用户名: 密码: 验证码:
高速铁路隧道基底软岩动力特性及结构安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高速铁路建设的快速发展,必然会出现越来越多穿越软弱地层的高速铁路隧道。为了满足高速列车运行的高标准,对隧道底部基岩的动力稳定性和衬砌结构的安全性提出了更高的要求,高速铁路隧道结构动力学问题日益突出。本文针对高速铁路隧道建设中亟需解决的软岩条件下隧道动力学问题,依托国家重点基础研究发展计划973项目(2011CB013802)、国家自然科学基金项目(50808176)和铁道部科技开发计划项目(2008G031-17),采用理论分析、室内试验以及数值计算相结合的方法,系统地研究了列车振动荷载作用下高速铁路隧道基底软岩的动力响应、损伤特性和动变形累积过程及发展规律,深入分析了基底状况对高速铁路隧道衬砌结构受力特性及长期性能的影响。主要研究内容与成果如下:
     (1)基于弹塑性理论和损伤理论,建立了混凝土和软岩的损伤演化方程,将损伤引入到双曲线型Drucker-Prager准则中,构建了考虑混凝土和软岩刚度下降和强度劣化的弹塑性损伤模型,推导了相应的本构积分算法迭代格式,利用ABAQUS有限元软件的UMAT子程序完成了模型的程序开发,并结合已有的试验结果验证了模型的有效性。
     (2)研制了能考虑地下水渗流和动载耦合作用的围岩循环三轴试验系统,通过多工况的软岩、软基岩与混凝土构件的循环三轴试验,确定了其累积变形规律及不同因素的影响程度,建立了列车振动荷载长期作用下的软岩塑性累积变形预测模型。试验结果表明:富水软岩不可逆变形随着动应力、静偏应力的提高而增大;随着加载频率的降低而增大;随着围压的增大而变大;地下水条件以及基底状况对软岩的动变形特性影响显著。
     (3)采用开发的混凝土和软岩弹塑性损伤模型,系统地探讨了隧道底部基岩在不同行车速度和隧道底部结构型式下的动力响应、动力损伤分布特征及发展规律。结果表明:隧道列车振动的影响深度约为基底以下5m范围。行车速度的改变对隧道底部基岩加速度的影响最大,增加仰拱厚度的减振效果不如改变仰拱矢跨比的效果明显;仰拱厚度的改变对基岩动应力的影响最大;随着仰拱矢跨比的减小,结构逐渐变得扁平,致使基岩动应力和损伤值增大。
     (4)针对高速铁路隧道V级围岩及富水地段,系统分析了高速铁路隧道地基长期累积变形问题。研究得出:隧道地基的累积变形随着列车运行速度的增加有所增大,随着仰拱矢跨比和仰拱厚度的增大而逐渐减小。基底围岩是否积水软化对隧道的长期累积变形影响显著。本文中计算的各种行车速度、仰拱矢跨比和仰拱厚度下,高速铁路隧道地基工后沉降能满足高速列车长期运营对无碴轨道平顺度的要求。
     (5)采用动力有限元计算,研究了隧道底部基岩软化和基底脱空对隧道结构受力状态的影响;在分析损伤累积理论的基础上,提出了一种幂函数形式的非线性损伤累积准则,预测了高速铁路隧道衬砌结构的疲劳寿命,量化了基底状况对衬砌结构长期性能的影响程度和发展趋势,提出了改善高速铁路隧道使用寿命的措施。
With the rapid development of high-speed railway construction in China, more and more high-speed railway tunnels which cross through soft ground are currently being built. In order to meet the high standards of high-speed trains running in the tunnel, more and more requirements were set for the dynamic stability of the bottom bedrock and the safety of the lining structure of the tunnel. Therefore, the dynamics of the high-speed railway tunnel structure have become increasingly prominent.
     According to the dynamical problems of the high-speed railway tunnel in soft rock conditions, the dynamic response, damage characteristics and the process of dynamic strain and the law of cumulative plastic deformation of the base soft rock are investigated by using methods as theoretical analysis, laboratory test and numerical calculation. The influence of the bed situation on the force status and the long-term performance of railway tunnel lining structure are further studied in this dissertation. The dissertation is granted from the Major State Basic Research Development Program of China(NO:2011CB013802), the National Natural Science Foundation of China(NO:50808176), and the Science and Technology Development Plan Project of the Ministry of Railways. The main research contents and conclusions are as follows:
     (1) Based on the elastoplastic damage theory, the damage equations of concrete and soft rock are established, and the damage evolution equations are derived respectively. By introducing the damage variables into the hyperbolic Drucker-Prager criteria, the elastoplastic damage models are constructed which can be taken into account the stiffness and strength degradation of concrete and soft rock. The constitutive integration algorithm of the damage models is derived, and the program development of the models is completed by using the UMAT subroutine in ABQUS finite element software. Comparing with the results of previous tests, effectiveness of the proposed models is verified.
