用户名: 密码: 验证码:
抗病小麦—黑麦新异染色体系的鉴定和分子细胞遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病、白粉病和赤霉病是世界性病害,也是我国小麦的三大主要病害。培育抗病品种是防治病害最为经济、有效和环保的方法,而鉴定和筛选优质抗源及抗病基因是抗病育种的基础和长期而艰巨的任务。栽培黑麦(Secale cereale L.)是小麦的重要近缘种属植物,携带有大量抗病、抗逆、增产基因。在近30年的小麦改良育种研究中,小麦—黑麦异染色体系作为向小麦遗传背景中导入黑麦外源遗传物质的桥梁材料,在小麦育种材料的创制中有不可取代的地位。
     本研究以小麦—黑麦远缘杂交(My15×Rw)BC_2F_4后代单株系为研究材料,Rw为中国栽培白粒黑麦(S.cereale L.cv.Baili)自交系,免疫白粉病,为抗源供体;My15为不含黑麦遗传背景的高感白粉病、条锈病的小麦品种。通过对94个供试材料的抗白粉病、条锈病和赤霉病特性的鉴定,筛选出具有优良抗病性的小麦—黑麦易染色体系,并通过分子细胞学研究和农艺性状考察,对抗病材料的黑麦外源种质进行了鉴定。研究结果如下:
     1.通过田间接种鉴定材料成株期条锈病、白粉病和赤霉病抗性,筛选出单抗白粉病材料37个,双抗条锈病、白粉病材料52个和兼抗条锈病、白粉病、赤霉病三种病害的材料1个。
     2.应用根尖有丝分裂细胞染色体计数,筛选出8个抗病性良好、且细胞学具有代表性的材料,分别是:911-1(2n=42)高抗白粉病,669-2(2n=42)、900-4(2n=42)、900-5(2n=44)、909(2n=42)、912(2n=42)和1014-1(2n=56)兼抗条锈病和白粉病,1016-2(2n=44)兼抗条锈病、白粉病和赤霉病。
     3.对筛选出的8个抗病材料进行减数分裂细胞染色体配对分析,结果显示:抗病材料在细胞学上均达到稳定。通过C—分带、GISH和SSR分析得知,669-2、909和911-1分别导入除一对1R、2R、3R以外的12条黑麦染色体,是缺失1R或2R或3R的小麦—黑麦不完全异染色体系,染色体构型分别为6”(2-7)R+15”W,6”(1,3-7)R+15”W和6”(1,2,4-7)R+15”W。900-4、900-5、912、1014-1和1016-2均导入黑麦1R—7R染色体14条,其中900-4和912的一组小麦染色体被黑麦染色体替换,已构成六倍体的小黑麦;900-5和1016-2的一组小麦染色体被黑麦染色体替换,并附加一对小麦染色体,是六倍体小黑麦小麦附加系;而1014-1是一个新的八倍体小黑麦。4.A-PAGE分析结果表明,除了669-2和900-4外,其余材料都具有黑麦碱特征带,其中669-2不含1R染色体而900-4含有1R染色体。900-4中1R染色体上的黑麦碱基因Sec-1表达缺失。
     5.田间主要农艺性状考察结果显示,与亲本普通小麦My15和白粒黑麦Rw相比,供试材料遗传了Rw分蘖成穗率高、小穗数多、穗长较长等优势,而株高和产量性状优于Rw,具有明显的杂种优势效应。
     本研究表明,中国栽培白粒黑麦Rw中含有抗条锈病、白粉病及赤霉病基因,可作为小麦抗病高产改良的优质抗源,选育出的8个抗病材料不仅可作为多抗、高产遗传研究的初级中间材料,还可作为饲用或粮用小黑麦进一步利用。
Stripe rust,powdery mildew and Fusarium head blight(FHB) are major wheat diseases in China and all around the world.Developing resistance varieties is the most economical,effective and environmental way to control disease.Screening and identification of reisitance materials and genes is the foundation and also a long-term and arduous risk of wheat resistance breeding.As a related specie of wheat,rye(Secale cereale L.) carries a great number of resistant genes and increasing yield genes.In recent decades, as a bridged tool to translocate rye genetic material to wheat genetic background, Wheat-rye addition lines play an important role in wheat breeding.
     In this research,offsprings of hybrids BC_2F_4 between wheat My15 and rye Rw were taken as test materials.Rw as the donor parent was a Chinese Baili rye(S.cereale L.cv. Baili) inbred lines with resistance to stripe rust,powdery mildew.My15 as the receptor parent was a common wheat cultivar without any rye chromatin,which was high sensitive to stripe rust,powdery mildew and FHB.Through evaluation on disease resistance and molecular cytogenetics analysis,we selected materials with resistance to stripe rust, powdery mildew and(or) FHB,and detected the rye chromatin contained in the wheat background.The main results are summaried as follows:
     1.Evaluation on stripe rust,powdery mildew and Fusarium head blight resistance showed that there were 37 marterials had resistence to powdery mildew,52 materials had simultaneous resistance to stripe rust and powdery mildew,1 material had multi-resistance to stripe rust,powdery mildew and FHB.
     2.Based on the results of chromosome karyotype analysis and evaluation on disease resistance,we selected 8 materials with disease resistance.They were 911-1(2n=42) which was highly resistant to powdery mildew,669-2(2n-42,)900-4(2n=42),900-5(2n=44), 909(2n=42),912(2n=42) and 1014-1(2n=56) which were simultaneous resistant to stripe rust and powdery mildew,and 1016-2(2n=44) which was multi-resistant to stripe rust, powdery mildew and FHB.
     3.All 8 selected materials were cytologic satble through the results of reduction division of pollen mother cells.Results of C-banding,GISH and SSR analysis demonstrated that all 8 materials contained rye chromatins.669-9,909,911-1 each had 12 rye chromsomes,lacking of one pair of 1R,2R and 3R chromsomes respectively.They were partial amphiploid,their chromosome configuration were 6"(2-7)R+15"W, 6"(1,3-7)R+15"W and 6"(1,2,4-7)R+15"W respectively.900-4,900-5,912,1014-1 and 1016-2 had 1R-7R all 14 rye chromsomes.900-4,909 and 912 were hexoploid triticale,in which one group of wheat chromosomes were replaced by rye chromosomes.900-5 and 1016-2 were wheat-hexoploid triticale addition lines,in which one group of wheat chromosomes were replaced by rye chromosomes and a pair of wheat chromosomes. 1014-1 were octoploid triticale,which contained wheat and rye all 56 chromosomes.
     4.A-PAGE result revealed that,beside 669-2 and 900-4,6 materials contained Sec-1 locus.900-4 had a pair of 1R chromsomes,but the Sec-1 locus from 1R of rye was absent in the A-PAGE pattern,which indicated 900-4 is a wheat-rye amphiploid with secalin absence.
     5.The results of main agronomic traits assessment indicated that,test materials had obvious effect of heterosis.Compared to the parents,matrials inherited advantages from both My15 and Rw,such as strong ability of tiller-earing,more spikelets and longer spike.
