用户名: 密码: 验证码:
中国耳聋人群的分子遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耳聋是最常见的感觉障碍性疾病之一,新生儿重度听力障碍者约占1~3‰,其中约50%属于遗传性耳聋。根据是否伴有耳外组织的异常或病变可将其分为综合征性听力丧失(syndromic hearing loss,SHL)和非综合征性听力丧失(nonsyndromic hearing loss,NSHL),其中NSHL占70%以上。遗传性NSHL具有多种遗传方式,包括常染色体显性遗传(相关NSHL位点命名为DFNA)、常染色体隐性遗传(相关位点命名为DFNB)、X-连锁遗传(DFN)、Y-连锁遗传(DFNY)和母系遗传等。遗传性耳聋具有极强的遗传异质性,至2008年7月止,共定位耳聋相关染色体位点133个,克隆相关基因45个。其中,GJB2基因为最常见的耳聋相关基因,该基因的突变在高加索人群中与50%左右的先天性耳聋相关;其次为SLC26A4,占5%~10%,该基因突变导致的耳聋患者常伴有特征性的影像学表现,即前庭导水管扩张(Enlarged VestibularAqueduct,EVA);与线粒体基因突变相关的占1%左右。其余各型NSHL均仅占较小比例。
     结合相关领域研究的最新成果,建立了“遗传性非综合征型耳聋位点及相关基因数据库”和“遗传性非综合征型耳聋相关基因突变位点数据库”等遗传性NSHL相关数据库,并对“遗传性非综合征耳聋相关基因检测候选基因确定流程”进行了更新,使其更具操作性。从而使前期工作建立的“遗传性非综合征型神经性耳聋的基因诊断体系”更加完善。
     综合应用聚合酶链反应(Polymerase Chain Reaction,PCR)、变性高效液相色谱(Denatureing High Performance Liquid Chromatography,DHPLC)、限制性长度片段多态(Restricted Length FragmentPolymorphism,RFLP)和测序等技术,对1998年至2007年收集的407个耳聋家系进行GJB2基因编码区和线粒体12S基因和UCN基因突变热点位点筛查、对31个伴或不伴EVA表型的耳聋患者进行SLC26A4基因编码区的筛查,对阳性样品进行测序证实,为进一步明确SLC26A4基因相关耳聋患者的基因型与表型关系,对SLC26A4基因的调控序列以及调控基因FOXI1进行了检测。
     在407个耳聋家系中,共检测到24个家系先证者携带2条GJB2致病单体,15个家系先证者仅查及1条GJB2致病单体;27个家系先证者为线粒体A1555G同质型改变,其中两个家系先证者同时为G7444A同质型改变。31个伴或不伴EVA耳聋家系中,15个家系中的17名患者检测到2条SLC26A4致病单体,2名患者仅检测到1条致病单体;查及SLC26A4基因2种新突变:D87Y和F572L。SLC26A4基因调控序列及其调控基因的检测没有阳性发现。
     利用“遗传性非综合征型神经性耳聋的基因诊断体系”,选择合适的检测方法,针对性进行相应耳聋基因的检测,可高效、经济的完成耳聋患者的基因检测。本研究通过对各个基因突变谱的分析并结合文献报道,认为GJB2基因的235delC、线粒体DNA的A1555G和SLC26A4基因的IVS7-2A>G系中国耳聋人群中的基因突变热点。
Hearing loss is one of the most common sensory disorders. Profound hearing loss occurs in 1-2:1000 neonates and the cause is hereditary in about half. A distinction can be made between syndromic hearing loss (SHL), in which the hearing loss is companied by other specific abnormalities, and non-syndromic hearing loss (NSHL), in which there are no additional abnormalities (more than 70%). All types of hereditary mode can be observed in NSHL, including autosomal dominant (the associated NSHL gene loci are designated DFNA), autosomal recessive (DFNB), X-linked (DFN), Y-linked (DFNY) and maternal inheritance. NSHL is highly genetic heterogeneous. Up to July 2008, 133 NSHL gene loci have been mapped, and 45 genes have been identified. Of these GJB2 is the most common NSHL associated gene, which accounts for about 50% hereditary prelingual NSHL among Caucasian population. SLC26A4 comes next, accounts for 5%-10%, hearing loss with recessive mutations of SLC26A4 gene is usually associated with typical abnormalities of temporal bone, which is known as enlarged vestibular aqueduct (EVA). Mitochondrial DNA mutations account for about 1%. Other types of NSHL are very rare.
     By tracking the most updated research data of the field, two databases were set up, namely Hereditary NSHL Loci and Genes Database and Hereditary NSHL Gene Mutation Database. Meanwhile Flow Chart of NSHL Candidate Genes was also updated for easier manipulation. That significantly improved the previously established Genetic Diagnostic System for Hereditary Nonsyndromic Hearing Loss.
     Following polymerase chain reaction (PCR), coding sequence of GJB2 and mitochondrial genes of 12S and UCN were screened by denaturing high performance liquid chromatography (DHPLC) and restricted length fragment polymorphism (RFLP) with Alw26I and XbaI, respectively, among 407 hearing loss families collected from 1998 to 2007. Coding sequence of SLC26A4 was screened by DHPLC among 31 hearing loss families with or without EVA. All positive samples in screening were applied to direct sequencing. Mutation screening was also performed, by sequencing, to regulatory region of SLC26A4 and its regulatory gene F0XI1, in order to unveil the genotype-phenotype relationship.
     Among the 407 families, twenty-four probands were detected with two mutant alleles of GJB2; fifteen were with one mutant GJB2 allele. Twenty-seven probands had homogeneous mutation of A1555G of mtDNA, among which two also had homogeneous mutation of G7444A. Among those 31 families with or without EVA, seventeen patients from fifteen families were detected with two mutant alleles of SLC26A4; two were with one mutant SLC26A4 allele, none mutant alleles were detected in two EVA patients. None positive results got for the SLC26A4 regulatory components.
     Taking advantage of improved Genetic Diagnostic System for Hereditary Nonsyndromic Hearing Loss, with selected screening method, it could be efficient and economic for mutation screening of hereditary NSHL genes. According to published data and our own analysis, it could be concluded that 235delC of GJB2, A1555G of mtDNA, and IVS7-2A>G of SLC26A4 were hot spots of mutation among Chinese hearing loss population.
引文
[1] Mehl, A.L. and V. Thomson, The Colorado newborn hearing screening project, 1992-1999: on the threshold of effective population-based universal newborn hearing screening. Pediatrics, 2002. 109(1):E7.
    