     (2) A soft rock cyclic triaxial testing system is developed which can be considered the impact of confining pressure and groundwater seepage, the dynamic deformation tests of soft rock with the influence of dynamic stress, static deviator stress, vibration frequency, confining pressure and groundwater are carried out by using this system. The laws of dynamic strain of water-rich soft rock and the influence degree of various factors on the accumulative deformation are obtained, and the accumulated plastic strain prediction model has been established. The cumulative deformation law of the composite member with soft rock and concrete is studied by the dynamic tests under different combination state.
     The test results show that the irreversible deformation of soft rock increases with the increasing of dynamic stress, static deviator stress and confining pressure, reduces with the increasing the vibration frequency. It is affected significantly with the changing of the underground water condition and the bed situation.
     (3) Dynamic responses and damage characteristics of bedrock are analyzed systemically in different conditions, such as the train running speed, the types of tunnel base structure and so on.
     The results show that the influence depth caused by train vibration in tunnel is about5m below the basement. Compared dynamic stress response with acceleration response, the changes of train speed has most influence on bedrock acceleration, and the changes of invert arch thickness on dynamic stress. Changing the invert arch rise-span ratio is more efficiency than increasing the thickness of invert arch in the way of reducing vibration effect.
     (4) Taking the high-speed railway tunnel in V class surrounding rock in water-abundant ground as the research object, the long-term cumulative deformation behavior of the tunnel in soft bedrock is analyzed with the cumulative plastic strain prediction model.
     It can be concluded that the cumulative deformation of tunnel foundation has been increased with the increasing of train speed, the decreasing of invert arch rise-span ratio and thickness. It is affected significantly when the bedrock softening. The calculation results also indicate that long-term settlement of tunnel in soft bedrock is enough to meet the requirements of the smoothness of ballastless track.
     (5) The influence of the bed situation on the force status of railway tunnel structure is studied by using dynamic numerical method. Meanwhile, based on the damage cumulative theory, a power-type equation of the non-linear damage cumulative criteria is proposed to predict the fatigue life of high-speed railway tunnel structures in different condition. The influence of the bed situation on the long-term performance and development trends of the tunnel structure is further analyzed. And then, some effective measures are put forward to improve the life of tunnel.
引文
[1]何华武.中国高速铁路的创新与发展[J].中国铁路,2010,(12):5-8.
    [2]黄娟.基于损伤理论的高速铁路隧道振动响应分析及疲劳寿命研究[D].长沙:中南大学,2010.
    [3]朱万听,李兰勤.隧道基底病害现状及成因分析[J].现代隧道技术,2001,38(5):42-44.
    [4]陈祖华,周应华.即有线隧道底部病害的综合整治[J].铁道标准设计,2002,(4):36-37.
    [5]施成华,彭立敏,黄娟.铁路隧道基底病害产生机理及防治措施[J].中国铁道科学,2005,26(4):62-67.
    [6]程学武,董敬.隧道内整体道床的破裂原因分析及整治[J].铁道工程学报,2009,128(5):64-68.
    [7]黄茂松,李进军,李兴照.饱和软粘土的不排水循环累积变形特性[J].岩土工程学报,2006,28(7):891-895.
    [8]Metrikine A V, Vrouwenvelder A C W M. Surface Ground Vibration Due to Moving Train in a Tunnel:Two-Dimensional Model[J]. Journal of Sound,2000, 234(1):43-46.
    [9]Forrest J A, Hunt H E M. A three-dimensional model for calculation of train-induced ground vibration[J]. Journal of Sound and Vibration,2006,294(3): 678-709.
    [10]Forrest J A, Hunt H E M. Ground vibration generated by trains in underground tunnels[J]. Journal of Sound and Vibration,2006,294(4):706-736.
    [11]Hussein M F M, Hunt H E M. A numerical model for calculating vibration from a railway tunnel embedded in a full-space [J]. Journal of Sound and Vibration, 2007,305(2):401-431.
    [12]Balendra T, Koh C G, Ho Y C. Dynamic response of buildings due to trains in underground tunnel[J]. Earthquake Engineering and Structural Dynamics,1991, (20):275-291.
    [13]Jones C, Thompson D, Petyt M. A model for ground vibration from railway tunnels[C]. Proceedings of the Institution of Civil Engineers, Transport 2002, 153(1):121-129.
    [14]Gardien W, Stuit H G. Modeling of soil vibrations from railway tunnels [J]. Journal of Sound and Vibration,2003,267(3):605-619.
    [15]Clouteaua D, Arnsta M, Al-Hussaini T M, et al. Freefield vibrations due to dynamic loading on a tunnel embedded in a stratified medium[J]. Journal of Sound and Vibration,2003,283(1):173-199.
    [16]Gupta S, Degrande G, Lombaert G. Experimental validation of a numerical model for subway induced vibrations [J]. Journal of Sound and Vibration,2003, 321(4):786-812.
    [17]Andersen L, Jones C. Coupled boundary and finite element analysis of vibration from railway tunnels-a comparison of two and three-dimensional models[J]. Journal of Sound and Vibration 2006,293(3):611-625.
    [18]Degrande G, Clouteau D, Othman R, et al. A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation[J]. Journal of Sound and Vibration, 2006,293(3):645-666.
    [19]Yang Y B, Hung H H, Soil vibrations caused by underground moving trains[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(1): 1633-1644.