     The research indicated that the resistanc to to stripe rust,powdery mildew and Fusarium head blight of test martsrails came from Chinese Baili rye cultivar Rw,which could be used as a valuable resistance parent for wheat improvment.The 8 selected materials had high application value,they could be utilized not only as a fine germplasm of disease resistance in wheat breeding but also as forage and grain triticale.
引文
[1]陈佩度,王兆悌,王苏玲等.将大赖草种质转移给普通小麦的研究Ⅲ.抗赤霉病异附加系选育.遗传学报,1995,22(3):206-210
    [2]蔡习文.荆州黑麦的染色体分析及C—显带核型.华中农业大学学报,1994,13(1):90-92
    [3]陈耀锋,宋运贤,李振岐等.小麦抗条锈新种质的创制Ⅱ.外缘抗条锈基因的导入.西北农林科技大学学报(自然科学版),2003,31(4):19-22
    [4]程治军.八倍体小黑麦与普通小麦(父本)杂交亲和性基因的研究.中国农业科学,1997,30(2):
    [5]丁海燕,郑茂波,徐英博等.一个大穗型小麦—黑麦异代换系的细胞学和SSR鉴定.麦类作物学报,2008,20(2):202-205
    [6]董玉琛.小麦的基因源.麦类作物学报,2000,20(3):78-81
    [7]董玉琛,郑殿升.中国小麦遗传资源.中国农业出版社,2000:225-227
    [7]符书兰,唐宗祥,张怀琼等.含有抗白粉病基因的黑麦染色体小片段向小麦的转移.遗传,2006a,28(11):1396-1400
    [8]符书兰.含抗白粉病基因的黑麦染色体小片段向小麦的转移.雅安,四川农业大学,2006b
    [9]郭军洋,陈劲风,钱春桃等.植物减数分裂染色体配对与染色体组分析的研究进展.植物学通报,2004,21(5):513-520
    [10]胡含,张相岐,张文俊等.花粉染色体工程.科学通报,1999,41(1):6-11
    [11]海林,马缘生.利用黑麦颈毛基因和抗白粉病性结合细胞学鉴定选育小黑麦附加系和代换系简报.作物品种资源,1994,1:12-27
    [12]张从宇,王家义.小麦品种对赤霉病的抗性鉴定.种子,2003,6:38-39
    [13]刘成,李光蓉,杨足君等.黑麦基因组特异DNA片段的分离与SCAR标记的建立.西北植物学报,2006,26(12):2434-2438
    [14]刘成,杨足君,冯娟等.黑麦染色体组中一个新重复序列的发现、定位与应用.中国农业科学,2007,40(8)
    [15]李诚,艾尼瓦尔,孔广超等.小黑麦光合物质积累及其饲用品质性状研究进展.种子,2006,25(6):48-51
    [16]刘登才.将秦岭黑麦遗传物质导入普通小麦的研究.四川农业大学学报,2002,20(2):75-77
    [17]李集临,王宁,郭东林等.小麦—黑麦染色体代换的研究.植物研究,2002,22(2):220-224
    [18]李平路,郭建军,刘莉等.普通小麦异附加系的选育和鉴定研究进展.山东农业科学,2001,5: 42-44
    [19]李瑞芬,赵茂林,张敬原等.单体异附加系花药培养创制小麦—中间偃麦草纯合易位系.西北植物学报,2006,26(1):28-32
    [20]李曙光.小黑麦杂种后代的Giemsa C带研究.东北师大学报自然科学版,1995,4:88-92
    [21]李晓燕,王曙光,李瑞等.黑麦优良基因在小麦育种中的应用.山西农业科学,2007,35(10)15-19
    [22]卢一凡.染色体C—分带和原位杂交技术在遗传学上的应用.生物技术通报,1998,2:13-17
    [23]李振声.小麦远缘杂交与染色体工程.北京,科学普及出版社,1987:462-496
    [24]刘宗正,汪志远,赵文俊等.我国改良小麦品种抗赤霉病性的来源与抗赤霉病性改良中的问题.中国农业科学,1992,25(4):47-52
    [25]马渐新,周荣华,董玉琛,等.来自长穗偃麦草的抗小麦条锈病基因的定位.科学通报,1999,44(1):65-69
    [26]毛龙,胡言.朱立煌等.应用RAPD分析1个抗条锈病的小麦-黑麦易位系.科学通报,1994,39(22):2088-2090
    [27]马强,罗培高,任正隆等.亮白抗白粉病新基因的遗传分析与染色体定位.作物学报,2007,33(1):1-8
    [28]亓增军,庄丽芳,刘大钧等.将荆州黑麦种质倒入栽培小麦的研究(Ⅰ).南京农业大学报,2000,23(4):1-4
    [29]任明见,朱文华,张庆勤.抗白粉病兼抗赤霉病小麦新品种(系)的抗病性鉴定和利用评价.种子,2003,4:7-9
    [30]任正隆.遗传转移的MADI过程.四川农业大学学报,1990,8(1):1-8
    [31]任正隆,Lelley T,Robbelen G.八倍体小黑麦×普通小麦杂种后代群体中的染色体易位.遗传学报,1991,18(3):228-234
    [32]任正隆,张怀琼.一个改良的染色体C带技术.四川农业大学学报,1995,13(1):1-5
    [33]司起红,马传喜.黑麦Secalin蛋白的SDS-PAGE检测法.麦类作物学报,2003,23(4):89-93
    [34]孙敏,郭媛.小黑麦生物学特性、营养价值及利用前景.山西农业大学学报,2003,23(3):200-203
