用户名: 密码: 验证码:
IL-33转基因小鼠的建立和IL-33对肺部炎症的增强作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白细胞介素33(Interleukin 33, IL-33)是近年发现的IL-1类细胞因子家族的成员。它的受体是早于它被发现的孤儿受体ST2。作为细胞表面受体的ST2主要表达于Th2辅助性淋巴细胞、肥大细胞等细胞表面,IL-33具有促进Th2细胞免疫的作用。而在临床上IL-33和ST2与自身免疫病、变态反应性疾病、心血管疾病和神经退行性病变等的发生发展相关,从而引起人们的关注。小鼠腹腔注射重组的IL-33分子,动物表现为呼吸道和消化道的炎症损伤,脾脏肿大。而对于动物体内内源性的IL-33表达上升的研究目前未有报道。在分子结构上IL-33分子具有核定位功能域和IL-1类细胞因子活性功能域。IL-33分子本身缺乏分泌信号,目前对于IL-33细胞因子的分泌释放和它作为活性细胞因子的分泌形式等都存在着争议。
     为了研究IL-33在小鼠体内的内源性表达及其对动物的影响,我们首先从新生小鼠的组织中克隆了小鼠的IL-33基因,并将该基因构建到以CMV为启动子的真核表达载体pCDNA3.1上,通过显微注射的方式建立了CMV-mIL-33的转基因小鼠。通过免疫印迹分析检测到在转基因小鼠的肺脏、心脏、肾脏和胰腺组织中IL-33表达提高。高表达的IL-33分子在肺脏组织以18 kDa的形式分泌到呼吸道。通过双向电泳分析18 kDa分子的等电点性质,发现高表达的18 kDa的IL-33分子更接近于小鼠IL-33分子中有功能活性的109-266 aa肽段的肽段等电点性质。
     mIL-33转基因对小鼠的出生率、性别比率、体重等并没有产生影响。大体解剖和组织学分析没有发现转基因动物的脑、心脏、肝脏、脾脏、肾脏、小肠等受到影响。病理学分析发现IL-33转基因小鼠的肺脏出现炎症性反应:在支气管和小血管周围出现了包括嗜酸性粒细胞在内的炎性细胞浸润;在转基因小鼠的呼吸道出现了杯状细胞的高反应性和粘液性物质的聚集;对肺组织灌洗液的分析发现灌洗液中的嗜酸性粒细胞、嗜中性粒细胞、单核细胞和淋巴细胞等各类炎性细胞数目增加,炎性细胞因子IL-5、IL-8、IL-13的水平提高,IgE水平提高,同时炎症抑制性细胞因子IL-10和可溶性ST2的水平也提高。这些结果表明IL-33在肺脏组织的过表达诱发了小鼠自发的肺部炎症反应。我们通过转基因的方式研究分析了内源性高表达IL-33,发现了IL-33在体内确实存在剪切,而且剪切出的分子的性质更接近活性序列的性质。内源性转基因的IL-33在肺脏组织得以高表达,促发了肺部的炎症反应,印证了IL-33是一种促炎症因子。
     物种的进化是长期自然选择的结果,在进化过程中物种的遗传物质相应也会发生改变。在本质上物种的进化是遗传物质——基因组的进化,在基因水平包括基因的融合、倒位、易位,基因的丢失和新基因的出现。人类作为灵长类动物他们在1.2亿年前和啮齿类动物具有共同的祖先。但是长期的进化使得他们的基因组发生了变化。根据目前对部分灵长类和啮齿类动物基因组测序的结果,在基因水平每类基因组中大约有1%的基因在另外一类动物的基因组中是找不到的。这样一类基因被称为种属特异基因。
     我们通过比较灵长类和啮齿类动物的基因组找到这样一些种属特异基因。XAGE-3是灵长类种属特异的一个基因。在本论文工作中,我们首先在生物信息学的水平验证类人类XAGE-3基因在灵长类动物相对啮齿类动物的种属特异性。随后从人类胎盘组织中克隆了该基因。将该基因插入真核表达载体pCDNA3.1构建了以CMV为启动子的表达载体。通过显微注射的方法得到了XAGE-3的转基因小鼠。分析了转基因小鼠部分组织的反转录产物中该基因的表达,发现该基因在转基因小鼠的小肠、胸腺和睾丸组织有较高表达,利用Brdu标记3周龄的雄性转基因小鼠,结果发现XAGE-3转基因小鼠有更多的发育晚期的精母细胞被标记,人XAGE-3转基因影响到了小鼠生精细胞的发育。
     MAN2C1是一种α-甘露糖苷酶,调节蛋白质的糖基化。既往的研究表明MAN2C1和肿瘤的发生发展相关。本论文的部分工作研究了hMAN2C1转基因小鼠肝脏和脾脏组织的α-甘露糖苷酶活性,制备了兔抗人MAN2C1的多克隆抗体并以之分析了所转MAN2C1基因在两个转基因品系中表达。以此转基因动物验证了MAN2C1基因对于移植肿瘤的生长和迁移的影响。为了进一步研究MAN2C1的功能,我们制备了MAN2C1基因表达抑制的基因沉默小鼠。在转录水平MAN2C1基因表达被抑制,但组织酶活分析却没有发生明显改变。
Interleukin-33 is a recent found cytokine which belongs to the cytokine family of Interleukin-1. The orphan receptor ST2 which was found in 1989, is ragarded as IL-33 receptor on target cell surface. ST2 was mainly expressed on the surface of Th2 helper lymphocytes and mast cells. IL-33 was regarded as a pro-inflammatory factor to promote Th2 cells functions. IL-33 and ST2 play an important role in inflammatory diseases including hypersensitive diseases like asthma, autoimmune diseases like rheumatoid arthritis, cardiovascular diseases like heart failure and neurodegenerative diseases like Alzheimer's disease. The exogenous administration of recombinant IL33 induced splenomegaly changes and severe airway and digestive trace inflammation in mice. Currently there were no report on endogenous up-regulation of IL-33 in animals. IL-33 contains an IL-1-like cytokine fold in its carboxyl-terminus and chromatin binding domain in amino-terminus. Without a signal peptide for secretion, it is necessary to understand the functional structure of IL-33, that is the cleavage and secretion of this cytokine. A lot of researchers had tried to solve this question, but there are conflicts now.