    [20]刘维宁,夏禾,郭文军.地铁列车振动的环境响应[J].岩石力学与工程学报,1996,15(s):586-593.
    [21]王逢朝,夏禾,张鸿儒.地铁列车振动对邻近建筑的影响[J].北方交通大学学报,1999,23(5):45-48.
    [22]高峰,关宝树.列车荷载对长江沉管隧道的影响[J].铁道学报,2001,23(3):117-120.
    [23]张玉娥,白宝鸿.高速铁路隧道列车振动响应数值分析方法[J].振动与冲击,2001,20(3):91-93.
    [24]陈卫军,张璞.列车动载作用下交叠隧道动力响应数值模拟[J].岩土力学,2002,23(6):770-774.
    [25]由广明,刘维宁.交叠车站与区间隧道列车振动对环境的影响[J].北京交通大学学报,2005,29(4):40-44.
    [26]李德武,高峰,韩文峰.列车振动下隧道基底合理结构形式的研究[J].岩石力学与工程学报,2004,23(13):2292-2297.
    [27]李亮,张丙强,杨小礼.高速列车振动荷载下大断面隧道结构动力响应分析[J].岩石力学与工程学报,2005,24(23):4259-4265.
    [28]边学成.高速列车运动荷载作用下地基和隧道的动力响应分析[D].杭州:浙江大学,2005.
    [29]贾颖绚,郭猛,刘维宁,等.列车振动荷载对古建筑的动力影响[J].北京交通大学学报,2009,33(1):118-122.
    [30]曲村,高亮,辛涛,等.高速列车振动荷载作用下电缆隧道结构动力响应分析[J].振动与冲击,2011,30(3):264-268.
    [31]施成华,雷明锋,彭立敏,等.砂层隧道列车振动响应与地基累积变形研究[J].铁道学报,2011,33(7):118-124.
    [32]Koch K W. Comparative values of structure-borne sound levels in track tunnels[J]. Journal of Sound and Vibration,1979,66(3):355-362.
    [33]Volberg G. Low frequency airborne noise in the vicinity of railroad tracks[C]. International Conference on Noise Control Engineering,1983, (1):167-170.
    [34]Mohanan V, Singal S P. A noise and vibration survey in an underground railway system[J]. Applied Acoustic,1989,28:263-275.
    [35]Degrande Q Schevenelsa M, Chatterjeea P, et al. Vibrations due to a test train at variable speeds in a deep bored tunnel embedded in London clay[J]. Journal of Sound and Vibration,2006,293(3):626-644.
    [36]潘昌实,谢正光.地铁区间隧道列车振动测试与分析[J].土木工程学报,1990,23(2):21-28.
    [37]李德武,高峰.金家岩隧道列车振动现场测试与分析[J].兰州铁道学院学报,1997,16(3):7-11.
    [38]王祥秋,杨林德,高文华.铁路隧道提速列车振动测试与荷载模拟[J].振动与冲击,2005,24(3):99-102,107.
    [39]申跃奎.地铁激励下振动的传播规律及建筑物隔振减振研究[D].上海:同济大学,2007.
    [40]薛富春,马建林,颜利平,等.高速铁路富水黄土隧道隧底循环动载试验研究[J].振动与冲击,2010,29(9):226-230.
    [41]吴江敏.隧道基底结构的动载模型试验[J].隧道及地下工程,1997,18(4):18-24.
    [42]彭立敏,覃长炳,施成华等.铁路隧道基底病害整治现场试验研究[J].中国铁道科学,2005,26(2):39-43.
    [43]施成华,彭立敏,王伟.铁路隧道基底破坏力学形态的试验研究[J].实验力学,2005,20(1):57-63.
    [44]谢和平.岩石混凝土损伤力学[D].徐州:中国矿业大学出版社,1990.
    [45]余天庆,钱济成.损伤理论及其应用[D].北京:国防工业出版社,1993.
    [46]李兆霞.损伤力学及其应用[D].北京:人民交通出版社,2002.
    [47]Kachanov L M. On the creep fracture time[A]. Proceedings of the Academy of Sciences of the USSR, Division of Engineering Science [C]. Moscow,1958, 8:26-31.
    [48]Loland K E. Continuum damage model for load response estimation of concrete[J]. Cement and Concrete Research,1980,10(3):395-402.
    [49]Mazars J. A description of micro and macroscale damage of concrete structures[J]. Engineering Fracture Mechanics,1986,25(6):729-737.
    [50]余天庆.混凝土的分段线性损伤模型[J].岩石、混凝土断裂与强度,1985(2):14-16
    [51]钱济成,周建方.混凝土的两种损伤模型及其应用[J].河海大学学报(自然科学版),1989(3):40-47.
    [52]Simo J C, Ju J W. Strain and stress-based continuum, damage model-I formulation[J]. International Journal of Solid and Structures,1987, 23(7):821-840.
    [53]Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics Division, ASCE,1998, 124:892-900.
    [54]Faria R, Oliver J, Cervera M. A strain-based plastic viscous-damage model for massive concrete structures [J]. International Journal of Solids Structures,1998, 35(14),1533-1558.
