方法研究[D].浙江大学,博士学位论文,2009.
    [167]Miller P, Swanson R E, Heckler C F. Contribution plots:the missing link in multivariate quality control [C]//Proceedings of the 37th Annual Fall Conference ASQC, Rochester, 1993.
    [168]Runger G C, Alt F B, Montgomery D C. Contributors to a multivariate statistical process control chart signal [J]. Communications in Statistics-Theory and Methods, 1996,25(10):2203-2213.
    [169]Westerhuis J, Gurden S P, Smilde A K. Generalized contribution plots in multivariate statistical process monitoring [J]. Chemometrics and Intelligent Laboratory Systems, 2000,51(1):95-114.
    [170]Ergon R. Informative score-loading-contribution plots for multi-response process monitoring [J]. Chemometrics and Intelligent Laboratory Systems,2009,95(1):31-34.
    [171]Zhang M, Cheng W M. Fault diagnosis method based on wavelet packet transform and kernel principal component analysis [J]. Journal of Computational Information Systems, 2012,8(14):5835-5842.
    [172]Lieftucht D, Kruger U, Xie L, Littler T, Chen Q, Wang S Q. Statistical monitoring of dynamic multivariate processes-part2. Identifying fault magnitude and signature [J]. Industrial & Engineering Chemistry Research,2006,45(5):1677-1688.
    [173]Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems [M]. London:Springer-Verlag,2001.
    [174]Sironi S, Capelli L, Centola P, et al. Development of a system for the continuous monitoring of odours from a composting plant:Focus on training, data processing and results validation methods [J]. Sensors and Actuators B:Chemical,2007,124(2): 336-346.
    [175]程文波,王华军.基于改进阈值的小波包图像去噪方法研究[J].湖南科技大学学报(自然科学版),2009,24(1):77-80.
    [176]袁海燕,傅正财,陈勇斌.小波包分析法在提高冲击试验波形测量准确度中的应用[J].上海交通大学学报,2010,44(7):935-939.
    [177]张德丰.Matlab小波分析[M].北京:机械工业出版社,2009
    [178]冼广铭,曾碧卿,唐华,肖应旺.小波包结合支持向量机的故障诊断方法[J].计算机工程,2009,35(4):212-214.
    [179]Shao J D, Rong G, Lee J M. Learning a data-dependent kernel function for KPCA-based nonlinear process monitoring [J]. Chemical Engineering Research and Design,2009, 87(11):1471-1780.
    [180]薄翠梅.过程控制系统的故障检测诊断与容错控制[D].南京理工大学博士学位论文,2008.
    [181]李学军,杨大炼,郭灯塔等.基于基座多传感核主元分析的故障诊断[J].仪器仪表学报,2011,32(7):1551-1557.
    [182]陈勇,梁军,陆浩.基于PCA的多变量控制系统的故障监测与诊断[J].工程设计学报,2002,9(5):257-260.
    [183]周福娜.基于统计特征提取的多故障诊断方法及应用研究[D].上海海事大学博士学位论文,2009.
    [184]Zhang Y W. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM [J]. Chemical Engineering Science,2009,64(5):801-811.
    [185]Ge Z Q, Song Z H. A distribution-free method for process monitoring [J]. Expert Systems with Applications,2011,38(8):9821-9829.
    [186]Hwarng H B, Hubele N F. Back-propagation pattern recognizers for X control charts: methodology and performance [J]. Computers &Industrial Engineering,1993,24(2): 219-235.
    [187]Ranaee V, Ebrahimzadeh A, Ghaderi R. Application of the PSO-SVM model for recognition of control chart patterns [J]. ISA Transaction,2010,49(4):577-586.
    [188]Costache G N, Corcoran P, Puslecki P. Combining PCA-based datasets without retraining of the basis vector set [J]. Pattern Recognition Letters,2009,30(16): 1441-1447.
    [189]吴德会.基于质量信息集成的智能质量控制技术研究[D].合肥工业大学博士学位论文,2006.
    [190]Chen J H, Liao C M. Dynamic process fault monitoring based on neural network and PCA [J]. Journal of Process Control,2002,12(2):277-289.
    [191]李峻金,向阳,芦英明等.粒子群聚类算法综述[J].计算机应用研究,2009,26(12),4423-4427.
    [192]方媛,车启凤.数据挖掘之聚类算法综述[J].河西学院学报,2012,28(5):72-76.
    [193]向培素.聚类算法综述[J].西南民族大学学报(自然科学版),2011,37(5):112-114.
    [194]陈志明.半监督学习算法在农用地分等中的应用[J].计算机工程与设计,2008,29(23):6133-6135.
    [195]胡良谋,曹克强,徐浩军等.支持向量机故障诊断及控制技术[M].北京:国防工业出版社,2011.
    [196]McAvoy T J, Ye N. Base control for the Tennessee Eastman problem [J]. Computers and Chemical Engineering,1994,18(5):383-413.
    [197]Lua N Y, Yang Y, Gao F R, et al. Multirate dynamic inferential modeling for multivariable processes [J]. Chemical Engineering Science,2004,59(4):855-864.
    [198]彭扬,伍蓓.物流系统优化与仿真[M].北京:中国物资出版社,2007.
    [199]张弘.基于Arena的制造过程仿真研究[D].北方工业大学硕士学位论文,2009.
    [200]武振业,陈旭.基于可视化仿真的动态联盟组成方案选择研究[J].计算机应用研究,2000,17(8):11-14.
    [201]Kelton W D, Sadowski R P, Sturrock D A, et al. Simulation with Arena (3 edition) [M]. McGraw-Hill Science/Engineering/Math press, Boston,2003.
    [202]彭余华,沙爱民,梁汉成等.级配对沥青混合料集料离析的影响[J].交通运输工程学报,2008,8(5):44-48.
    [203]West R. Development of rapid QC procedures for evaluation of HMA properties during production. NCAT Report 05-01.2005.
    [204]White G C, Mahoney J P, Turkiyyah G M, et al. Online tools for hot-mix asphalt monitoring [J]. Transportation Research Record,2002, (1813):124-132.
    [205]Gopalakrishnan K, Shashidhar N, Zhong XX. Study of compaction in hot-mix asphalt using computer simulations [J]. International Journal of computer Science,2006,1(4): 239-245.
    [206]Rockwell Software, Inc. Arena User's Guide [M]. USA:Rockwell Software, Inc,2005.
    [207]Sadowski D, Bapat V. The Arena product family:enterprise modeling solutions [C]// Proceedings of the 1999 Winter Simulation Conference. USA:Simulation Conference, 1999:163-169.
    [208]Heitzman M. Development of a hot mix plant production process control system. NCAT Draft Report (unpublished),2009.
    [209]Fioroni M M, Franzese L A G., Zanin C E, et al. Simulation of continuous behavior using discrete tools:ore conveyor transport [C]// Proceedings of the 2007 Winter Simulation Conference,2007,1655-1662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700