     Here we reported the generation of an IL-33 transgenic mouse, in which mouse IL-33 full length cDNA was cloned out of neonate mouse tissue, inserted into euocaryotic expression vector pCDNA3.1, controlled under the CMV promoter. Immuno-blot results showed that the transgenic IL-33 was released as a cleaved form with molecular weight of 18 kDa in pulmonary, nephritic, cardiac and pancreatic tissues in transgenic mice and the pⅠof 18 kDa peptide was about pH3-5 on the 2-D PAGE, which was similar with the activated IL-33 peptide of 109-266 aa.
     The birth-rates, body weights, and sex ratios of ltransgenic mice were recorded and there were no difference compared with that of C57BL/6 wild-type mice. The gross anatomic and histological analyses were performed on the tissues of heart, liver, spleen, kidney, pancreas, intestine and brain of IL-33 transgenic mice at 2-month-old. No obvious changes were observed. Histological analysis showed massive pulmonary inflammation with infiltration of eosinophils around bronchi and small blood vessels, hyperplasia of goblet cells and accumulation of mucus-like material in pulmonary tissue of transgenic mice. An increase of IL-5, IL-8, IL-13 and IgE was detected in bronchoalveolar lavage fluid (BALF) of transgenic mice, which are inflammatory factors. sST2 and the anti-inflammatory factor IL-10 were also up-regulated to conterbalance the inlfamatroy damage of IL-33. These findings suggest transgenic IL-33 could be cleaved and secreted in an activated form and play an important role in the pathogenesis of pulmonary inflammation. Through our IL-33 transgenic research, the endogenous over-expression of mouse IL-33 was achived in mouse pulmonary tissue. And we detected the endogenous cleavage of IL-33 in mouse, and the character of the cleaved IL-33 was similar to the peptide with cytokine activity. The endogenous over-expression of IL-33 leads to spontaneous pulmonary inflammation, which proved the pro-inflammatory character of IL-33.
     The evolution of species is the result of nature selection. The genetic material would also changes with the evolution of species. In fact the evolution of species is also the evolution of the genomes. There were different kinds of changes of the gene, including the appearance of new gene.120 million years ago, the primate like human being had the same ancestor with the rodent. With the evolution of the two kinds of animals, there were significant changes in their genomes. Based on the genomic sequence analysis of these two kinds of animals, there were about 1%genes, which only exist in one kind, not in the other. These genes were regarded as species specific genes.