    [2] Wang, Q.J., C.Y. Lu, N. Li, et al., Y-linked inheritance of non-syndromic hearing impairment in a large Chinese family. J Med Genet, 2004. 41(6):e80.
    
    [3] Van Camp G, S.R., Hereditary Hearing Loss Homepage http://dnalab-www.uia.ac.be/dnalab/hhh/. March, 2008.
    
    [4] Samanich, J., C. Lowes, R. Burk, et al., Mutations in GJB2, GJB6, and mitochondrial DNA are rare in African American and Caribbean Hispanic individuals with hearing impairment. Am J Med Genet A, 2007. 143A(8):830-8.
    
    [5] Rabionet, R., P. Gasparini, and X. Estivill, Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Hum Mutat,2000. 16(3): 190-202.
    
    [6] Guilford, P., S. Ben Arab, S. Blanchard, et al., A non-syndrome form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q.Nat Genet, 1994. 6(1):24-8.
    
    [7] Kelsell, D.P., J. Dunlop, H.P. Stevens, et al., Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature, 1997. 387(6628):80-83.
    
    [8] Kelsell, D.P., W.L. Di, and M.J. Houseman, Connexin mutations in skin disease and hearing loss. Am J Hum Genet, 2001. 68(3):559-68.
    
    [9] Snoeckx, R.L., P.L. Huygen, D. Feldmann, et al., GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet, 2005. 77(6):945-57.
    
    [10] Prezant, T.R., J.V. Agapian, M.C. Bohlman, et al., Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet, 1993. 4(3):289-94.
    
    [11] Reid, F.M., G.A. Vernham, and H.T. Jacobs, A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness. Hum Mutat, 1994.3(3):243-7.
    
    [12] Guan, M.X., N. Fischel-Ghodsian, and G. Attardi, A biochemical basis for the inherited susceptibility to aminoglycoside ototoxicity. Hum Mol Genet, 2000.9(12):1787-93.
    
    [13] Bykhovskaya, Y., X. Estivill, K. Taylor, et al., Candidate locus for a nuclear modifier gene for maternally inherited deafness.Am J Hum Genet,2000.66(6):1905-10.
    [14]Li,X.,R.Li,X.Lin,et al.,Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12 S rRNAA1555G mutation.J Biol Chem,2002.277(30):27256-64.
    [15]Yan,Q.,X.Li,G.Faye,et al.,Mutations in MTO2 related to tRNA modification impair mitochondrial gene expression and protein synthesis in the presence of a paromomycin resistance mutation in mitochondrial 15 S rRNA.J Biol Chem,2005.280(32):29151-7.
    [16]邢光前,严明,卜行宽,et al.,母系遗传性聋大家系全基因组扫描研究.中华耳鼻咽喉科杂志,2000.35(6):413-5.
    [17]Everett,L.A.,B.Glaser,J.C.Beck,et al.,Pendred syndrome is caused by mutations in a putative sulphate transporter gene(PDS).Nat Genet,1997.17(4):411-22.
    [18]Li,X.C.,L.A.Everett,A.K.Lalwani,et al.,A mutation in PDS causes non-syndromic recessive deafness.Nature genetics,1998.18(3):215-217.v[19]Scott,D.A.,R.Wang,T.M.Kreman,et al.,The Pendred syndrome gene encodes a chloride-iodide transport protein.Nature genetics,1999.21(4):440-443.
    [20]Rotman-Pikielny,P.,K.Hirschberg,P.Maruvada,et al.,Retention of pendrin in the endoplasmic reticulum is a major mechanism for Pendred syndrome.Hum Mol Genet,2002.11(21):2625-33.
    [21]Taylor,J.P.,R.A.Metcalfe,P.F.Watson,et al.,Mutations of the PDS gene,encoding pendrin,are associated with protein mislocalization and loss of iodide efflux:implications for thyroid dysfunction in Pendred syndrome.J Clin Endocrinol Metab,2002.87(4):1778-84.
    [22]Hulander,M.,A.E.Kiernan,S.R.Blomqvist,et al.,Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxil null mutant mice.Development,2003.130(9):2013-25.
    [23]Yang,T.,H.Vidarsson,S.Rodrigo-Blomqvist,et al.,Transcriptional Control of SLC26A4 Is Involved in Pendred Syndrome and Nonsyndromic Enlargement of Vestibular Aqueduct(DFNB4).Am J Hum Genet,2007.80(6):1055-63.
    [24]Tsukamoto,K.,H.Suzuki,D.Harada,et al.,Distribution and frequencies of PDS(SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct:a unique spectrum of mutations in Japanese.Eur J Hum Genet,2003.11(12):916-22.
    [25]胡浩.遗传性非综合征型神经性耳聋基因诊断体系的建立与应用:[硕士学位论文].长沙:中南大学,2005
    [26]Yan,D.,X.Ke,S.H.Blanton,et al.,A novel locus for autosomal dominant non-syndromic deafness,DFNA53,maps to chromosome 14q11.2-q12.J Med Genet,2006.43(2):170-4.
    [27]Bonsch,D.,C.M.Schmidt,P.Scheer,et al.,[A new locus for an autosomal dominant,non-syndromic hearing impairment(DFNA57) located on chromosome 19p13.2 and overlapping with DFNB 15].HNO,2008.56(2):177-82.
    [28]Hassan,M.J.,R.L.Santos,M.A.Rafiq,et al.,A novel autosomal recessive non-syndromic hearing impairment locus(DFNB47) maps to chromosome 2p25.1-p24.3.Hum Genet,2006.118(5):605-10.
    [29]Shaikh,R.S.,K.Ramzan,S.Nazli,et al.,A new locus for nonsyndromic deafness DFNB51 maps to chromosome 11p13-p12.Am J Med Genet A,2005.138(4):392-5.
    [30]Chen,W.,K.Kahrizi,N.C.Meyer,et al.,Mutation of COL11A2 causes autosomal recessive non-syndromic hearing loss at the DFNB53 locus.J Med Genet,2005.42(10):e61.
    [31]Irshad,S.,R.L.Santos,D.Muhammad,et al.,Localization of a novel autosomal recessive non-syndromic heating impairment locus DFNB55 to chromosome 4q 12-q 13.2.Clin Genet,2005.68(3):262-7.
    [32]Delmaghani,S.,F.J.del Castillo,V.Michel,et al.,Mutations in the gene encoding pejvakin,a newly identified protein of the afferent auditory pathway,cause DFNB59 auditory neuropathy.Nat Genet,2006.38(7):770-8.
    [33]Ali,G.,R.L.Santos,P.John,et al.,The mapping of DFNB62,a new locus for autosomal recessive non-syndromic hearing impairment,to chromosome 12p13.2-p11.23.Clin Genet,2006.69(5):429-33.
    [34]Tlili,A.,S.Masmoudi,H.Dhouib,et al.,Localization of a novel autosomal recessive non-syndromic hearing impairment locus DFNB63 to chromosome 11q13.3-q13.4.Annals of Human Genetics,2007.71:271-275.
    [35]Khan,S.Y.,S.Riazuddin,M.Tariq,et al.,Autosomal recessive nonsyndromic deafness locus DFNB63 at chromosome 11q13.2-q13.3.Human Genetics,2007.120(6):789-793.
    [36] Kalay, E., R. Caylan, A.F. Kiroglu, et al., A novel locus for autosomal recessive nonsyndromic hearing impairment, DFNB63, maps to chromosome 11q13.2-q13.4. J Mol Med, 2007. 85(4):397-404.
    
