用户名: 密码: 验证码:
室内外空气污染物相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室内空间是人们停留时间最长的一种环境场所,因此室内空气品质对人的健康和工作状况有直接影响。通常情况下,室内外环境是相互作用、相互联系的,这二者之间的定量关系如何是一个值得研究的问题,特别是室内外污染物的相互影响需要研究。
     本文采用理论与实验相结合的方法,在分析影响室内空气品质(IAQ)各主要因素基础上,对建筑物室内外环境中与人体健康密切相关的几种污染物——甲醛、CO、CO_2和颗粒物以及空调运行排放的废热进行了研究。首先,利用系统工程的原理,建立起反映IAQ系统问题要素间层次关系的递阶结构模型。该模型表明影响IAQ因素之间存在着5个层次关系。其次,通过测量上海某校园内一个办公室和一个公寓建筑室内外颗粒物PM10、PM2.5、PM1的浓度,研究了室内外PM10、PM2.5、PM1的浓度及其室内外浓度比值(I/O)随时间变化的规律以及相关性。结果表明:对公寓和办公室而言,室外颗粒物是室内颗粒物的主要来源。在城市没有工业污染源的情况下,室内外颗粒物浓度都随时间变化而变化,并且变化趋势一致。颗粒物从室外向室内输运过程中,细颗粒物穿透能力强,I/O比值随粒径的减少而增大。室内外颗粒物浓度密切相关,并且这种相关性随粒径的减少而增强。
     对上海中心城区的三个空调商场室内外空气污染物进行了测试分析。结果表明:若人流密度中等以下,且除了顾客购物外,没有其它明显的室内污染源的商场,其室内颗粒物PM10、PM2.5、PM1浓度比室外浓度低,且I/O比值小于1。若人流密度大,且商场内有餐饮等室内污染源的商场,其室内颗粒物PM10、PM2.5、PM1浓度比室外浓度高,且I/O比值大于1,说明这样的商场颗粒物污染较室外严重,室内污染源对室内颗粒物浓度贡献大。在这样的地方,除了人的活动产生颗粒物外,应对餐厅等产生的颗粒物加以控制,以改进室内环境质量。
     对武汉市区8个商场室内外HCHO、CO和CO_2浓度以及其中三个商场的颗粒物浓度进行了测试研究。结果表明:商场楼层不同,CO_2及甲醛(HCHO)浓度不一样。由于商场面积大,每个楼层商品不同,即使同一楼层,不同柜台(商品区)的CO_2及甲醛(HCHO)浓度也有差异,这些问题在进行空调设计时应加以考虑。商品不同,其构成的成分不一样,所散发有害物的特性不同。对于除了顾客以外没有室内污染源并且人流密度中等的商场,空调运行季节其室内颗粒物TSP、PM10、PM2.5、PM1浓度比室外浓度值低得多;而在空调不运行季节,室内颗粒物TSP、PM10、PM2.5、PM1浓度等于甚至高于室外浓度,特别是有室内污染源的情况更是如此。
     对上海市夏季不同种类的空调客车车辆内环境质量进行了测试。测试指标包括温度、湿度、CO、CO_2和甲醛等指标。测试车辆种类有空调公共汽车、地铁和轻轨。测试分析表明:通常情况下,不同种类车辆的室内温湿度一般满足人体热舒适的要求,但正午时分,由于太阳辐射强,公共汽车车厢内温度较高,甚至远高于人体舒适温度。地铁和轻轨车厢内空气品质较好,空调公汽的空气品质很差。公汽内CO_2浓度高达3223ppm以上,CO高达18ppm,甲醛浓度也较高。对空调公交汽车的空气品质有待改进。最后研究了空调的使用所排放的废热对室外环境的影响。空调在改善室内热环境的同时,也向室外排放大量的热量。空调运行排放的废热所引起的热污染是一种广义的空气污染。本文提出了计算由此引起气温上升的模型,并采用这种模型计算了武汉市的温升值。在逆温情况下计算的温升值为2.56℃,正常温度情况下计算的温升值为0.2℃。可见大气处于稳定时,家用空调器排放的热量引起的热污染尤为严重。
     本文的研究成果有助于合理寻求改善室内空气品质的对策和措施,有助于建筑环境的合理规划。
People generally spend most of their time indoors. Indoor air quality (IAQ) is directly related to human health and working efficiency. Usually, there is interaction and interrelation between indoor and outdoor environmental parameters. Therefore, the quantitative relation between them is worthy of being studied, especially correlation between outdoor and indoor air pollutants.