     We've found some species specific genes through the sequence comparison of these two kinds of animals. XAGE-3 is one of the primate species specific gene. In this study, we firstly confirm the species specific character of XAGE-3 by bio-information method. Subsequently we cloned this gene out of human placenta, and inserted this gene into eukaryotic expression vector pCDNA3.1. The XAGE-3 transgenic mice were got by micro-injection. We analyzed the XAGE-3 expression in transcripts from different tissues. Over-expression of XAGE-3 can be detected in intestine, thymus and testis in transgenic mice.3-week-old male mice were labeled with Brdu. More spermatocytes were labeled inXAGE-3 transgenic mice compared with negative control. The results suggests the human XAGE-3 transgene may affect the proliferation and development of spermatocytes.
     MAN2C1 is an a-mannosidase, which regulates protein glycosylation. Previous studies have showed its effect on tumor proliferation. In this study, the enzyme activity of a-mannosidase in liver and spleen of MAN2C1 transgenic mice were analysed. A rabbit polyclonal antibody against hMAN2Cl was raised to detect the transgenic MAN2C1 expression in 2 lines of hMAN2Cl transgenic mice. The transgenic model was used to prove the effect of MAN2C1 on proliferation and migration of grafted tumors. For better understanding the biological function of this gene, a transgenic gene silence mouse model was made. The expression of the targeted gene had been inhibited in transcripts, but there no no changes in the enzyme activity in the tissue from gene silenced mice.
引文
1. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. [J]. Immunity 2005;23:479-90.
    2. Baekkevold ES, Roussigne M, Yamanaka T, et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. [J].Am J Pathol 2003;163:69-79.
    3. Roussel L, Erard M, Cayrol C, Girard JP. Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A-H2B acidic pocket. [J]. EMBO Rep 2008;9:1006-12.
    4. Carriere V, Roussel L, Ortega N, et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. [J]. Proc Natl Acad Sci U S A 2007; 104:282-7.
    5. Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines. [J].Immunol Rev 2008;223:20-38.
    6. O'Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily:10 years of progress. [J]. Immunol Rev 2008;226:10-8.
    7. Saenz SA, Taylor BC, Artis D. Welcome to the neighborhood:epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. [J]. Immunol Rev 2008;226:172-90.
    8. Shah RV, Januzzi JL, Jr. ST2:a novel remodeling biomarker in acute and chronic heart failure. [J].Curr Heart Fail Rep 2010;7:9-14.
    9. Pastorelli L, Garg RR, Hoang SB, et al. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Thl/Th2 driven enteritis. [J]. Proc Natl Acad Sci U S A 2010;107:8017-22.
    10. Hoogerwerf JJ, Tanck MW, van Zoelen MA, Wittebole X, Laterre PF, van der PT. Soluble ST2 plasma concentrations predict mortality in severe sepsis. [J]. Intensive Care Med 2010;36:630-7.
    11. Sahlander K, Larsson K, Palmberg L. Increased serum levels of soluble ST2 in birch pollen atopics and individuals working in laboratory animal facilities. [J]. J Occup Environ Med 2010;52:214-8.
    12. Weir RA, Miller AM, Murphy GE, et al. Serum soluble ST2:a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. [J]. J Am Coll Cardiol 2010;55:243-50.
    13. Xu D, Jiang HR, Li Y, et al. IL-33 exacerbates autoantibody-induced arthritis. [J]. J Immunol 2010; 184:2620-6.
    14. Moore SA, Januzzi JL, Jr. Found in translation soluble ST2 and heart disease. [J]. J Am Coll Cardiol 2010;55:251-3.
    15. Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33:the new kid in the IL-1 family. [J]. Nat Rev Immunol 2010; 10:103-10.
    16. Houghton-Trivino N, Salgado DM, Rodriguez JA, Bosch I, Castellanos JE. Levels of soluble ST2 in serum associated with severity of dengue due to tumour necrosis factor alpha stimulation. [J]. J Gen Virol 2010;91:697-706.
    17. Kurowska-Stolarska M, Stolarski B, Kewin P, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. [J]. J Immunol 2009;183:6469-77.
    18. Lingel A, Weiss TM, Niebuhr M, et al. Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors-insight into heterotrimeric IL-1 signaling complexes. [J]. Structure 2009;17:1398-410.