    [37] Tariq, A., R.L. Santos, M.N. Khan, et al., Localization of a novel autosomal recessive nonsyndromic hearing impairment locus DFNB65 to chromosome 20q13.2-q13.32. J Mol Med, 2006. 84(6):484-90.
    
    [38] Tlili, A., M. Mannikko, I. Charfedine, et al., A novel autosomal recessive non-syndromic deafness locus, DFNB66, maps to chromosome 6p21.2-22.3 in a large Tunisian consanguineous family. Hum Hered, 2005. 60(3): 123-8.
    
    [39] Santos, R.L., M.J. Hassan, S. Sikandar, et al., DFNB68, a novel autosomal recessive non-syndromic hearing impairment locus at chromosomal region 19p13.2. Hum Genet, 2006. 120(l):85-92.
    
    [40] Ain, Q., S. Nazli, S. Riazuddin, et al., The autosomal recessive nonsyndromic deafness locus DFNB72 is located on chromosome 19p13.3. Hum Genet, 2007. 122(5):445-50.
    
    [41] Modamio-Hoybjor, S., A. Mencia, R. Goodyear, et al., A mutation in CCDC50, a gene encoding an effector of epidermal growth factor-mediated cell signaling, causes progressive hearing loss. Am J Hum Genet, 2007. 80(6): 1076-89.
    
    [42] Khan, S.Y., Z.M. Ahmed, M.I. Shabbir, et al., Mutations of the RDX gene cause nonsyndromic hearing loss at the DFNB24 locus. Hum Mutat, 2007.28(5):417-23.
    
    [43] Shahin, H., T. Walsh, T. Sobe, et al., Mutations in a novel isoform of TRIOBP that encodes a filamentous-actin binding protein are responsible for DFNB28 recessive nonsyndromic hearing loss. Am J Hum Genet, 2006. 78(1):144-52.
    [44] Riazuddin, S., S.N. Khan, Z.M. Ahmed, et al., Mutations in TRIOBP,which encodes a putative cytoskeletal-organizing protein, are associated with nonsyndromic recessive deafness. Am J Hum Genet, 2006. 78(1):137-43.
    
    [45] Collin, R.W., E. Kalay, M. Tariq, et al., Mutations of ESRRB encoding estrogen-related receptor beta cause autosomal-recessive nonsyndromic hearing impairment DFNB35. Am J Hum Genet, 2008. 82(1): 125-38.
    
    [46] Riazuddin, S., Z.M. Ahmed, A.S. Fanning, et al., Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet, 2006. 79(6): 1040-51.
    