     The theoretical analysis and site measurement are together combined in this research. After discussing the relationship between some dominant factors affecting IAQ, several pollutants (HCHO、CO、CO_2 and particulate matter, PM), which closely relate to human health in indoor and outdoor environments of buildings, and waste heat rejected by air conditioning were investigated. First, based the principle of system engineering, the interpretative structural modeling (ISM) that related to the relationship among the factors affecting indoor air quality (IAQ) in buildings is established, which indicates that there are five layers among these factors.
     Second, the particulate matter concentrations in an office and residential room were measured. Then indoor and outdoor particle concentrations and their ratios (I/O) were analysed. For buildings that without any indoor sources and with low human activity, the indoor particulate matters mainly come from the outdoor particulate matters. So for the buildings near roadside without industrial pollution sources, the indoor particulate matter in fact primarily comes from the traffic emissions. Both the concentration of indoor and outdoor particulates of the apartment room and office room vary with time, and tendency of their variation is similar. The I/O ratio increases as the size of particles decreases, which indicates that the fine particles penetrate through the building envelopes more easily. The concentration of indoor particles is closely correlated with that of outdoor particles, and the correlation increases as particle size reduces. The concentration of indoor particle is correlated with environmental parameters to some extent. For the apartment, the concentration of indoor particle is positively correlated with the indoor/outdoor temperature; and it is negatively correlated with the indoor/outdoor humidity and wind speed.
     Through the survey of three shopping malls in Shanghai, results demonstrated that different floors at the shopping malls have different concentrations of CO_2, HCHO and PM (PM10, PM2.5, PM1). Moreover, owing to big area of shopping malls and different merchandises for sale at each floor, there was difference on concentration of CO_2, HCHO and PM (PM10, PM2.5, PM1) even at the same floor. These problems should be taken into consideration when designing an air conditioning system. In two shopping malls without indoor sources besides the consumers and where occupant density is under middle level, the indoor concentrations of PM10、PM2.5、PM1are lower than outdoor concentrations, and the I/O ratios below unity. In one shopping mall with indoor sources like cooking and where occupant density is under high level, the indoor concentrations of PM10、PM2.5、PM1 are higher than outdoor concentrations, and the I/O ratios above unity. It implies that the pollution from particulate matter in this shopping mall is much serious indoors than outdoors. In this environment, except human activity, the airborne particulate matter from cooking and combustion should be controlled in order to improve indoor air quality.
     The survey results of eight shopping malls in Wuhan demonstrated that different floors at the shopping malls have different concentrations of CO_2, HCHO and PM (PM10, PM2.5, and PM1). Moreover, due to big area of shopping malls and different merchandises for sale at each floor, there were differences in concentration of CO_2, HCHO and PM (PM10, PM2.5, and PM1) even at the same floor. These problems should be taken into consideration when designing an air conditioning system. Different merchandises emitted different harmful pollutants due to their different composition. During operation of air conditioning systems at the shopping malls without indoor sources besides the customers and where occupant density is under middle level, the indoor concentrations of TSP, PM10、PM2.5、PM1 are lower than outdoor concentrations. During the non-operation of air conditioning system in the floor of a shopping mall with indoor sources like cooking and where occupant density is under high level, the indoor concentrations of TSP, PM10、PM2.5、PM1 are equal to or higher than outdoor concentrations, and the indoor/outdoor (I/O) ratios equal to or above unity. It implies that the pollution from particulate matter at this situation is much more serious indoors than outdoors and the indoor source has much contribution to the concentration of indoor particulate matter. In this environment, except human activity, the airborne particulate matter from cooking and combustion should be controlled in order to improve indoor air quality.