    [55]Jefferson A D. A plastic-damage-contact model for concrete II:model implementation with implicit return-mapping algorithm and consistent tangent matrix[J]. International Journal of Solids Structures,2003,40:6001-6022.
    [56]KratZig W B, Polling R. An elasto-plastic damage model for reinforced concrete with minimum number of material parameters [J]. Computers and Structures, 2004,82:1201-1215.
    [57]Jason L, Huerta A, Gilles P C, et al. An elastic plastic damage formulation for concrete:application to elementary tests and comparison with an isotropic damage model [J]. Computer methods in applied mechanics and engineering, 2006,195:7077-7092.
    [58]Faleiro J, Oller S, Barbat A H. Plastic-damage seismic model for reinforced concrete frames[J]. Computers and Structures,2008,86:581-597.
    [59]Jie Li, Xiao Dan-Ren. Stochastic damage model for concrete based on energy equivalent strain[J]. International Journal of Solid and Structures,2009, 46:2407-2419.
    [60]Dragon A., Mroz Z. A model for plastic creep of rock-like materials accounting for the kinetics of fracture[J]. International Journal of Mechanics and Mining Science,1979, (16):248-255.
    [61]Costion L S. A micro-crack model for the deformation and failure of brittle rock[J]. Journal of Geophysical Research,1983,88(11):9485-9492.
    [62]Huang C, Subhash G, Vitton S J.A dynamic damage growth model for uniaxial compressive response of rock aggregates [J]. Mechanics of Materials,2002,34: 267-277.
    [63]Chang S H, Lee C I. Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission[J]. International Journal of Rock Mechanics and Mining Sciences,2004, 41:1069-1086.
    [64]Shao J F, Chau K T, Feng X T. Modeling of anisotropic damage and creep deformation in brittle rocks [J]. International Journal of Rock Mechanics and Mining Sciences,2006,43:582-592.
    [65]Chen L, Shao J F, Huang H W. Coupled elastoplastic damage modeling of anisotropic rocks[J]. Computers and Geotechnics,2010,37:187-194.
    [66]Hamdi E, Romdhane N B, Le J M. A tensile damage model for rocks: Application to blast induced damage assessment[J]. Computers and Geotechnics,2011,38:133-141.
    [67]沈株江.结构性粘土的弹塑性损伤模型[J].岩土工程学报,1993,15(3):21-28.
    [68]殷有泉.岩石的塑性、损伤及其本构表述[J].地质科学,1995,30(1):63-70.
    [69]秦跃平,张金峰,王林.岩石损伤力学理论模型初探[J].岩石力学与工程学报,2003,22(4):646-650.
    [70]周成,沈珠江,郦能惠.结构性土模型及固液耦合弹塑性损伤动力分析[J].水利水运工程学报,2003,3:1-6.
    [71]杨强,陈新,周维垣.岩土材料弹塑性损伤模型及变形局部化分析[J].岩石力学与工程学报,2004,23(21):3577-3583.
    [72]熊玉春,房营光.循环荷载作用下饱和软黏土的损伤模型[J].岩土力学,2007,28(3):544-548.
    [73]Seed H B, Chan C K, Monismith C L. Effect of repeated load on the strength and deformation of compacted clay[R]. Highway Research Record,1955, 34:541-558.
    [74]Sangrey D A, Henkel D J.The effective stress response of a saturated clay soil to repeated loading[J]. Canadian Geotechnical Journal,1969,6(3):241-252.
    [75]Barksdale R D. Laboratory evaluation of rutting in base course materials[C]. In Proceedings of the Third International Conference on Structural Design of Asphalt Pavements, London,1972:161-174.
    [76]Koutsoftas D C, Fisher J A. Dynamic properties of two marine clays[J]. Journal of Geotechnical Engineering, ASCE,1980,106(6):645-657.
    [77]Yasuhara K, Yamanouchi T. Approximate prediction of soil deformation under drained-repeated loading[J]. Soil and Foundation,1983,23(2):13-24.
    [78]Atilla, Ausai M, Ayfer Erken. Undrained behavior of clay under cyclic shear stresses[J]. Journal of Geotechnical Engineering, ASCE,1989,115(7):968-983.
    [79]Muhanna A S. A testing procedure and a model for resilient modulus and accumulated plastic strain of cohesive subgrade soils[D]. Ph.D. Dissertation, North Carolina State University,1994.
    [80]Suiker A S. The mechanical behavior of ballasted railway tracks[D]. Ph.D. Thesis, University of Delft, Delft, The Netherlands,2002.
    [81]Sakai A, Samang L, Miura N. Partially-drained cyclic behavior and its application to the settlement of a low embankment road on silty-clay[J]. Soils and Foundations,2003,43(1):33-46.
    [82]蔡英,曹新文.重复加载下路基填土的临界动应力和永久变形初探[J].西南交通大学学报,1996,31(1):1-5.
    [83]王昆耀,常亚屏,陈宁.往返荷载下粗粒土的残余变形特性[J].土木工程学报,2000,33(3):48-53.
    [84]侯永峰,耿化军.循环荷载作用下水泥复合土孔压性状试验研究[J].工业建筑,2002,32(9):37-40.
    [85]朱登峰,黄宏伟,殷建华.饱和软粘土的循环蠕变特性[J].岩土工程学报,2005,27(9):1060-1064.