    19. Palmer G, Lipsky BP, Smithgall MD, et al. The IL-1 receptor accessory protein (AcP) is required for IL-33 signaling and soluble AcP enhances the ability of soluble ST2 to inhibit IL-33. [J]. Cytokine 2008;42:358-64.
    20. Kroeger KM, Sullivan BM, Locksley RM. IL-18 and IL-33 elicit Th2 cytokines from basophils via a MyD88-and p38alpha-dependent pathway. [J]. J Leukoc Biol 2009;86:769-78.
    21. van', V, Van den Pangaart PS, Van Zoelen MA, et al. Induction of IRAK-M is associated with lipopolysaccharide tolerance in a human endotoxemia model. [J]. J Immunol 2007;179:7110-20.
    22. Funakoshi-Tago M, Tago K, Hayakawa M, et al. TRAF6 is a critical signal transducer in IL-33 signaling pathway. [J]. Cell Signal 2008;20:1679-86.
    23. Iikura M, Suto H, Kajiwara N, et al. IL-33 can promote survival, adhesion and cytokine production in human mast cells. [J]. Lab Invest 2007;87:971-8.
    24. Pecaric-Petkovic T, Didichenko SA, Kaempfer S, Spiegl N, Dahinden CA. Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33. [J]. Blood 2009;113:1526-34.
    25. Bourgeois E, Van LP, Samson M, et al. The pro-Th2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-gamma production. [J]. Eur J Immunol 2009;39:1046-55.
    26. Suzukawa M, Iikura M, Koketsu R, et al. An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor. [J]. J Immunol 2008;181:5981-9.
    27. Talanian RV, Quinlan C, Trautz S, et al. Substrate specificities of caspase family proteases. [J]. J Biol Chem 1997;272:9677-82.
    28. Thornberry NA, Rano TA, Peterson EP, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. [J]. J Biol Chem 1997;272:17907-11.
    29. Luthi AU, Cullen SP, McNeela EA, et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. [J]. Immunity 2009;31:84-98.
    30. Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. [J]. Proc Natl Acad Sci U S A 2009; 106:9021-6.
    31. Hayakawa M, Hayakawa H, Matsuyama Y, Tamemoto H, Okazaki H, Tominaga S. Mature interleukin-33 is produced by calpain-mediated cleavage in vivo. [J]. Biochem Biophys Res Commun 2009;387:218-22.
    32. Seidelin JB, Bjerrum JT, Coskun M, Widjaya B, Vainer B, Nielsen OH. IL-33 is upregulated in colonocytes of ulcerative colitis. [J]. Immunol Lett 2010;128:80-5.
    33. Kobori A, Yagi Y, Imaeda H, et al. Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. [J]. J Gastroenterol 2010.
    34. Gabay C, McInnes IB. The biological and clinical importance of the'new generation' cytokines in rheumatic diseases. [J]. Arthritis Res Ther 2009;11:230.
    35. Verri WA, Jr., Guerrero AT, Fukada SY, et al. IL-33 mediates antigen-induced cutaneous and articular hypernociception in mice. [J]. Proc Natl Acad Sci U S A 2008;105:2723-8.
    36. Mok MY, Huang FP, Ip WK, et al. Serum levels of IL-33 and soluble ST2 and their association with disease activity in systemic lupus erythematosus. [J]. Rheumatology (Oxford) 2010;49:520-7.
    37. Kato A, Schleimer RP. Beyond inflammation:airway epithelial cells are at the interface of innate and adaptive immunity. [J]. Curr Opin Immunol 2007;19:711-20.
    38. Kearley J, Buckland KF, Mathie SA, Lloyd CM. Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. [J]. Am J Respir Crit Care Med 2009; 179:772-81.
    39. Nakajima H, Takatsu K. Role of cytokines in allergic airway inflammation. [J]. Int Arch Allergy Immunol 2007; 142:265-73.
    40. Matsuda A, Okayama Y, Terai N, et al. The role of interleukin-33 in chronic allergic conjunctivitis. [J]. Invest Ophthalmol Vis Sci 2009;50:4646-52.
    41. Pushparaj PN, Tay HK, H'ng SC, et al. The cytokine interleukin-33 mediates anaphylactic shock. [J]. Proc Natl Acad Sci U S A 2009; 106:9773-8.