     The measurement results of the inside microenvironment parameters for different types of air conditioned vehicles in Shanghai demonstrate that the inside temperature and humidity can usually meet human thermal comfort in most time, but around sunny noon the temperature inside bus is high, even far higher than human comfort zone temperature due to strong sunny radiation. There is a remarkable difference between the inside air environment parameters of different types of air-conditioned urban transit vehicles. Usually, there is good air quality inside the light rail and subway carriages. Poor air quality inside air-conditioned bus exists, which CO_2 concentration may be high to 3223ppm, CO concentration high to 18ppm sometimes, and HCHO concentration is high. Therefore, the thermal comfort and air quality inside air-conditioned bus need to be improved.
     Finally, the influence of air conditioners utilization on urban thermal environment is studied. The urban heat island effect is essentially a kind of thermal pollution caused by artificial activity. Air conditioning units used in buildings release a great deal of heat into outdoors while they improve the indoor thermal environment. Therefore, this will cause a rise in the outside air temperature and strengthen the urban heat island effect. The model for calculating the rise in atmospheric temperature caused by domestic air conditioners is proposed and used to determine the rise in the outside air temperature in Wuhan. The results demonstrate that the rise in atmospheric temperature is 2.56℃under inversion conditions and 0.2℃under normal conditions, which indicates that thermal pollution is serious when the atmosphere is stable. To a certain extent, the rise of atmospheric temperature can be verified by the rise of lowest atmospheric temperature of Wuhan over recent years. The study is helpful to seek for methods to improve indoor air quality and and layout of building and environment.
引文
[1]沈晋明.室内污染物与空气品质评价.通风除尘,1995,(4):10-13
    [2]万超群.水源与发生军团病的关系,中华流行病学杂志,1986,(1):58
    [3] http://wenxue.beelink.com.cn/20020423/1090861.shtml, 2003.8.11
    [4]沈晋明,毛继传,孙光前等.上海办公大楼空气品质客观评价.通风除尘,1995,(4):14-17
    [5]李先庭,杨建荣,王欣等.室内空气品质研究现状与发展.暖通空调,2000,(3):36-40
    [6]马一太,查世彤.我国建筑物中的VOC及防治.第五届海峡两岸制冷空调技术交流会论文专辑[C],2001,上海
    [7]张国强,宋春玲,陈建隆等.挥发性有机化合物对室内空气品质影响研究进展,暖通空调,2001,(6):25-31
    [8]潘毅群,白玮,龙惟定等.上海某大商场空气品质调查.暖通空调,2000,(3):18-20
    [9]完莉莉,汪玉庭.室内空气有机污染的研究现状.环境监测管理与技术,2001,13(2):12-16
    [10]文远高.公共建筑室内空气质量及其改善途径.第十届海峡两岸及香港、澳门地区职业安全健康学术研讨会论文集[C],2002,云南昆明。
    [11] Khan Faisal I, Ghoshal Aloke Kr. Removal of Volatile Organic Compounds from polluted air. Journal of Loss Prevention in the Process Industries, 2000, 13: 527-545
    [12]张彭义,余刚,蒋展鹏等.挥发性有机物和臭味的生物过滤处理.环境污染治理技术与设备,2000,1(1):1-6
    [13] Leson G, Winer A M. Biofiltration: an Innovative Air Pollution Control Technology for VOC Emissions. Journal of the Air & Waste Management Association, 1991, 41:1045-1054
    [14] VanOsdell D W, Owen M K, Jaffe L B, etc. VOC Removal at Low Contaminant Concentration Using Granular Activated Carbon. Journal of the Air & Waste Management Association, 1996, 46:883-890
    [15] Jacoby W A, Blake D M, Fennell J A, etc. Heterogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor air. Journal of the Air & Waste Management Association, 1996, 46:891-898
    [16]黄翔,殷清海,狄育慧等.纳米光催化材料在功能性空气过滤材料中的应用研究.第五届海峡两岸制冷空调技术交流会论文专辑,2001,上海
    [17]陶跃武,赵梦月,陈士夫等.空气中有害物质的光催化去除.催化学报,1997,(7):345-347