    [86]李进军.交通荷载作用下饱和软粘土长期沉降分析[D].上海:同济大学,2005.
    [87]李兴照.饱和软粘土的流变和循环流变特性研究[D].上海:同济大学,2005.
    [88]刘明.饱和软粘土动力本构模型研究与地铁隧道长期振陷分析[D].上海:同济大学,2006.
    [89]宫全美,罗苗,袁建议.提速铁路基床长期累积沉降及等效循环荷载试验研究[J].铁道学报,2009,31(2):88-93.
    [90]王红.道碴弹性与累积变形的试验研究[J].中国铁道科学,2001,22(6):106-110.
    [91]胡仁伟,王红,赵国堂.道碴动三轴试验研究[J].中国铁道科学,2001,22(2):101-106.
    [92]王林秀,丁银萍,卢美玲.级配碎石作路面基层材料的动三轴力学性能试验研究[J].中国市政工程,2004,109(3):25-28.
    [93]刘松玉,邱钰,童立元,等.煤矸石的动力特性试验研究[J].东南大学学报,2005,35(2):280-283.
    [94]贺建清,阳军生,靳明.交通荷载作用下低路堤软基的室内试验研究和沉降计算[J].岩石力学与工程学报,2009,27(1):199-205.
    [95]Gordon R B, Davis L A.Velocity and attenuation of seismic waves in imperfectly elastic rock [J].Geophysical Research,1967,73:3917-3935.
    [96]Akai, Koichi. Strength and deformation characteristics of soft sedimentary rock under repeated and creep loading[A]. The 5th congress of the International Society for Rock Mechanics. Australia,1983,1:43-49
    [97]Chikawa, Yasuaki. Deformation and failure of rocks under 'weak' cyclic loading and incremental elasto-plasticity theory [J]. Memoirs of the Faculty of Engineering. Nagoya University,1988,40(2):273-326.
    [98]Yoshinaka R, Osada M, Iran T V. Deformation behavior of soft rocks during consolidated-undrained cyclic triaxial testing[J]. International Journal Rock Mechanics and Mining Science and Geomechanics,1996,33(6):557-572
    [99]Yoshinaka R, Tran T V, Osada M. Mechanical behavior of soft rocks under triaxial cyclic loading conditions [J]. International Journal Rock Mechanics and Mining Science,1997,34(3):354-367
    [100]Yoshinaka R, Tran T V, Osada M. Pore pressure changes and strength mobilization of soft rocks in consolidated-undrained cyclic loading triaxial tests[J]. International Journal Rock Mechanics and Mining Science,1997, 34(5):715-726
    [101]Yoshinaka R, Tran T V, Osada M. Non-linear, stress-and strain-dependent behavior of soft rocks under cyclic triaxial conditions [J]. International Journal Rock Mechanics and Mining Science,1998,35(7):941-955
    [102]Gatelier N, Pellet F, Loret B. Mechanical damage of an anisotropic porous rock in cyclic triaxial tests[J].International Journal Rock Mechanics and Mining Science,2002,39(3):335-354.
    [103]Li Ning, Ping Zhang, Yunsheng Chen, etc. Fatigue properties of cracked, saturated and frozen sandstone samples under cyclic loading [J]. International Journal Rock Mechanics and Mining Science,2003,40(1):145-150
    [104]Bagde M N, Petros V. Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading[J]. International Journal Rock Mechanics and Mining Science,2005,42(2):237-250.
    [105]Bagde M N, Petros V. Fatigue and dynamic energy behaviour of rock subjected to cyclical loading[J]. International Journal Rock Mechanics and Mining Science,2009,46(l):200-209.
    [106]葛修润.周期荷载下岩石大型三轴试件的变形和强度特性研究[J].岩土力学,1987,8(2):11-19.
    [107]葛修润,卢应发.循环荷载作用下岩石疲劳破坏和不可逆变形问题探讨[J].岩土工程学报,1992,14(3):56-60.
    [108]葛修润,蒋宇,卢允德.周期荷载作用下岩石疲劳变形特性试验研究[J].岩石力学与工程学报,2003,22(10):1581-1585.
    [109]莫海鸿.岩石的循环试验及本构关系的研究[J].岩石力学与工程学报,1988,7(3):215-224.
    [110]许江,太久保诚介,鲜学福.循环载荷对三城目安山岩变形特性的影响[J].重庆大学学报,2000,23(6):38-41.
    [111]许江,唐晓军,李树春,等.周期性循环载荷作用下岩石声发射规律试验研究[J].岩土力学,2009,30(5):1241-1246.
    [112]许江,杨红伟,李树春,等.循环加、卸载孔隙水压力对砂岩变形特性影响实验研究[J].岩石力学与工程学报,2009,8(5):892-899.
    [113]席道瑛,刘云平,刘小燕,等.疲劳载荷对岩石物理力学性质的影响[J].岩土工程学报,2001,23(3):292-295.
    [114]席道瑛,刘小燕,张程远.由宏观滞回曲线分析岩石的微细观损伤[J].岩石力学与工程学报,2003,22(2):182-187.