    [47] Shabbir, M.I., Z.M. Ahmed, S.Y. Khan, et al., Mutations of human TMHS cause recessively inherited non-syndromic hearing loss. J Med Genet, 2006. 43(8):634-40.
    [48]Kalay,E.,Y.Li,A.Uzumcu,et al.,Mutations in the lipoma HMGIC fusion partner-like 5(LHFPL5) gene cause autosomal recessive nonsyndromic heating loss.Hum Mutat,2006.27(7):633-9.
    [49]胡浩,邬玲仟,梁德生,et al.,非综合征型感音神经性聋相关基因研究进展.中华耳鼻咽喉头颈外科杂志,2005.40(8):633-7.
    [50]McGuirt,W.T.,S.D.Prasad,A.J.Griffith,et al.,Mutations in COL11A2cause non-syndromic hearing loss(DFNA13).Nat Genet,1999.23(4):413-9.
    [51]吴伟锋.基于DHPLC的遗传性耳聋基因突变检测平台的建立和应用:[硕士学位论文].长沙:中南大学,2006
    [52]Prasad,S.,K.A.Kolln,R.A.Cucci,et al.,Pendred syndrome and DFNB4-mutation screening of SLC26A4 by denaturing high-performance liquid chromatography and the identification of eleven novel mutations.Am J Med Genet A,2004.124A(1):1-9.
    [53]Park,H.J.,S.Shaukat,X.Z.Liu,et al.,Origins and frequencies of SLC26A4(PDS) mutations in east and south Asians:global implications for the epidemiology of deafness.J Med Genet,2003.40(4):242-8.
    [54]Smith,R.J.Pendred/BOR Homepage.2004;Available from:http://healthcare.uiow,a.edu/labs/pendredandbor.
    [55]Hu,H.,L.Wu,Y.Feng,et al.,Molecular analysis of hearing loss associated with enlarged vestibular aqueduct in the mainland Chinese:a unique SLC26A4 mutation spectrum.J Hum Genet,2007.
    [56]Coucke,P.J.,R Van Hauwe,L.A.Everett,et al.,Identification of two different mutations in the PDS gene in an inbred family with Pendred syndrome.Journal of medical genetics,1999.36(6):475-477.
    [57]Van Hauwe,P.,L.A.Everett,P.Coucke,et al.,Two frequent missense mutations in Pendred syndrome.Human molecular genetics,1998.7(7):1099-1104.
    [58]Coyle,B.,W.Reardon,J.A.Herbrick,et al.,Molecular analysis of the PDS gene in Pendred syndrome.Human molecular genetics,1998.7(7):1105-1112.
    [59]Hu,H.,D.S.Liang,L.Q.Wu,et al.,Molecular analysis of SLC26A4gene in a Chinese deafness family.Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2005.22(4):376-9.
    [60]Wu,C.C.,T.H.Yeh,P.J.Chen,et al.,Prevalent SLC26A4 mutations in patients with enlarged vestibular aqueduct and/or Mondini dysplasia:a unique spectrum of mutations in Taiwan, including a frequent founder mutation.Laryngoscope, 2005. 115(6): 1060-4.
    
    [61] Usami, S., S. Abe, M.D. Weston, et al., Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations. Human genetics, 1999. 104(2): 188-192.
    
    [62] Robertson, J.D., New observations on the ultrastructure of the membranes of frog peripheral nerve fibers. J Biophys Biochem Cytol, 1957.3(6):1043-8.
    
    [63] Kumar, N.M. and N.B. Gilula, Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J Cell Biol, 1986.103(3):767-76.
    
    [64] Willecke, K., J. Eiberger, J. Degen, et al., Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem, 2002.383(5):725-37.
    
    [65] Goodenough, D.A., J.A. Goliger, and D.L. Paul, Connexins, connexons,and intercellular communication. Annu Rev Biochem, 1996. 65:475-502.
    
    [66] Musil, L.S., A.C. Le, J.K. VanSlyke, et al., Regulation of connexin degradation as a mechanism to increase gap junction assembly and function. J Biol Chem, 2000. 275(33):25207-15.
    
    [67] Scott, D.A., R. Carmi, K. Elbedour, et al., Nonsyndromic autosomal recessive deafness is linked to the DFNB1 locus in a large inbred Bedouin family from Israel. Am J Hum Genet, 1995. 57(4):965-8.
    
    [68] Maw, M.A., D.R. Allen-Powell, R.J. Goodey, et al., The contribution of the DFNB1 locus to neurosensory deafness in a Caucasian population. Am J Hum Genet, 1995. 57(3):629-35.
    
    [69] Brown, K.A., A.H. Janjua, G. Karbani, et al., Linkage studies of non-syndromic recessive deafness (NSRD) in a family originating from the Mirpur region of Pakistan maps DFNB1 centromeric to D13S175. Hum Mol Genet, 1996.5(1):169-73.
    
    [70] del Castillo, I., M. Villamar, M.A. Moreno-Pelayo, et al., A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. The New England journal of medicine, 2002. 346(4):243-249.
    
    [71] Matos, T.D., H. Caria, H. Simoes-Teixeira, et al., A novel hearing-loss-related mutation occurring in the GJB2 basal promoter. J Med Genet. 2007. 44(11):721-5.
    
    [72] Jaber, L., M. Shohat, X. Bu, et al., Sensorineural deafness inherited as a tissue specific mitochondrial disorder. J Med Genet, 1992. 29(2):86-90.
    
    [73] Braverman, I., L. Jaber, H. Levi, et al., Audiovestibular findings in patients with deafness caused by a mitochondrial susceptibility mutation and precipitated by an inherited nuclear mutation or aminoglycosides. Arch Otolaryngol Head Neck Surg, 1996. 122(9): 1001-4.
    
    [74] Fischel-Ghodsian, N., T.R. Prezant, X. Bu, et al., Mitochondrial ribosomal RNA gene mutation in a patient with sporadic aminoglycoside ototoxicity. Am J Otolaryngol, 1993. 14(6):399-403.
    
    [75] Hutchin, T., I. Haworth, K. Higashi, et al., A molecular basis for human hypersensitivity to aminoglycoside antibiotics. Nucleic Acids Res, 1993.21(18):4174-9.
    