    [35]孙敏,苗果园,杨珍平等.小黑麦、黑麦与普通小麦粮用和饲用价值的差异.麦类作物学报,2008,28(4):644-648
    [36]孙元枢等.中国小黑麦遗传育种研究与应用.杭州,浙江科学技术出版社,2002:44-48
    [37]孙新立,张来群.小麦醇溶蛋白酸性电泳条件的探索.作物学报,1999,25(1):126-129
    [38]舒焕麟,杨足君,李光蓉.创新诱发材料SY95-71选育和利用价值研究.四川农业大学学报,1999,17(3):249-253
    [39]尚海英,郑有良.黑麦属基因资源研究进展.麦类作物学报,2003,23(1):86-89
    [40]吴刚,崔海瑞,夏英武.原位杂交技术在植物遗传育种上的应用.植物学通报,1999,16(6):625-630
    [41]温海霞,陶澜,戴秀梅.植物染色体C—显带技术及其再小麦育种中的应用研究进展.种子,2002,122(3):40-42
    [42]王静,王献平,纪军等.小麦—黑麦1RS/1BL新易位系的创制和分子细胞遗传学鉴定.作物学报,2006,32(1):30-33
    [43]吴金华,吉万金,李凤珍.黑麦在小麦改良中的应用研究.麦类作物学报,2005,25(1)
    [44]吴金华,张西平,吉金万等.奥地利黑麦染色体核型和C—分带带型.西北农林科技大学学报,2007,35(1):73-76
    [45]魏育明,郑有良,周荣华等.应用荧光原位杂交和RFLP标记检测多穗小麦新种质10-A中的黑麦染色质.植物学报,1999,41(7):722-725
    [46]肖静,田纪春.小麦(T.aestivum L.)D基因组的研究进展.分子植物育种,2008,6(3):537-541
    [47]晏本菊,张怀琼,任正隆.黑麦碱基因(Sec-1)表达缺失的1RS/1BL易位系的鉴定.遗传,2005,27(4):513-517
    [48]谢皓,陈孝,辛志勇等.兼抗条锈、白粉病的小麦新种质——YW243的选育和鉴定.作物杂志,1997,3:8-10
    [49]叶健.含抗条锈病和Sec-1基因的小麦—黑麦小片段易位系的创制及分子细胞遗传学鉴定.雅安,四川农业大学,2007
    [50]颜启传,黄亚军.试用ISTA推荐的种子醇溶蛋白电泳方法鉴定大麦和小麦品种.作物学报,1992,18(1):61-68
    [51]杨文杰.小黑麦×普通小麦衍生小麦抗条锈病品系的分子细胞遗传学研究.雅安,四川农业大学,2004
    [52]余遥.四川小麦.成都,四川科技出版社,1998
    [53]苑泽宁,李临集.小麦—黑麦代换系间杂交后代减数分裂行为的研究.黑龙江大学自然科学学报,2003,20(4):114-116
    [54]张怀琼,任正隆.黑麦的异染色质分化.四川大学学报(增刊),1998:38-41
    [55]张怀渝.小麦—黑麦抗白粉病附加系和易位系的选育及分子细胞遗传学研究.雅安,四川农业大学,1999
    [56]张洁,唐宗祥,符书兰等.不同黑麦染色体对小麦主要储藏蛋白组成的影响.麦类作物学报,2008,28(2):232-237
    [57]周建平.携带抗赤霉病基因的小麦—黑麦小片段易位的分子细胞学检测.雅安,四川农业大学,2004
    [58]庄丽芳,宋立晓,冯祎高.小麦EST-SSR标记的开发和染色体定位及其在追踪黑麦染色体中的应用.作物学报,2008,34(6):926-933
    [59]张利国,张楠楠,李集临.利用小麦—黑麦代换系间杂交创制易位系的研究.哈尔滨师范大学自然科学学报,2006,22(1):86-89
    [60]周淼平,任丽娟,张旭等.3B染色体短臂小麦赤霉病抗性主效QTL的分析.遗传学报,2003,30(6):571-576
    [61]张庆勤.小麦远缘杂交中兼抗育种方法研究.西南农业学报,1999,12(1):32-38
    [62]周荣华,贾继增,董玉琛.用基因组原位杂交技术检测小麦—新麦草杂交后代.中国科学(C 辑),1997,27(6):543-549
    [63]周阳,何中虎,张改生等.1BL/1RS易位系在我国小麦育种中的应用.作物学报,2004,30(6):531-535
    [64]曾雪,杨足君,李光蓉等.非洲黑麦染色体特异性标记的建立与应用.遗传,2008,30(8):1056-1062
    [65]曾祥艳,陈孝,张增艳等.小麦多基因聚合体YW243的改良与利用.作物学报,2006,32(5):645-649
    [66]曾祥艳,张增艳,杜丽璞等.分子标记辅助选育兼抗白粉病、条锈病、黄矮病小麦新种质.中国农业科学,2005,38(12):2380-2386
    [67]赵燕丽,王占斌,李集临等.染色体C—带在小麦—黑麦易位系和代换系鉴定中的作用.植物研究,2006,26(3):333-336
    [68]郑有良,颜济,杨俊良.普通小麦抽穗期基因定位的研究.遗传学报,1993,20(5):468-472
    [69]Bai GH,Shaner GE.Management and resisitanc in wheat and barley to Fusarium head blight.Ann.Rev.of Phytopath.2004,42:135-161
    [70]Bai GH,Ma HX,Yu JB et al.Molecular mapping of OTLs for reisitance to Fusarium head blight in Asian wheat.In:The global fusarium initiative for international collaboration.Ban T et al,eds,2006: 8-11
    