    [115]席道瑛,张程远,刘小燕.低围压和疲劳载荷下砂岩的波速、模量及疲劳损伤(II):岩石的力学特性[J].岩石力学与工程学报,2004,23(13):2168-2171.
    [116]席道瑛,薛彦伟,宛新林.循环载荷下饱和砂岩的疲劳损伤[J].物探化探计算技术,2004,26(3):193-198.
    [117]蒋宇,葛修润,任建喜.岩石疲劳破坏过程中的变形规律及声发射特性[J].岩石力学与工程学报,2004,23(11):1810-1814.
    [118]陈运平,席道瑛,薛彦伟.循环荷载下饱和岩石的滞后和衰减[J].地球物理学报,2004,47(4):672-679.
    [119]王鸿,许江,杨秀贵.循环载荷条件下岩石塑性滞回环的演化规律[J].重庆大学学报,2006,29(4):80-82.
    [120]刘建锋,谢和平,徐进,等.循环荷载作用下岩石阻尼特性的试验研究[J].岩石力学与工程学报,2008,27(4):712-717.
    [121]周尚志,李军,刘瑛.循环压缩荷载下岩石的疲劳裂纹扩展机制[J].长沙理工大学学报,2009,6(1):19-23.
    [122]李树春.周期荷载作用下岩石变形与损伤规律及其非线性特征[D].重庆:重庆大学,2008.
    [123]Parr G B. Some aspects of the behaviour of London clay under repeated loading[D]. UK: University of Nottingham,1972.
    [124]Monismith C L, Ogawa N, Freeme C R. Permanent deformation characteristics of subgrade soils due to repeated loading[R]. Washington, D. C.:Transportation Research Board,1975:1-17.
    [125]Ullditz P. Mathematical model of pavement performance under moving wheel load[M]. Strength and Deformation Characteristics of Pavement Structures: Pavement Design, Management and Performance. Washington, D C:National Academy Press,1993:94-99.
    [126]Puppala A J, Mohammad L N, and Allen A. Permanent deformation characterization of subgrade soils from RLT test[J]. Journal of Materials in Civil Engineering,1999, 11(4):274-282.
    [127]Li D Q, Selig E T. Cumulative plastic deformation for fine-grained subgrade soils[J]. Journal of Geotechnical Engineering,1996,122(2):1006-1013.
    [128]Chai J C, Miura N. Traffic-load-induced permanent deformation of road on soft subsoil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002,128(11):907-916.
    [129]Sakai A, Samang L, Miura N. Partially-drained cyclic behavior and its application to the settlement of a low embankment road on silty-clay[J]. Soils and Foundations,2003,43(1):33-46.
    [130]周健,屠洪权,安原一哉.动力荷载作用下软黏土的残余变形计算模式[J].岩土力学,1996,17(1):54-60.
    [131]胡仁伟,赵钢,王红,等.道床累积变形模型的改进及荷载作用顺序对累积变形的影响[J].铁道学报,2001,23(6):81-85.
    [132]刘振纹,秦崇仁,王建华.循环荷载作用下软粘土的累积变形特性的研究[J].水利水电技术,2004,35(11):13-16.
    [133]黄茂松,李进军,李兴照.饱和软粘土的不排水循环累积变形特性[J].岩土工程学报,2006,28(7):891-895.
    [134]耿大新,钟才根,郑明新.交通荷载作用下软土路基残余变形的研究[J].华东交通大学学报,2007,24(4):46-50.
    [135]王军,蔡袁强.循环荷载作用下饱和软粘土应变累积模型研究[J].岩石力学与工程学报,2008,27(2):331-338.
    [136]陈颖平.循环荷载作用下软黏土不排水累积变形特性[J].岩土工程学报,2008,30(5):764-769.
    [137]Mroz Z. On the description of anisotropic hardening [J]. Journal of Mechanics and Physics of Solids,1967 (15):163-175.
    [138]Iwan W D. On a class of models for the yielding behavior of composite systems[J]. Journal of Applied Mechanics,1967 (34):612-617.
    [139]徐干成,谢定义,郑颖人.饱和砂土循环动应力应变特性的弹塑性模拟研究[J].岩土工程学报,1995,17(2):1-12.
    [140]Prevost J H. Mathematical modeling of monotonic and cyclic undrained clay behaviour [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1977(1):195-216.
    [141]Prevost J H. Anisotropic undrained stress-strain behavior of clays[J]. Journal of the Geotechnical Engineering Division, ASCE,1978,104 (8):1075-1090.
    [142]Prevost J H. A simple plasticity theory for frictional cohesionless soils[J]. Soil Dynamics and Earthquake Engineering,1985,4 (1):9-17.
    [143]Mroz Z, Norris V A, Zienkiewicz O C. An anisotropic hardening model for soils and its application to cyclic loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1978,2(3):203-221.
    [144]王建华,要明伦.软黏土不排水循环特性的弹塑性模拟[J].岩土工程学报,1996,18(3):11-18.
    [145]庄海洋,陈国兴,朱定华.土体动力粘弹塑性记忆型嵌套面本构模型及其验证[J].岩土工程学报,2006,28(10):1267-1272.