    [76] Matthijs, G., S. Claes, B. Longo-Mbenza, et al., Non-syndromic deafness associated with a mutation and a polymorphism in the mitochondrial 12S ribosomal RNA gene in a large Zairean pedigree. Eur J Hum Genet, 1996. 4(1):46-51.
    
    [77] Fischel-Ghodsian, N., T.R. Prezant, W.E. Chaltraw, et al., Mitochondrial gene mutation is a significant predisposing factor in aminoglycoside ototoxicity. Am J Otolaryngol, 1997. 18(3): 173-8.
    
    [78] Gardner, J.C., R. Goliath, D. Viljoen, et al., Familial streptomycin ototoxicity in a South African family: a mitochondrial disorder. J Med Genet, 1997.34(11):904-6.
    
    [79] Pandya, A., X. Xia, J. Radnaabazar, et al., Mutation in the mitochondrial 12S rRNA gene in two families from Mongolia with matrilineal aminoglycoside ototoxicity. J Med Genet, 1997. 34(2): 169-72.
    
    [80] el-Schahawi, M., A. Lopez de Munain, A.M. Sarrazin, et al., Two large Spanish pedigrees with nonsyndromic sensorineural deafness and the mtDNA mutation at nt 1555 in the 12s rRNA gene: evidence of heteroplasmy. Neurology,1997. 48(2):453-6.
    
    [81] Estivill, X., N. Govea, E. Barcelo, et al., Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of aminoglycosides. Am J Hum Genet, 1998. 62(1):27-35.
    
    [82] Fischel-Ghodsian, N., T.R. Prezant, P. Fournier, et al., Mitochondrial mutation associated with nonsyndromic deafness. Am J Otolaryngol, 1995. 16(6):403-8.
    
    [83] Sevior, K.B., A. Hatamochi, I.A. Stewart, et al., Mitochondrial A7445G mutation in two pedigrees with palmoplantar keratoderma and deafness. American Journal of Medical Genetics, 1998. 75(2):179-185.
    
    [84] Bacino, C., T.R. Prezant, X. Bu, et al., Susceptibility mutations in the mitochondrial small ribosomal RNA gene in aminoglycoside induced deafness.Pharmacogenetics, 1995. 5(3): 165-72.
    
    [85] Verhoeven, K., R.J. Ensink, V. Tiranti, et al., Hearing impairment and neurological dysfunction associated with a mutation in the mitochondrial tRNASer(UCN) gene. Eur J Hum Genet, 1999. 7(1):45-51.
    
    [86] Friedman, R.A., Y. Bykhovskaya, C.M. Sue, et al., Maternally inherited nonsyndromic hearing loss. American Journal of Medical Genetics, 1999.84(4):369-372.
    
    [87] Sue, C.M., K. Tanji, G. Hadjigeorgiou, et al., Maternally inherited hearing loss in a large kindred with a novel T7511C mutation in the mitochondrial DNA tRNA(Ser(UCN)) gene. Neurology, 1999. 52(9):1905-8.
    
    [88] Pandya, A., X.J. Xia, R. Erdenetungalag, et al., Heterogenous point mutations in the mitochondrial tRNA Ser(UCN) precursor coexisting with the A1555G mutation in deaf students from Mongolia. Am J Hum Genet, 1999.65(6):1803-6.
    
    [89] Yuan, H., Y. Qian, Y. Xu, et al., Cosegregation of the G7444A mutation in the mitochondrial COI/tRNA(Ser(UCN)) genes with the 12S rRNA A1555G mutation in a Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. Am J Med Genet A, 2005. 138A(2): 133-40.
    
    [90] Zhu, Y., Y. Qian, X. Tang, et al., Aminoglycoside-induced and non-syndromic hearing loss is associated with the G7444A mutation in the mitochondrial COI/tRNASer(UCN) genes in two Chinese families. Biochem Biophys Res Commun, 2006. 342(3):843-50.
    
    [91] Jin, L., A. Yang, Y. Zhu, et al., Mitochondrial tRNASer(UCN) gene is the hot spot for mutations associated with aminoglycoside-induced and non-syndromic hearing loss. Biochem Biophys Res Commun, 2007. 361(1):133-9.
    
    [92] Ballana, E., J.M. Mercader, N. Fischel-Ghodsian, et al., MRPS18CP2 alleles and DEFA3 absence as putative chromosome 8p23.1 modifiers of hearing loss due to mtDNA mutation A1555G in the 12S rRNA gene. BMC Med Genet, 2007. 8:81.
    
    [93] Guan, M.X., Q. Yan, X. Li, et al., Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations. Am J Hum Genet, 2006.79(2):291-302.
    
    [94] Li, R., J.H. Greinwald, Jr., L. Yang, et al., Molecular analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes in paediatric subjects with non-syndromic hearing loss. J Med Genet, 2004. 41(8):615-20.
    
    [95] Li, Z., R. Li, J. Chen, et al., Mutational analysis of the mitochondrial 12S rRNA gene in Chinese pediatric subjects with aminoglycoside-induced and non-syndromic hearing loss. Hum Genet, 2005. 117(1):9-15.
    
    [96] Tekin, M., T. Duman, G. Bogoclu, et al., Frequency of mtDNA A1555G and A7445G mutations among children with prelingual deafness in Turkey. Eur J Pediatr,2003. 162(3): 154-8.
    
    [97] Kupka, S., T. Toth, M. Wrobel, et al., Mutation Al 555G in the 12S rRNA gene and its epidemiological importance in German, Hungarian, and Polish patients.Hum Mutat, 2002. 19(3):308-9.
    
    [98] Hutchin, T.P., K.R. Thompson, M. Parker, et al., Prevalence of mitochondrial DNA mutations in childhood/congenital onset non-syndromal sensorineural hearing impairment. J Med Genet, 2001. 38(4):229-31.
    