    [18]杨瑞,金招芬,张寅平等.半导体纳米光催化材料处理VOCs的研究和应用现状.全国暖通空调制冷2000年学术年会论文集,2000
    [19]肖劲松,訾学红,尹雪云等.纳米TiO2涂料光催化清除空气中主要污染物的研究.暖通空调,2002,32(5):23-25
    [20] Jokl M. V. Evaluation of indoor air quality using the decibel concept based on carbon dioxide and TVOC. Building and Environment, V35, 2000: 677-697
    [21]舒海文,马九贤,巨永平.室内空气品质等级的模糊综合评价.系统工程(增刊),1998:48-52
    [22] Dunn James E. Models and statistical methods for gaseous emission testing of finite sources in well-mixed chambers. Atmospheric Environment, 1987, 21(2):425-430
    [23] Zhu J P, Zhang J S, Shaw C Y. Comparison of models for describing measured VOC emissions from wood-based panels under dynamic chamber test condition. Chemosphere, 2001,44:1253-1257
    [24] Quach A, Hansen C M. Evaluation of leveling characteristics of some latex paints. Journal of Paint Technology, 1974, 46(592): 40-46
    [25] Sparks L E, Molhave L, Dueholm Sten. Source testing and data analysis for exposure and risk assessment of indoor pollutant sources. ASTM Special Technical Publication, 1996 (1287), p 367-375
    [26] Cheng Y S, Bechtold W E,Yu C C, et al. Incense smoke: characterization and dynamics in indoor environment. Aerosol Science and Technology, 1995,23:271-281
    [27] Tichenor B A, Guo Z, Sparks L E. Fundamental mass transfer model for indoor air emissions from surface coatings. Indoor Air 3, 263-268
    [28] Guo Z, Chang John C S, Sparks L E, et al. Estimation of the rate of VOC emissions from solvent-based indoor coating materials based on product formulation. Atmospheric Environment, 1999,33:1205-1215
    [29] Yang X, Chen Q, Zeng J, Shaw C Y. A mass transfer model for simulating volatile organic compound emissions from‘wet’coating materials applied to absorptive substrates. International Journal of Heat and Mass Transfer, 2001, 44: 1803-1811
    [30] Yang X, Chen Q, Zhang J S, et al. Numerical simulation of VOC emissions from dry materials. Building and Environment, 2001, 36: 1099-1107
    [31] Haghighat, Fariborz, Zhang, Ying. Modelling of emission of volatile organic compounds from building materials - estimation of gas-phase mass transfer coefficient. Building and Environment, 1999, 34(4):377-389
    [32] Hawthorne, Alan R., Matthews, Thomas G. Models for estimating organic emissions from building materials: formaldehyde example. Atmospheric Environment, 1987, 21(2): 419-424
    [33]徐东群,韩克勤,崔九思.室内材料中挥发性有机物释放模式的研究进展.卫生研究,1998,27(3): 167-172
    [34] Yong Cheng Chen, Zhang Yuanhui, Ernest M. Barber. A dynamic method to estimate indoor dust sink and source. Building and Environment, 2000,35:215-221
    [35] Karlsson Edvard, Berglund Tage, Stromqvist Marianne. Effect of resuspension caused by human activities on the indoor concentration of biological aerosols. Journal of Aerosol Science, 30 Suppl. 1 Sep 1999 p S737-S738
    [36] Doyun Wona, Daniel M. Sandera, C.Y. Shawa,etc. Validation of the surface sink model for sorptive interactions between VOCs and indoor materials. Atmospheric Environment, 35 (2001) 4479–4488
    [37] Zhang Jinsong, Chen Qingyan, Zhang Jianshun, et al.A critical review on studies of volatile organic compound (VOC) sorption by building materials. ASHRAE Transaction, 2000, 106(part1): 162-174
    [38] Yang X, Chen Q, Zhang J S. Mass transfer model for simulating VOC sorption on building materials. Atmospheric Environment, 2001, 35(7): 1291-1299