    [146]庄海洋,陈国兴.对土体动力粘弹塑性记忆型嵌套面模型的改进[J].岩土力学,2009,31(1):118-122.
    [147]熊玉春,房营光.循环荷载作用下饱和软粘土的损伤模型[J].岩土力学,2007,28(3):544-548.
    [148]高广运,时刚,顾中华,等.一个考虑循环荷载作用的简化模型[J].岩土力学,2008,29(5):1195-1199.
    [149]熊玉春,陈久照.考虑各向异性影响的循环弹塑性模型[J].岩土工程学报,2008,30(8):1165-1170.
    [150]Dafalias Y F, Popov E P. A model for nonlinearly hardening materials for complex loading[J]. Acta Mechanics,1975,21:173-192.
    [151]Dafalias Y F, Herrmann L R. Bounding surface formulation of soil plasticity, Chapter 10-Soil Mechanics-Transient and Cyclic Loads. Constitutive Relations and Numerical Treatment, G N Pande and O C Zienkiewicz(Editors), New York:John Wiley,1982:253-282.
    [152]Desai C S, Somasundaram S. Constitutive modeling of geological materials-a general procedure[A]. Banerjee P K, Butterfield R. Developments in Soil Mecnanics and Foundation Engineering[C]. New York: Elsevier Science Pub Co,1985,85-99.
    [153]Hirai H. An anisotropic hardening model for sand subjected to cyclic loading [A]. Cakmak. Soil Dynamics Liquefaction[C]. New York:Elsevier Science Pub Co,1987,53-67.
    [154]Manzari M T, Dafalias Y F. A critical state two-surface plasticity model for sands [J]. Geotechnique,1997,47(2):255-272.
    [155]Wang Z L. Bounding surface hypo-plasticity model for sand [J]. Journal of Engineering Mechanics,1990,116(5):983-1001.
    [156]Li X S, Dafalias Y F, Wang Z L. State dependent dilatancy in critical state constitutive modeling of sand[J]. Canadian Geotechnical Journal,1999, 36(4):559-611.
    [157]Li X S. A sand model with state-dependent dilatancy [J]. Geotechnique, 2002,52(3):173-186.
    [158]Andrianopoulos K I, Papadimitriou A G, Bouckovalas G D. Bounding surface plasticity model for the seismic liquefaction analysis of geostructures[J]. Soil Dynamics and Earthquake Engineering,2010,30:895-911.
    [159]徐日庆,杨林德,龚晓南.土的边界面应力应变本构关系[J].同济大学学报,1995,25(1):29-33.
    [160]孙吉主,周健.往复荷载作用下土体的广义塑性分析[J].岩土力学,2001,22(2):126-129.
    [161]伊颖锋,施建勇,周清华.土体小应变特性研究中的边界面模型[J].岩土 力学,2003,24(1):135-138.
    [162]周成,沈珠江,陈铁林,等.结构性粘土的边界面砌块体模型[J].岩土力学,2003,24(3):317-321.
    [163]李涛,Meissner H循环荷载作用下饱和软粘土的弹塑性双面模型[J].土木工程学报,2006,39(1):92-97.
    [164]李兴照,黄茂松.循环荷载作用下流变性软粘土的边界面模型[J].岩土工程学报,2007,29(2):249-254.
    [165]迟明杰,赵成刚,李小军.剪胀性砂土边界面模型的研究[J].工程地质学报,2008,16(3):415-421.
    [166]黄茂松,刘明,柳艳华.循环荷载作用下软粘土的各向异性边界面模型[J].水利学报,2009,40(2):188-193.
    [167]黄茂松,杨超,崔玉军.循环荷载下非饱和结构性土的边界面模型[J].岩土工程学报,2009,31(6):817-823.
    [168]徐舜华,郑刚,徐光黎.循环荷载下砂土的剪切硬化边界面本构模型[J].岩土力学,2010,30(1):1-8.
    [169]莫海鸿.岩石的循环试验及本构关系的研究[J].岩石力学与工程学报,1988,7(3):215-224.
    [170]杨春和,李廷芥.地质材料率性相关的内变量本构理论的研究[J].岩土力学,1992,13(1):74-80.
    [171]东兆星,单仁亮.高应变率下岩石本构特性的研究[J].工程爆破,1999,5(2):5-9.
    [172]李夕兵,左宇军,马春德.中应变率下动静组合加载岩石的本构模型[J].岩石力学与工程学报,2006,25(5):865-874.
    [173]陈朝军,郭连军,费爱萍.高应变率下岩石的蚁群智能动态本构模型[J].矿业研究与开发,2007,27(2):9-11.
    [174]丁祖德,彭立敏,施成华,等.循环荷载作用下富水砂质泥岩动变形特性试验研究[J].岩土工程学报,2012,34(3):534-539.
    [175]王先军,陈明祥,常晓林,等. Drucker-Prager系列屈服准则在稳定分析中的应用研究[J].岩土力学,2009,30(12):3733-3738.
    [176]邱战洪,张我华,任廷鸿.地震荷载作用下大坝系统的非线性动力损伤分析[J].水利学报,2005,36(5):629-636
    [177]张我华.煤、瓦斯突出过程中煤介质局部化破坏的损伤机理[J].岩土工程学报,1999,21(6):731-735.