    [99] Usami, S., S. Abe, J. Akita, et al.. Prevalence of mitochondrial gene mutations among hearing impaired patients. J Med Genet, 2000. 37(1):38-40.
    
    [100] Baldwin, C.T., S. Weiss, L.A. Farrer, et al., Linkage of congenital,recessive deafness (DFNB4) to chromosome 7q31 and evidence for genetic heterogeneity in the Middle Eastern Druze population. Hum Mol Genet, 1995.4(9):1637-42.
    
    [101] Madden, C, M. Halsted, J. Meinzen-Derr, et al., The influence of mutations in the SLC26A4 gene on the temporal bone in a population with enlarged vestibular aqueduct. Arch Otolaryngol Head Neck Surg, 2007. 133(2):162-8.
    
    [102] Wang, Q J., Y.L. Zhao, S.Q. Rao, et al., A distinct spectrum of SLC26A4 mutations in patients with enlarged vestibular aqueduct in China. Clin Genet, 2007.72(3):245-54.
    
    [103] Park, H.J., S. Shaukat, X.Z. Liu, et al., Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians: global implications for the epidemiology of deafness.Journal of medical genetics,2003.40(4):242-248.
    [104]Mohr,P.E.,J.J.Feldman,J.L.Dunbar,et al.,The societal costs of severe to profound hearing loss in the United States.Int J Technol Assess Health Care,2000.16(4):1120-35.
    [105]Xia,J.H.,C.Y.Liu,B.S.Tang,et al.,Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment.Nat Genet,1998.20(4):370-3.
    [106]Xia,J.,H.Deng,Y.Feng,et al.,A novel locus for autosomal dominant nonsyndromic hearing loss identified at 5q31.1-32 in a Chinese pedigree.J Hum Genet,2002.47(12):635-40.
    [107]刘铮铮.Waardenburg综合征Ⅱ型一家系的临床分析和MITF基因的突变检测:[硕士学位论文].长沙:中南大学,2007
    [108]Hu,H.,L.Q.Wu,D.S.Liang,et al.,Prenatal diagnosis of prelingual deafness by determination of SLC26A4 gene mutation.Zhonghua Fu Chan Ke Za Zhi,2005.40(9):591-4.
    [109]戴朴,袁慧军,曹菊阳,et al.,线粒体基因A1555G突变试剂盒在药物性耳聋分子诊断中的应用.中国听力语言康复科学杂志,2004.6:21-3.
    [110]Li,C.X.,Q.Pan,Y.G.Guo,et al.,Construction of a multiplex allele-specific PCR-based universal array(ASPUA) and its application to hearing loss screening.Hum Mutat,2008.29(2):306-14.
    [1] Van Camp G, S.R., Hereditary Hearing Loss Homepage http://dnalab-www.uia.ac.be/dnalab/hhh/. March, 2008.
    
    [2] Morton, N.E., Genetic epidemiology of hearing impairment. Ann N Y Acad Sci, 1991.630:16-31.
    
    [3] Marazita, M.L., L.M. Ploughman, B. Rawlings, et al., Genetic epidemiological studies of early-onset deafness in the U.S. school-age population. Am J Med Genet, 1993. 46(5):486-91.
    
    [4] Green, G.E., D.A. Scott, J.M. McDonald, et al., Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. JAMA,1999.281(23):2211-6.
    
    [5] Harris, S., K. Ahlfors, S. Ivarsson, et al., Congenital cytomegalovirus infection and sensorineural hearing loss. Ear Hear, 1984. 5(6):352-5.
    
    [6] Hicks, T., K. Fowler, M. Richardson, et al., Congenital cytomegalovirus infection and neonatal auditory screening. J Pediatr, 1993. 123(5):779-82.
    
    [7] Ogawa, H., Y. Baba, T. Suzutani, et al., Congenital cytomegalovirus infection diagnosed by polymerase chain reaction with the use of preserved umbilical cord in sensorineural hearing loss children. Laryngoscope, 2006. 116(11): 1991-4.
    
    [8] Gates, G.A. and J.H. Mills, Presbycusis. Lancet, 2005.366(9491):1111-20.
    
    [9] Guilford, P., S. Ben Arab, S. Blanchard, et al., Year 2000 position statement: principles and guidelines for early hearing detection and intervention programs. Joint Committee on Infant Hearing, American Academy of Audiology,American Academy of Pediatrics, American Speech-Language-Hearing Association,and Directors of Speech and Hearing Programs in State Health and Welfare Agencies.Pediatrics, 2000. 106(4):798-817.
    
    [10] Baldwin, C.T., C.F. Hoth, J.A. Amos, et al., An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature, 1992.355(6361):637-8.
    
    [11] Tassabehji, M., A.P. Read, V.E. Newton, et al., Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene.Nature, 1992. 355(6361):635-6.
    