    [71] Bai GH, Guo PG, Kobl FL. Genetic relationship among head blight resistance cultivars of wheat assessed on the basis of molecular markers. Crop Sciencs. 2003,43: 498-507
    
    [72] Bennet FG. Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathology, 1984, 33: 279-300
    
    [73] Boyer JS. Plant Productivity and Environment. Science, 1982, 218(4571): 443-448
    
    [74] Brunell MS, Lukaszewski AJ, Whitkus R. Development of arm specific RAPD markers for rye chromosome 2R in wheat. Crop Science. 1999, 39: 1702-1706
    
    [75]Chen XM, Jones SS, Line RF. Chromosomal location of genes for resistance to Puccinia striiformis in seven wheat cultivars with resistance genes at the Yr3 and Yr4 loci. Phytopathology, 1996, 86:1228-1233.
    
    [76] Cheng ZJ, Minoru Murata, Sodmergen et al. Effects on genome constitution and novel cell wall formation caused by the addition of 5RS rye chromosome to common wheat. Journal of Integrative Plant Biology, 2008, 50(4): 503-509
    
    [77] Clarke BC, Mukai Y, Appels R. The Sec-1 locus on the short arm of chromosome 1R of rye ( Secale cereale). Chromosoma. 1996, 105: 269-275
    
    [78] Cuadrado A, Vitellozzi F, Jouve N et al. Flourescence in situ hybridization with multiple repeated DNA probes applied to analysisof wheat-rye chromosome pairing. Theor. Appl. Genet. 1997, 94:347-355
    
    [79] Endo TR. Gametecidal chromosomes and their induction of chromosome mutation in wheat. Jap. J.Genet. 1990,65: 135-152
    
    [80] Fedak G. Molecular aids for integration of alien chromatin through wide crosses. Genome, 1999,42:584-591
    
    [81] Gill BS. Standard karyotype and nomenclature system for description of chromosome bands and structural abberalions in wheat. Genome. 1991, 34: 830-839
    
    [82] Gonzalez C, Camacho MV, Benito C. Chromosomal location of 46 new RAPD markers in rye(Secale cereale L.). Genetica. 2002, 115: 205-211H
    
    [83] Gustafson JP, Ma XF, Korzun V et al. A consensus map of five rye integrating mapping data from five mapping populations. Theor. Appl. Genet. 2008
    
    [84] Hackauf B, Wehling P. Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breeding. 2002, 121(1): 17-25
    
    [85] Hana Simkova, Jan Safar, Pavla Suchankova et al. A novel resource of genomics of Triticeae: BAC library specific for the short arm of rye (Secale cereale L.) chromosome 1R (1RS). BMC Genomics.2008,9: 237-246
    
    [86] Hasm SLK, Zeller FJ. Evidence of allellism between genes Pm8 and Pm1 7 chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar 'Amigo'. Plant Breeding. 1997, 116: 119-122
    
    [87] Heun M, Friebe B, Bushuk W. Chromosomal location of powdery mildew resistance gene of Amigo wheat. Phytopathology. 1990, 80:1129-1133
    