    42. Kondo Y, Yoshimoto T, Yasuda K, et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. [J]. Int Immunol 2008;20:791-800.
    43. Godoy L. Allergic inflammation:where epithelial function interacts with immune response in atopic diseases. [J]. Drug News Perspect 2009;22:233-6.
    44. Liu X, Li M, Wu Y, Zhou Y, Zeng L, Huang T. Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma. [J]. Biochem Biophys Res Commun 2009;386:181-5.
    45. Sakashita M, Yoshimoto T, Hirota T, et al. Association of serum interleukin-33 level and the interleukin-33 genetic variant with Japanese cedar pollinosis. [J]. Clin Exp Allergy 2008;38:1875-81.
    46. Prefontaine D, Nadigel J, Chouiali F, et al. Increased IL-33 expression by epithelial cells in bronchial asthma. [J.]. J Allergy Clin Immunol 2010; 125:752-4.
    47. Bartunek J, Delrue L, Van DF, et al. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. [J]. J Am Coll Cardiol 2008;52:2166-74.
    48. Chapuis J, Hot D, Hansmannel F, et al. Transcriptomic and genetic studies identify IL-33 as a candidate gene for Alzheimer's disease. [J]. Mol Psychiatry 2009; 14:1004-16.
    49. Hudson CA, Christophi GP, Gruber RC, Wilmore JR, Lawrence DA, Massa PT. Induction of IL-33 expression and activity in central nervous system glia. [J]. J Leukoc Biol 2008-84:631-43.
    50. Kurowska-Stolarska M, Stolarski B, Kewin P, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. [J]. J Immunol 2009;183:6469-77.
    51. Matsuyama Y, Okazaki H, Tamemoto H, et al. Increased levels of interleukin.33 in sera and synovial fluid from patients with active rheumatoid arthritis. [J]. J Rheumatol 2010;37:18-25.
    52. Xu D, Jiang HR, Kewin P, et al. IL-33 exacerbates antigen-induced arthritis by activating mast cells. [J]. Proc Natl Acad Sci U S A 2008;105:10913-8.
    53. Palmer G, Talabot-Ayer D, Lamacchia C, et al. Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. [J]. Arthritis Rheum 2009;60:738-49.
    54. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. [J]. J Clin Invest 2007; 117:1538-49.
    55. Miller AM, Xu D, Asquith DL, et al. IL-33 reduces the development of atherosclerosis. [J]. J Exp Med 2008;205:339-46.
    56. Brint EK, Xu D, Liu H, et al. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. [J]. Nat Immunol 2004;5:373-9.
    57. Kurowska-Stolarska M, Kewin P, Murphy G, et al. IL-33 induces antigen-specific IL-5+ T cells and promotes allergic-induced airway inflammation independent of IL-4. [J]. J Immunol 2008;181:4780-90.
    58. Lee GR, Flavell RA. Transgenic mice which overproduce Th2 cytokines develop spontaneous atopic dermatitis and asthma. [J]. Int Immunol 2004; 16:1155-60.
    59. Temann UA, Geba GP, Rankin JA, Flavell RA. Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness..[J]. J Exp Med 1998; 188:1307-20.
    60. Whittaker L, Niu N, Temann UA, et al. Interleukin-13 mediates a fundamental pathway for airway epithelial mucus induced by CD4 T cells and interleukin-9. [J]. Am J Respir Cell Mol Biol 2002;27:593-602.
    61. Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo:a novel'alarmin'? [J].PLoS One 2008;3:e3331.
    62. Theoharides TC, Zhang B, Kempuraj D, et al. IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. [J]. Proc Natl Acad Sci U S A 2010;107:4448-53.
    63. Turnquist HR, Sumpter TL, Tsung A, et al. IL-1 beta-driven ST2L expression promotes maturation resistance in rapamycin-conditioned dendritic cells. [J]. J Immunol 2008; 181:62-72.
    64. Turnquist HR, Thomson AW. IL-33 broadens its repertoire to affect DC. [J]. Eur J Immunol 2009;39:3292-5.
    65. Valent P, Dahinden CA. Role of interleukins in the regulation of basophil development and secretion. [J]. Curr Opin Hematol 2010;17:60-6.
    66. Allakhverdi Z, Smith DE, Comeau MR, Delespesse G. Cutting edge:The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. [J]. J Immunol 2007; 179:2051-4.