    [12] Hoth, C.F., A. Milunsky, N. Lipsky, et al., Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type Ⅰ(WS-I).Am J Hum Genet,1993.52(3):455-62.
    [13]Tassabehji,M.,V.E.Newton,and A.P.Read,Waardenburg syndrome type 2 caused by mutations in the human microphthalmia(MITF) gene.Nat Genet,1994.8(3):251-5.
    [14]Sanchez-Martin,M.,A.Rodriguez-Garcia,J.Perez-Losada,et al.,SLUG (SNAI2) deletions in patients with Waardenburg disease.Hum Mol Genet,2002.11(25):3231-6.
    [15]冯永,刘铮铮,胡浩,et al.,MITF基因的新突变导致Waardenburg综合征Ⅱ一例.中华耳鼻咽喉头颈外科杂志,2007.42(10):787-8.
    [16]Hofstra,R.M.,J.Osinga,G.Tan-Sindhunata,et al.,A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2and Hirschsprung phenotype(Shah-Waardenburg syndrome).Nat Genet,1996.12(4):445-7.
    [17]Edery,P.,T.Attie,J.Amiel,et al.,Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease(Shah-Waardenburg syndrome).Nat Genet,1996.12(4):442-4.
    [18]Pingault,V.,N.Bondurand,K.Kuhlbrodt,et al.,SOX10 mutations in patients with Waardenburg-Hirschsprung disease.Nat Genet,1998.18(2):171-3.
    [19]Fraser,F.C.,D.Ling,D.Clogg,et al.,Genetic aspects of the BOR syndrome--branchial fistulas,ear pits,hearing loss,and renal anomalies.Am J Med Genet,1978.2(3):241-52.
    [20]Heimler,A.and E.Lieber,Branchio-oto-renal syndrome:reduced penetrance and variable expressivity in four generations of a large kindred.Am J Med Genet,1986.25(1):15-27.
    [21]Konig,R.,S.Fuchs,and C.Dukiet,Branchio-oto-renal(BOR) syndrome:variable expressivity in a five-generation pedigree.Eur J Pediatr,1994.153(6):446-50.
    [22]Stratakis,C.A.,J.P.Lin,and O.M.Rennert,Description of a large kindred with autosomal dominant inheritance of branchial arch anomalies,hearing loss,and ear pits,and exclusion of the branchio-oto-renal(BOR) syndrome gene locus (chromosome 8q13.3).Am J Meal Genet,1998.79(3):209-14.
    [23]Ruf,R.G.,P.X.Xu,D.Silvius,et al.,SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes.Proc Natl Acad Sci U S A,2004.101(21):8090-5.
    [24] Kalatzis, V., I. Sahly, A. El-Amraoui, et al., Eyal expression in the developing ear and kidney: towards the understanding of the pathogenesis of Branchio-Oto-Renal (BOR) syndrome. Dev Dyn, 1998. 213(4):486-99.
    
    [25] Xu, P.X., W. Zheng, L. Huang, et al., Sixl is required for the early organogenesis of mammalian kidney. Development, 2003. 130(14):3085-94.
    
    [26] Zheng, W., L. Huang, Z.B. Wei, et al., The role of Sixl in mammalian auditory system development. Development, 2003. 130(17):3989-4000.
    
    [27] Williams, C.J., A. Ganguly, E. Considine, et al., A-2-->G transition at the 3' acceptor splice site of IVS17 characterizes the COL2A1 gene mutation in the original Stickler syndrome kindred. Am J Med Genet, 1996. 63(3):461-7.
    
    [28] Richards, A.J., J.R. Yates, R. Williams, et al., A family with Stickler syndrome type 2 has a mutation in the COL11A1 gene resulting in the substitution of glycine 97 by valine in alpha 1 (XI) collagen. Hum Mol Genet, 1996. 5(9): 1339-43.
    
    [29] Vikkula, M., E.C. Mariman, V.C. Lui, et al., Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell, 1995.80(3):431-7.
    
    [30] Phelps, P.D., R.A. Coffey, R.C. Trembath, et al., Radiological malformations of the ear in Pendred syndrome. Clin Radiol, 1998. 53(4):268-73.
    
    [31] Reardon, W, O.M. CF, R. Trembath, et al., Enlarged vestibular aqueduct:a radiological marker of pendred syndrome, and mutation of the PDS gene. Ojm, 2000.93(2):99-104.
    
    [32] Newton, V.E., Aetiology of bilateral sensori-neural hearing loss in young children. J Laryngol Otol Suppl, 1985. 10:1-57.
    
    [33] Arnos, K.S., M. Cunningham, J. Israel, et al., Innovative approach to genetic counseling services for the deaf population. Am J Med Genet, 1992.44(3):345-51.
    
    [34] Li, X.C., L.A. Everett, A.K. Lalwani, et al., A mutation in PDS causes non-syndromic recessive deafness. Nature genetics, 1998. 18(3):215-217.
    
    [35] Rosenberg, T., M. Haim, A.M. Hauch, et al., The prevalence of Usher syndrome and other retinal dystrophy-hearing impairment associations. Clin Genet,1997. 51(5):314-21.
    
    [36] Kimberling, W.J., C.G. Moller, S.L. Davenport, et al., Usher syndrome:clinical findings and gene localization studies. Laryngoscope, 1989. 99(1):66-72.
    
    [37] Neyroud, N., F. Tesson, I. Denjoy, et al., A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet, 1997. 15(2): 186-9.
    
    [38] Schulze-Bahr, E., Q. Wang, H. Wedekind, et al., KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Nat Genet, 1997. 17(3):267-8.
    
    [39] Wolf, B., R. Spencer, and T. Gleason, Hearing loss is a common feature of symptomatic children with profound biotinidase deficiency. J Pediatr, 2002.140(2):242-6.
    
    [40] Heller, A.J., C. Stanley, W.T. Shaia, et al., Localization of biotinidase in the brain: implications for its role in hearing loss in biotinidase deficiency. Hear Res,2002. 173(1-2):62-8.
    
    [41] van den Brink, D.M. and R.J. Wanders, Phytanic acid: production from phytol, its breakdown and role in human disease. Cell Mol Life Sci, 2006.63(15):1752-65.
    
    [42] Govan, J.A., Ocular manifestations of Alport's syndrome: a hereditary disorder of basement membranes? Br J Ophthalmol, 1983. 67(8):493-503.
    
    [43] Barker, D.F., S.L. Hostikka, J. Zhou, et al., Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science, 1990. 248(4960): 1224-7.
    