    [39] Shuzo Murakami, Shinsuke Kato, Kazuhide Ito. Distribution of chemical pollutants in a room based on CFD simulation coupled with emission/sorption analysis. ASHRAE Transactions, 2001,107(part 1): 812-820
    [40] Shair Fredrick H, Heitner Kenneth L.Theoretical model for relating indoor pollutant concentrations to those outside. Environmental Science and Technology, 1974, 8(5):441-451
    [41] Alzona J, Cohen B L, Rudolph H, et al. Indoor-outdoor relationships for airborne particulate matter of outdoor origin. Atmospheric Environment, 1979, 13(1): 55-60
    [42] Dockery Douglas W, Spengler John D. Indoor-outdoor relationships of respirable sulfates and particles. Atmospheric Environment, 1981,15(3): 335-343
    [43]周国栋,杨铭鼎,陈秉衡.室内空气污染数学模式的探讨.中国环境科学,1989,19(4):261-265
    [44] Yoshiaki Ishizu. General equation for the estimation of indoor pollution. Environmental Science & Technology, 1980,14(10):1254:1257
    [45] Nazaroff William W, Cass Glen R. Mathematical modeling of indoor aerosol dynamics. Environmental Science and Technology, 1989, 23(2):157-166
    [46] Raunemaa Taisto, Kulmala Markku, Saari Helena, et al. Indoor air aerosol model: Transport indoors and deposition of fine and coarse particles. Aerosol Science and Technology, 1989,11(1):11-25
    [47] Dimitroulopouiou C, Ashmore M R, Byrne M A, etc. Modeling of indoor exposure to nitrogen dioxide in the UK. Atmospheric Environment, 2001, 35: 269-279
    [48] Kulmala Markku, Asmi Ari, Pirjola Liisa. Indoor air aerosol model: the effect of outdoor air, filtration and ventilation on indoor concentrations. Atmospheric Environment, 1999, 33(14):2133-2144
    [49] Christopher Y H, Chao Thomas C. An empirical model for outdoor contaminant transmission into residential buildings and experimental verification. Atmospheric Environment, 2001,35:1585-1596
    [50] Dimitroulopoulou C, Ashmore M R, Byrne M A, Hill M T R, et al. Modelling ofindoor aerosol concentrations in UK buildings. Journal of Aerosol Science, 2000, 31( SUPPL.1) : S564-S565
    [51]亢燕铭,钟珂,杨龙军.通风房间内污染物浓度的预测.暖通空调, 2002,32(1),93- 95
    [52]袁静,施介宽.室内空气污染影响因素箱模式及应用.环境保护科学, 2000, 26, 4-6
    [53]贺克瑾、涂光备、贾俊瑆等.影响室内污染物浓度各因素的分析.全国暖通空调制冷2000年学术文集.北京:中国建筑工业出版社,2000: 70-74
    [54] Andersen Ib, Lundqvist G. R., Molhave L. Indoor air pollution due to chipboard used as a construction. Atmospheric Environment, 1975, 9(12):1121-1127
    [55] Ozkaynak H., Ryan P. B., Allen, G. A., et al. Indoor air quality modeling: compartmental approach with reactive chemistry. Environment International, 1981, 8(1-6): 461-471
    [56] Yanosky Jeff D, Williams Phillip L, MacIntosh David L. A comparison of two direct-reading aerosol monitors with the federal reference method for PM2.5 in indoor air, Atmospheric Environment, 2002, 36:107-113
    [57] Moschandreas D. J., Relwani S. M. Indoor air quality simulations with the mass balance model. Environmental Engineering, Proceedings of the 1985 Specialty Conference, 1985, 51-58
    [58] Silberstein Samuel, Grot Richard A, Ishiguro Kunimichi, et al. Validation of models for predicting formaldehyde concentrations in residences due to pressed-wood products. JAPCA (Journal of the Air Pollution Control Association), 1988, 38(11):1403-1411
    [59] Molhave Lars. Indoor air pollution due to organic gases and vapours of solvents in building materials. Environment International, 1981, 8(1-6): 117-127
    [60] Nazaroff William W., Cass Glen R. Mathematical modeling of chemically reactive pollutants in indoor air. Environmental Science and Technology, 1986, 20(9): 924-934.