    [88] Huang XQ, Cloutier S, Lycar L et al. Molecular detection of QTLfor agronomic and quality traits in a doubled haploid population derieved from two Canadian wheats. Theor. Appl. Genet. 2006, 3:1022-1039
    
    [89] Hysing SC, Hsam SLK, Singh RP et al. Agronomic performance and multiple disease resisitance in T2BS.2RL wheat-rye translocation lines. Crop Science. 2007,47: 254-260
    
    [90] Iqbal MJ, Rayburn AL. Identification of the IRS rye chromosomal segment in wheat by RAPD analysis. Theor. Appl. Genet. 1995, 91(6-7): 1048-1053
    
    [91] Jong-Min Ko, Geum-Sook Do, Duck-Yong Suh et al. Identification and chromosomal organization of two rye genome-specific RAPD products useful as introgression markers in wheat. Genome. 2002, 45:157-164
    
    [92] Kim W, Johnson JW, Baenziger PS et al. Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Science. 2004,44: 1254-1258
    
    [93] Kishii M, Delgado R, Rosas V et al. Utilization of wild genetic resources for the improvement of FHB resistance in wheat breeding. In: The global fusarium initiative for international collaboration.Ban T et al,eds, 2006: 24-27
    
    [94] Koebner RMD. Generation of PCR-based markers for the detection of rye chromatin in a wheat background. Theor. Appl. Genet. 1995,90(5): 740-745
    
    [95] Korzun V, Melz G, B(?)rner A. RFLP mapping of the dwarfing (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale cereale L.). Theor. Appl. Genet. 1996,92: 1073-1077
    
    [96] Kuleung C, Baenziger PS, Dweikat I. Transferability of SSR markers among wheat, rye and triticale. Theor. Appl. Genet. 2003, 108: 1147-1150
    [97] Langer-Safer P R., Levine M, Ward D C. Immunological method for mapping genes on Drosophila polytene chromosomes. PNAS. 1982, 79: 4381-4385
    
    [98] Leachm RC, Dundas IS, Houben A. Construction of comparative genetic maps of two 4BS.4BL/5RLtranslocations in bread wheat (Triticun aestivum L.). Genome. 2006,49: 729-734
    
    [99] Li HJ, Conner L Liu ZY et al. Characterization of wheat-triticale lines eesistant to powdery mildew, stem rust, wheat curl mite, and limitation on spread of WSMV. Plant Disease. 2007, 91(4): 368-374
    
    [100] Liu C, Yang ZJ, Ling GR et al. Isolation of a new repetitive DNA sequence from secale africanum enables targeting of secale chromatin in wheat background. Euphytica. 2008, 159(1-2): 249-258
    
    [101] Liu CJ, Atkison MD, Chinoy CN et al. Nonhomoeologous translocations between group 4, 5 and 7 chromosomes in wheat and rye. Theor. Appl. Genet. 1992, 83: 305-312
    
    [102] Lukaszewski AJ, Gustafson JP. Translocations and modifications of chromosomes in Tritical × Wheat hybrids. Theor. Appl. Genet. 1983, 64: 239-248
    
    [103] Lukaszewski A J. Manipulation of the IRS-1BL translocation in wheat by induced homoeologous recombination. Crop Science. 2000,40: 216-225.
    
    [104] Lukaszewski AJ, Lapinski B, Rybka K. Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogenetics and Plant Breeding. 2005, 109:373-377
    
    [105] Macer RCF. The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. Proceedings of the 2nd International Wheat Genetics Symposium, Lund. MacKey J,eds. Sweden, 1963, Hereditas Supplement 2, 1966: 127-142
    
    [106] Mago R, Spielmeyer W, Lawrence GJ et al. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome IRS of rye using wheat-rye translocation line.Theor. Appl. Genet. 2002, 104: 1317-1324
    
    [107] Masojc P, Myskow B, Milczarski P. Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers. Theor. Appl. Genet. 2001, 102(8):1273-1279
    
    [108] Masoudi-Nejad A, Nasuda S, McIntosh RA et al. Transfer of rye chromosome segments to wheat by a gametocidal system. Chromosome Research. 2002, 10: 349-357
    