    67. Moulin D, Donze O, Talabot-Ayer D, Mezin F, Palmer G, Gabay C. Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells. [J]. Cytokine 2007;40:216-25.
    68. Cherry WB, Yoon J, Bartemes KR, Iijima K, Kita H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. [J]. J Allergy Clin Immunol 2008;121:1484-90.
    69. Castellani ML, Kempuraj D, Salini V, et al. The latest interleukin:IL-33 the novel IL-1-family member is a potent mast cell activator. [J]. J Biol Regul Homeost Agents 2009;23:11-4.
    70. Suzukawa M, Koketsu R, Iikura M, et al. Interleukin-33 enhances adhesion, CD11b expression and survival in human eosinophils. [J]. Lab Invest 2008;88:1245-53.
    71. Guo L, Wei G, Zhu J, et al. IL-1 family members and STAT activators induce cytokine production by Th2, Thl7, and Thl cells. [J]. Proc Natl Acad Sci U S A 2009; 106:13463-8.
    72. Gudbjartsson DF, Bjornsdottir US, Halapi E, et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. [J]. Nat Genet 2009;41:342-7.
    73. Hayakawa H, Hayakawa M, Kume A, Tominaga S. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. [J]. J Biol Chem 2007;282:26369-80.
    74. Fiorentino DF, Zlotnik A, Vieira P, et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Thl cells. [J]. J Immunol 1991;146:3444-51.
    75. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. [J]. Nat Genet 2003;33:401-6.
    76. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. [J]. Nature 1998;391:806-11.
    .77. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. [J]. Nat Genet 2003;33:401-6.
    1. Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002;420:520-62.
    2. Vallender EJ. Bioinformatic approaches to identifying orthologs and assessing evolutionary relationships. Methods 2009;49:50-5.
    3. Doh ST, Zhang Y, Temple MH, Cai L. Non-coding sequence retrieval system for comparative genomic analysis of gene regulatory elements. BMC Bioinformatics 2007;8:94.
    4. Louis EJ. Evolutionary genetics:Origins of reproductive isolation. Nature 2009:457:549-50.
    5. Sayers EW, Barrett T, Benson DA, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2010;38:D5-16.
    6. Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-402.
    7. Rasko DA, Myers GS, Ravel J. Visualization of comparative genomic analyses by BLAST score ratio. BMC Bioinformatics 2005;6:2.
    8. Miller G, Fuchs R, Lai E. IMAGE cDNA clones, UniGene clustering, and ACeDB:an integrated resource for expressed sequence information. Genome Res 1997;7:1027-32.
    9. Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-402.
    10. Ji Q, Luo ZX, Yuan CX, Wible JR, Zhang JP, Georgi JA. The earliest known eutherian mammal. Nature 2002;416:816-22.
    11. Gilad Y, Man O, Paabo S, Lancet D. Human specific loss of olfactory receptor genes. Proc Natl Acad Sci U S A 2003; 100:3324-7.
    12. Nakagawa K, Noguchi Y, Uenaka A, et al. XAGE-1 expression in non-small cell lung cancer and antibody response in patients. Clin Cancer Res 2005;11:5496-503.
    13. Stevenson BJ, Iseli C, Panji S, et al. Rapid evolution of cancer/testis genes on the X chromosome. BMC Genomics 2007;8:129.
    1. Mast SW, Moremen KW. Family 47 alpha-mannosidases in N-glycan processing. Methods Enzymol 2006;4]5:31-46.
    2. Angelov A, Putyrski M, Liebl W. Molecular and biochemical characterization of alpha-glucosidase and alpha-mannosidase and their clustered genes from the thermoacidophilic archaeon Picrophilus torridus. J Bacteriol 2006; 188:7123-31.
    3. Henrissat B. Glycosidase families. Biochem Soc Trans 1998;26:153-6.
    4. Li B, Wang ZZ, Ma FR, et al. Cloning, expression and characterization of a cDNA (6A8) encoding a novel human alpha-mannosidase. Eur J Biochem 2000;267:7176-83.
    5. Elbein AD. Glycosidase inhibitors:inhibitors of N-linked oligosaccharide processing. FASEB J 1991;5:3055-63.
    6. Goss PE, Baker MA, Carver JP, Dennis JW. Inhibitors of carbohydrate processing:A new class of anticancer agents. Clin Cancer Res 1995; 1:935-44.