    [61] Molhave L, Thorsen M. Model for investigations of ventilation systems as sources for volatile organic compounds in indoor climate. Atmospheric Environment, v 25A n 2 1991 p 241-249
    [62] Martin Kraenzmer. Modeling and continuous monitoring of indoor air pollutants for identification of sources and sinks. Environment International, 1999, 25(5): 541-551
    [63] Bouhamra Walid, Elkilani Amal. Development of a model for the estimation of indoor volatile organic compounds concentration based on experimental sorption parameters. Environmental Science and Technology 33 12 1999 ACS p 2100-2105
    [64] Chao C Y, Chan G Y. Quantification of indoor VOCs in twenty mechanically ventilated buildings in Hong Kong. Atmospheric Environment 2001,35:5895-5913
    [65] Cheng Tongbao, Jiang Yi, Xu Ying, Zhang Yinping. Mathematical model forsimulation of VOC emissions and concentrations in buildings. Atmospheric Environment, 2002,36: 5025–5030
    [66]成通宝,李晓锋,江亿.建筑物室内空气污染模型的建立和应用.全国暖通空调制冷学术文集,北京:中国建筑工业出版社,2002,282-298
    [67]李念平,杨志昂,文伟等.室内空气品质的灰色非本征模型与实验研究.全国暖通空调制冷学术文集,北京:中国建筑工业出版社,2002,356-361
    [68]李念平,龙舜心,朱赤晖等.基于灰色系统理论的室内空气品质的评价方法.全国暖通空调制冷学术文集,北京:中国建筑工业出版社,2002,362-367
    [69] Jenkins Peggy L, Phillips Thomas J, Mulberg Elliot J. Activity patterns of Californians:Use of and proximity to indoor pollutant sources. Atmospheric Environment, 1992, 26A(12): 2141-2148
    [70] Anderson I. Relationship between indoor and outdoor air pollution [J]. Atmospheric Environment, 1972, 6: 275-278
    [71] Phillips, J.L., Field, R., Goldstone, M., et al. Relationships between indoor and outdoor air quality in four naturally ventilated offices in the United Kingdom. Atmospheric Environment, Part A: General Topics, 1993, 27A(11): 1743-1753
    [72] Lioy P J, Waldman J M, Buckley T et al. Personal, indoor and outdoor concentrations of PM-10 measured in an industrial community during the winter. Atmospheric Environment, Part B: Urban Atmosphere, 1990, 24B(1): 57-66
    [73] Edwards R D, Jurvelin J, Saarela K, et al. VOC concentrations measured in personal samples and residential indoor, outdoor and workplace microenvironments in EXPOLIS-Helsinki, Finland. Atmospheric Environment, 2001, 35(27): 4531-4543
    [74] Edwards R D, Jurvelin J, Koistinen K, et al. VOC source identification from personal and residential indoor, outdoor and workplace microenvironment samples in EXPOLIS-Helsinki, Finland. Atmospheric Environment, 2001, 35 :4829-4841
    [75] Kousa A, Monn C, Rotko T, et al. Personal exposures to NO2 in the EXPOLIS-study: Relation to residential indoor, outdoor and workplace concentrations in Basel, Helsinki and Prague. Atmospheric Environment, 2001, 35(20): 3405-3412
    [76] Fischer P H, Hoek G, van Reeuwijk H, et al. Traffic-related differences in outdoor and indoor concentrations of particles and volatile organic compounds in Amsterdam. Atmospheric Environment, 2000, 34(22): 3713-3722.