    [109] Mclntosh RA. Catalogue gene symbols for wheat: 1998 supplement. Wheat Information Service,1998,86:54-91
    [110] McIntoshi RA. Close genetic linkage of genes conferring adult-plant resistance to leaf rust and stripe rust in wheat. Plant Pathology. 1992, 41(5): 523-527
    
    [111] McIntosh RA, Arts CJ. Genetic linkage of the Yr1 and Pm4 genes for etripe rust and powdery mildew resistance in wheat. Euphytica. 1996,89:401-403
    
    [112] Mclntosh RA, Gale MD. Catalogue of gene symbols for wheat. In: Proceedings of 8th.International Wheat Genetics Symposium. Li ZS et al, eds. Beijing, China Agricultural Scientech Press,1993
    
    [113] Mclntosh RA, Yamazaki Y, Dubcovsky J et al. Catalogue of gene symbols for wheat. In: Proceedings of 11th. International Wheat Genetics Symposium. Rudi-Appels et al, eds. Sydney, Sydney University Press, 2008
    
    [114] Mliczarski P, Tabor AB, Lebicka K et al. New genetic map of rye composed of PCR-based molecular markers and its alignment with the reference map of the DS2 × RXL10 intercross. J. Appl.Genet. 2007,48(1): 11-24
    
    [115] Naranjo T, Fernandez-Rueda P. Pairing and recombination between individual chromosomes of wheat and rye in hybrids carrying the ph1b mutation. Theor. Appl. Genet. 1996, 93: 242-248
    
    [116] Naranjo T, Roca A, Giraldez R et al. Chromosome pairing in hybrids of phlb mutant wheat with rye. Genome. 1988, 80: 639-646
    
    [117] Nkongolo K, Nam-Soo Kim, Haley SD et al. Molecular and cytological characterization of advanced generations of wheat × triticale hybrids resistant to the russian wheat aphid .Symposium of 2007 International Annual Meetings: A Century of Integrating Crops, Soils and Enviroments. New Orleans, 2007
    
    [118] Nkongolo K, Perinot G, Ratiarson A. Identification of a repeat sequence of rye DNA in wheat and related species. Plant Molecular Biology Reporter. 1996, 14(4): 343-352
    
    [119] Orton TJ. Chromosomal variability in tissue cultures and regenerated plants of Hordeum. Theor.Appl. Genet. 1980,56: 101-112
    
    [120] Prem P Jauhar, Ravindra N Chibbar. Chromosome-mediated and direct gene transfers in wheat. Genome. 1999, 42(4): 570-583
    
    [121] Qi LL, Pumphrey MQ, Friebe B et al. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor. Appl.Genet. 2008, 117: 1155-1166
    [122] Raina SN, Rani V. GISH technology in plant genome research. Methods in Cell Science. 2001, 23:83-104
    
    [123] Rayburn A Lane, Gill BS. Molecular identification of D-genome chromosomes of wheat. Heredity.1985,77:253-255
    
    [124] Resch V, Kofler R, Lelley T. A genetic and physical map of the short arm of rye chromosome 1 (IRS). In: Proceedings of 11th. International Wheat Genetics Symposium. Rudi Appels et al, eds.Sydney, Sydney University Press, 2008
    
    [125] Riley R. The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapses. Genet. Res. Camb. 1968, 12: 198-219
    
    [126] Roder MS, Huang XQ, Bomer A. Fine mapping of region on wheat chromsome 7D controlling grain wheat. Functional and Integrative Genomics. 2007, 10: 53-61
    
    [127] Royo C, Pares D. Yield and quality of winter and spring triticales for forage and grain. Grass and Forage Science. 1996, 51: 449-455
    
    [128] Saal B, Wricke G. Development of simple sequence repeat markers in rye (Secale cereale L.).Genom. 1999,42:964-972
    
    [129] Schlegel R, Gill BS. N-banding analysis of rye chromosomes and the relationship between N-banded and C-banded heterochromatin. Can. J. Genet. Cytol. 1984(26): 765-769
    
    [130] Schlegel R, Melz G, Mettin D. Rey cytology, cytogenetics and genetics-Current status. Theor.Appl. Genet.1986(72): 721-734
    