    7. Bowen D, Adir J, White SL, Bowen CD, Matsumoto K, Olden K. A preliminary pharmacokinetic evaluation of the antimetastatic immunomodulator swainsonine: clinical and toxic implications. Anticancer Res 1993; 13:841-4.
    8. Freeze HH. Human disorders in N-glycosylation and animal models. Biochim Biophys Acta 2002; 1573:388-93.
    9. Freeze HH. The pathology of N-glycosylation-stay the middle, avoid the risks. Glycobiology 2001;11:37G-8G.
    10. Xiang ZG, Jiang DD, Liu Y, Zhang LF, Zhu LP. hMan2c1 transgene promotes tumor progress in mice. Transgenic Res 2010;19:67-75.
    11. Yue W, Jin YL, Shi GX, et al. Suppression of 6A8 alpha-mannosidase gene expression reduced the potentiality of growth and metastasis of human nasopharyngeal carcinoma. Int J Cancer 2004; 108:189-95.
    12. Qu L, Ju JY, Chen SL, et al. Inhibition of the alpha-mannosidase Man2cl gene expression enhances adhesion of Jurkat cells. Cell Res 2006; 16:622-31.
    13. Shi Y, Tian Y, Zhou YQ, et al. Inhibition of malignant activities of nasopharyngeal carcinoma cells with high expression of CD44 by siRNA. Oncol Rep 2007;18:397-403.
    14. Jin YL, Yue W, Shi GX, Liu Y, Zhao FT, Zhu LP. Inhibition of 6A8 alpha-mannosidase gene expression resulted in telomere length shortening in nasopharyngeal carcinoma cell CNE-2L2. Cancer Lett 2005;218:229-34.
    15. Suzuki T, Hara I, Nakano M, et al. Man2C1, an alpha-mannosidase, is involved in the trimming of free oligosaccharides in the cytosol. Biochem J 2006;400:33-41.
    16. Chui D, Oh-Eda M, Liao YF, et al. Alpha-mannosidase-II deficiency results in dyserythropoiesis and unveils an alternate pathway in oligosaccharide biosynthesis. Cell 1997;90:157-67.
    17. Fukuda MN, Akama TO. In vivo role of alpha-mannosidase IIx:ineffective spermatogenesis resulting from targeted disruption of the Man2a2 in the mouse. Biochim Biophys Acta 2002; 1573:382-7.
    18. Altorjay A, Paal B, Sohar N, Kiss J, Szanto I, Sohar I. Significance and prognostic value of lysosomal enzyme activities measured in surgically operated adenocarcinomas of the gastroesophageal junction and squamous cell carcinomas of the lower third of esophagus. World J Gastroenterol 2005; 11:5751-6.
    19. Beratis NG, Kaperonis A, Eliopoulou MI, Kourounis G, Tzingounis VA. Increased activity of lysosomal enzymes in the peritoneal fluid of patients with gynecologic cancers and pelvic inflammatory disease. J Cancer Res Clin Oncol 2005; 131:371-6.
    20. Suzuki O, Nozawa Y, Abe M. Regulatory roles of altered N-and O-glycosylation of CD45 in galectin-1-induced cell death in human diffuse large B cell lymphoma. Int J Oncol 2005;26:1063-8.
    21. Wielgat P, Walczuk U, Szajda S, et al. Activity of lysosomal exoglycosidases in human gliomas. J Neurooncol 2006;80:243-9.
    22. Altorjay A, Paal B, Sohar N, Kiss J, Szanto I, Sohar I. Significance and prognostic value of lysosomal enzyme activities measured in surgically operated adenocarcinomas of the gastroesophageal junction and squamous cell carcinomas of the lower third of esophagus. World J Gastroenterol 2005; 11:5751-6.
    23. Beratis NG, Kaperonis A, Eliopoulou MI, Kourounis G, Tzingounis VA. Increased activity of lysosomal enzymes in the peritoneal fluid of patients with gynecologic cancers and pelvic inflammatory disease. J Cancer Res Clin Oncol 2005;131:371-6.
    24. Suzuki O, Nozawa Y, Abe M. Regulatory roles of altered N-and O-glycosylation of CD45 in galectin-1-induced cell death in human diffuse large B cell lymphoma. Int J Oncol 2005;26:1063-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700