    [44] Mohr, J. and K. Mageroy, Sex-linked deafness of a possibly new type.Acta Genet Stat Med, 1960. 10:54-62.
    
    [45] Tranebjaerg, L., C. Schwartz, H. Eriksen, et al., A new X linked recessive deafness syndrome with blindness, dystonia, fractures, and mental deficiency is linked to Xq22. J Med Genet, 1995. 32(4):257-63.
    
    [46] Jin, H., M. May, L. Tranebjaerg, et al., A novel X-linked gene, DDP,shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nat Genet, 1996. 14(2):177-80.
    
    [47] Koehler, C.M., D. Leuenberger, S. Merchant, et al., Human deafness dystonia syndrome is a mitochondrial disease. Proc Natl Acad Sci U S A, 1999.96(5):2141-6.
    
    [48] Usami, S., S. Abe, J. Akita, et al., Prevalence of mitochondrial gene mutations among hearing impaired patients. J Med Genet, 2000. 37(1):38-40.
    
    [49] Majamaa, K., J.S. Moilanen, S. Uimonen, et al., Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am J Hum Genet, 1998.63(2):447-54.
    [50] Kadowaki, T., H. Kadowaki, Y. Mori, et al., A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N Engl J Med, 1994.330(14):962-8.
    
    [51] Cremers, C.W., H.A. Marres, and P.M. van Rijn, Nonsyndromal profound genetic deafness in childhood. Ann N Y Acad Sci, 1991. 630:191-6.
    
    [52] Van Camp, G., P.J. Willems, and R.J. Smith, Nonsyndromic hearing impairment: unparalleled heterogeneity. Am J Hum Genet, 1997. 60(4):758-64.
    
    [53] Zelante, L., P. Gasparini, X. Estivill, et al., Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet, 1997. 6(9): 1605-9.
    
    [54] Estivill, X., P. Fortina, S. Surrey, et al., Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet, 1998. 351(9100):394-8.
    
    [55] Kelley, P.M., D.J. Harris, B.C. Comer, et al., Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet, 1998. 62(4):792-9.
    
    [56] Scott, D.A., M.L. Kraft, R. Carmi, et al., Identification of mutations in the connexin 26 gene that cause autosomal recessive nonsyndromic hearing loss. Hum Mutat, 1998. 11(5):387-94.
    
    [57] Zbar, R.I., A. Ramesh, C.R. Srisailapathy, et al., Passage to India: the search for genes causing autosomal recessive nonsyndromic hearing loss. Otolaryngol Head Neck Surg, 1998.118(3 Pt 1):333-7.
    
    [58] Snoeckx, R.L., P.L. Huygen, D. Feldmann, et al., GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet, 2005. 77(6):945-57.
    
    [59] de Kok, Y.J., S.M. van der Maarel, M. Bitner-Glindzicz, et al.,Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science, 1995. 267(5198):685-8.
    
    [60] Wang, Q.J., C.Y. Lu, N. Li, et al., Y-linked inheritance of non-syndromic hearing impairment in a large Chinese family. J Med Genet, 2004. 41(6):e80.
    
    [61] Fischel-Ghodsian, N., Mitochondrial mutations and hearing loss:paradigm for mitochondrial genetics. Am J Hum Genet, 1998. 62(1): 15-9.
    
    [62] Hone, S.W. and R.J. Smith, Medical evaluation of pediatric hearing loss.Laboratory, radiographic, and genetic testing. Otolaryngol Clin North Am, 2002.35(4):751-64.
    
    [63] Zalzal, G.H., S.R. Shott, R. Towbin, et al., Value of CT scan in the diagnosis of temporal bone diseases in children. Laryngoscope, 1986. 96(1):27-32.
    
    [64] Vore, A.P., E.H. Chang, J.E. Hoppe, et al., Deletion of and novel missense mutation in POU3F4 in 2 families segregating X-linked nonsyndromic deafness. Arch Otolaryngol Head Neck Surg, 2005. 131(12):1057-63.
    
    [65] Arnos, K.S., The implications of genetic testing for deafness. Ear Hear,2003. 24(4):324-31.
    
    [66] Arnos, K.S., J. Israel, L. Devlin, et al., Genetic counseling for the deaf.Otolaryngol Clin North Am, 1992. 25(5):953-71.
    
    [67] Mohr, P.E., J.J. Feldman, J.L. Dunbar, et al., The societal costs of severe to profound hearing loss in the United States. Int J Technol Assess Health Care, 2000.16(4):1120-35.
    
    [68] Downs, M.P. and C. Yoshinaga-Itano, The efficacy of early identification and intervention for children with hearing impairment. Pediatr Clin North Am, 1999.46(1):79-87.
    
    [69] Yoshinaga-Itano, C, A.L. Sedey, D.K. Coulter, et al., Language of early-and later-identified children with hearing loss. Pediatrics, 1998. 102(5): 1161-71.
    
    [70] Norris, V.W., K.S. Arnos, W.D. Hanks, et al., Does universal newborn hearing screening identify all children with GJB2 (Connexin 26) deafness? Penetrance of GJB2 deafness. Ear Hear, 2006. 27(6):732-41.
    
    [71] Minoda, R., M. Izumikawa, K. Kawamoto, et al., Strategies for replacing lost cochlear hair cells. Neuroreport, 2004. 15(7): 1089-92.
    
    [72] Shou, J., J.L. Zheng, and W.Q. Gao, Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath1. Mol Cell Neurosci,2003. 23(2): 169-79.
    
    [73] Kawamoto, K., S. Ishimoto, R. Minoda, et al., Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci, 2003.23(11):4395-400.
    
    [74] Smith, R.J., J.F. Bale, Jr., and K.R. White, Sensorineural hearing loss in children. Lancet, 2005. 365(9462):879-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700