    [131] Seah S, Bariana H, Jahier J er al. The introgressed segment carrying rust resistance genes Yr17,Lr37 and Sr38 in wheat can be assayed by a cloned disease resistance gene-like sequence. Theor. Appl.Genet. 2000, 102: 600-605
    
    [132] Sears ER. Transfer of alien genetic material to wheat. In: Wheat Sci-Today and Tomorrow. Euansc LF (eds). Cambridge. Vri. Press, 1981,25-89
    
    [133] Sears ER. Use of radiation of transfer alien chromosome segments to wheat. Crop Science, 1993,33: 897-901
    
    [134] Shewry PR, Radberry DB, Frankin J et al. The chromosomal locations and linkage relationships of the structural genes for the prolamin storage proteins (secalins) of rye. Theor. Appl. Genet. 1984, 69:63-69
    
    [135] Singh N.K., Shepherd K.W., McIntosh R.A. Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ω-secalins on the short arm of rye chromosome 1R. Theor. Appl. Genet. 1990, 80:609-616.
    
    [136] Singh RP. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology. 1992, 82(8): 835-838
    
    [137] Singh S, Set GS. Expression of 17 rye {Secale cereale L.) traits in a range of durum wheat {Triticum durum Desf.) and bread wheat (T. aestivum L.) genetic backgrounds. Euphytica, 1992, 60:37-44
    
    [138] Sozinov AA, Novoselskaya AY, Lushnikova AA et al. Cytological and biochemical analysis of bread wheat variants with 1B/1R substitutions and translocations in karyotype. Tsitologiya I Genetika.1987,21:256-261
    
    [139] Stojaowski S, Jaciubek M, Masojae P. Rye SCAR markers for male fertility restoration in the P cytoplasm are also applicable to marker-assisted selection in the C cytoplasm. J. Appl. Genet. 2005,46(4): 371-373
    
    [140] Stracke S, Schilling AG, F(?)rster J et al. Development of PCR-based markers linked to dominant genes for male-fertility restoration in Pampa CMS of rye {Secale cereale L.). Theor. Appl. Genet. 2004,106:1184-1190
    
    [141] Trade Schwarzacher. Meiosis, recombination and chromosomes: a review of gene isolation and fluorescent in situ hybridization data in plants. Journal of Exprimental Botany. 2003, 380(54): 11 -23
    
    [142] Vaillancourt A., Nkongolo KK, Michael P et al. Identification, characterisation, and chromosome locations of rye and wheat specific ISSR and SCAR markers useful for breeding purposes. Euphytica.2008, 159(3): 297-306
    
    [143] Van-Deynze AE, Sorrells ME, Park WD et al. Anchor probes for comparative mapping of grass genera. Theor. Appl. Genet.1998, 97: 356-369
    
    [144] Xie H, Lin ZS, Zhang ZY et al. Identification of wheat line YW243 on comprehensive resisitance to several diseases by ogens and molecular markers. Cereal Research Communications. 2008, 36(4):543-552
    
    [145] Yong Weon Seo, Cheol Seong Jang, J.W.Johnson. Development of AFLP and STS markers for identifying wheat-rye translocations possessing 2RL. Euphytica. 2001, 121(3): 279-287
    
    [146] Yang ZJ, Zhang T, Liu C et al. Indentification of Wheat-Dasypyrum breviaristatum addition lines with strip rust resisitance using C-banding and genomic in situ hubridization. In: Proceedings of 11th. International Wheat Genetics Symposium.Rudi Appels et al,eds.Sydney,Sydney University Press,2008
    [147]Yu JB,Bai GH,Cai SB et al.Marker-assisted characterization of Asian wheat lines for resistance to Fusarium head blight.Theor.Appl.Genet.2006,113:308-320
    [148]Zhang XQ,Wang XP,Jing JK te al.Characterization of wheat-triticale doubled haploid lines by cytological and biochemical markers.Plant Breeding.1998,117:7-12
    [149]Zhong YQ,Xu RL,Yi QH et al.A comparative study on the resistance to powdery mildew disease and isozyme patterns in wheat-rye addition lines.Jiangsu Journal of Agricultural Science.1990,6:Supplement,27-32
    [150]Zhou WC,Wolb FL,Yu JB et al.Molerculer characterization of resistance of Fusarium head blight in Wangshuibai with simple sequence repesat and amplified fragment length polymorphism markers.Genome.2004,47:1137-1143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700