    [178]杨曼娟ABAQUS用户材料子程序开发及应用[D].武汉:华中科技大学, 2005.
    [179]Ted B, Wing K L, Brian M,庄茁译Nonlinear Finite Elements for Continua and Strcutrues[M]北京:清华大学出版社,2002.
    [180]王金昌,陈页开ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.
    [181]费康,张建伟ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2010.
    [182]陈卫忠,伍国军,贾善坡ABAQUS在隧道及地下工程中的应用[M].北京:中国水利水电出版社,2010.
    [183]Gopalaratnam V S, Shah S P. Softening response of plain concrete in direct tension[J], ACI Journal,1985,82(3):310-323.
    [184]Karsan I D, Jirsa J O. Behavior of concrete under compressive loading[J], Journal Structure Div ASCE,1969,95(12):2535-2563.
    [185]中华人民共和国水力部.SL237-1999.土工试验规程[S].
    [186]中华人民共和国建设部.GB/T50266-1999.工程岩体试验方法标准[s].
    [187]王常晶,陈云敏.交通荷载引起的静偏应力对饱和软黏土不排水循环性状影响的试验研究[J].岩土工程学报,2007,29(11):1742-1747.
    [188]宫全美,廖彩风,周顺华,等.地铁行车荷载作用下地基土动孔隙水压力实验研究[J]岩石力学与工程学报,2001,20(s):1154-1157.
    [189]蒋华忠,李国维,余湘娟,等.交通荷载作用下低路堤软基的室内试验研究和沉降计算[J].公路,2006,10:59-62.
    [190]唐益群,张曦,赵书凯,等.地铁振动荷载下隧道周围饱和软黏土的孔压发展模型[J].土木工程学报,2007,40(4):82-86.
    [191]张勇,孔令伟,郭爱国,等.循环荷载作用下饱和软粘土的累积塑性应变试验研究[J].岩土力学,2009,30(6):1542-1548.
    [192]肖建清,丁德馨,蒋复量,等.岩石疲劳损伤模型的参数估计方法研究[J].岩土力学,2009,30(6):1635-1638.
    [193]葛修润.岩石疲劳破坏的变形控制律、岩土力学试验的实时X射线CT扫描和边坡坝基抗滑稳定分析的新方法[J].岩土工程学报,2008,30(1):1-20.
    [194]唐益群,黄雨,叶为民,等.地铁列车荷载作用下隧道周围土体的临界动应力比和动应变分析[J].岩石力学与工程学报,2003,22(9):1566-1570.
    [195]周翠英,邓毅梅,谭祥韶,等.软岩在饱水过程中水溶液化学成分变化规律研究[J].岩石力学与工程学报,2004,23(22):3813-3817.
    [196]周翠英,张乐民.软岩与水相互作用的非线性动力学过程分析[J].岩石力学与工程学报,2005,24(22):4036-4041.
    [197]解可新,韩立兴,林友联.最优化方法[M].天津:天津大学出版社,1997.
    [198]铁道部工程设计鉴定中心.高速铁路隧道[M].北京:中国铁道出版社,2006.
    [199]克拉夫R,彭津J,王光远译.结构动力学[M].北京:高等教育出版社,2006.
    [200]梁波,罗红,孙常新.高速铁路振动荷载的模拟研究[J].铁道学报,2006,28(4):89-94.
    [201]刘晶波,谷音,杜义欣.一致粘弹性人工边界及粘弹性边界单元[J].岩土工程学报,2006,28(9):1070-1075.
    [202]Lysmer J, Kuhlemeyer R L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics, ASCE,1969,95 (4):859-877.
    [203]中华人民共和国铁道部.TB10003-2005.铁路隧道设计规范[s].北京:中国铁道出版社,2005.
    [204]中华人民共和国铁道部.TB10261-2009.高速铁路设计规范[s].
    [205]杨晓华,姚卫星,段成美.确定性疲劳累积损伤理论进展[J].中国工程科学,2003,5(4):81-87.
    [206]彭立敏,施成华,黄娟,等.列车荷载作用下隧道铺底结构疲劳寿命分析[J].铁道学报,2007,29(1):82-85.
    [207]黄娟,彭立敏,施成华.基底富水条件下隧道铺底结构疲劳寿命的试验研究[J].铁道学报,2009,31(1):68-73.
    [208]李永强,车惠民.混凝土弯曲疲劳累积损伤性能研究[J].中国铁道科学,1998,19(2):52-59.
    [209]李朝阳,宋玉普,车轶.混凝土的单轴抗压疲劳损伤累积性能研究[J].土木工程学报,2002,35(2):38-40.
    [210]朱劲松,肖汝诚,宋玉普.混凝土双轴抗压疲劳累积损伤规律试验研究[J].土木工程学报,2005,38(6):104-109.
    [211]Manson S S, Halford G R. Practial implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage[J]. International Journal of Fracture,1981,17(2):169-192.
    [212]Chaboche J C, Lesne P M. A non-linear continuous fatigue damage model [J]. Fatigue and Fracture of Engineering Material and Structures,1988,11(1):1-7.
    [213]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700