    [77] Funasaka K, Miyazaki T, Tsuruho K, et al. Relationship between indoor and outdoor carbonaceous particulates in roadside households. Environmental Pollution, 2000, 110(1) :127-134
    [78] Geller M D, Chang M, Sioutas C, et al. Indoor/outdoor relationship and chemical composition of fine and coarse particles in the southern California deserts. Atmospheric Environment, 2002, 36(6): 1099-1110
    [79] Conner T L, Norris G A, Landis M S, et al. Individual particle analysis of indoor, outdoor, and community samples from the 1998 Baltimore particulate matter study. Atmospheric Environment, 2001, 35(23):3935-3946
    [80] Fogh Christian L, Byrne Miriam A, Roed Jorn, et al. Size specific indoor aerosol deposition measurements and derived I/O concentrations ratios. AtmosphericEnvironment, 1997, 31(15): 2193-2203
    [81] Ando M, Katagiri K, Tamura K, et al. Indoor and outdoor air pollution in Tokyo and Beijing supercities. Atmospheric Environment, 1996, 30(5): 695-701
    [82] Peter Schneider, I Gebefügi, K Richter, et al. Indoor and outdoor BTX levels in German cities. The Science of the Total Environment, 2001, 267: 41-51
    [83] Michael Brauer, Petros Koutrakis, Gerald J Keeler, et al. Indoor and outdoor concentrations of inorganic acidic aerosols and gases. Journal of Air and Waste Management, 1991, 41(2): 171-181
    [84] Morawska L, He C R, Hitchins J, et al. The relationships between indoor and outdoor airborne particles in the residential environment [J]. Atmospheric Environment, 2001, 35(20):3463-3473
    [85] Gerard Hoeka, Gerard Kosb, Roy Harrison, et al. Indoor–outdoor relationships of particle number and mass in four European cities. Atmospheric Environment, 2008, 42 : 156–169
    [86] Geller M D, Chang M, Sioutas C, et al. Indoor/outdoor relationship and chemical composition of fine and coarse particles in the southern California deserts. Atmospheric Environment, 2002, 36:1099-1110
    [87] Molhave L, Schneider T, et al. House dust in seven Danish offices. Atmospheric Environment, 2000, 34:4767-4779
    [88] Kamens R, Lee C T, Weiner R, et al. A study to characterize indoor particles in three non-smoking homes. Atmospheric Environment, 1991, 25:939-948
    [89] Lee H S, Kang B W, Cheong J P, Lee S K. Relationships between indoor and outdoor air quality during the summer season in Korea. Atmospheric Environment, 1997, 31(11):1689-1693
    [90] Jones N.C., Thornton C.A., Mark D., Harrison R.M. Indoor/outdoor relationships of particulate matter in domestic homes with roadside, urban and rural locations [J]. Atmospheric Environment, 2000, 34(16): 2603–2612.
    [91] Kingham Simon, Briggs David, Elliott Paul, et al. Spatial variations in the concentrations of traffic-related pollutants in indoor and outdoor air in Huddersfield, England. Atmospheric Environment, v 34, n 6, 2000, p 905-916
    [92] Lee S C, Chan L Y, Chiu M Y. Indoor and outdoor air quality investigation at 14 public places in Hong Kong. Environment International, 1999, 25(4): 443-450
    [93] Lee Shun-Cheng, Chan Lo-Yin. Indoor/outdoor air quality correlation and questionnaire survey at two staff quarters in Hong Kong. Environment International, 1998, 24(7):729-737
    [94] Lee Shun-Cheng, Chang Maureen, Chan Ka-Yee. Indoor and outdoor air quality investigation at six residential buildings in Hong Kong. Environment International, 1999, 25(4): 489-496
    [95] Lee S C, Chang M. Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere, 2000, 41(1-2):109-113
    [96] Koponen I K, Asmi A, Keronen P, Puhto K, Kulmala M. Indoor air measurement campaign in Helsinki Finland 1999-the effect of outdoor air pollution on indoor air.Atmospheric Environment, 2001, 35:1465–1477.
    [97]汪应洛.系统工程,北京:机械工业出版社,2006
    [98]谭跃进,陈英武,易进先编著.系统工程原理,长沙:国防科技大学出版社,1999
    [99]袁旭梅,刘新建,万杰编.系统工程学导论,北京:机械工业出版社,2007
    [100]彭丹霖,递阶结构模型技术在概要设计阶段的应用,武汉大学学报(工学版),2006,39(1):137-142
    [101]朱天乐主编.室内空气污染控制,化学工业出版社,2003
    [102]沈晋明.室内空气品质若干误区辨析.暖通空调,2002,32(5):37~39
    [103]王菲凤.室内空气中挥发性有机物污染的研究.福建师范大学学报(自然科学版),2002,18(3): 115~120
    [104] Kelly W Leovic, Linda S Sheldon, Donald A Whitaker, et al. Measurement of indoor air emissions from dry-process photocopy machines. Journal of Air and Waste Management Association, 1996,46:821~829
    [105] Hayes S R. Use of an indoor air quality (IAQM) to estimate indoor ozone levels. Journal of Air and Waste Management ssociation,1991,41(2):161~170
    [106]何燧原等.环境化学(第二版).上海:华东理工大学出版社,1996
    [107]唐森本等.环境有机污染化学.北京:冶金工业出版社,1996
    [108]徐江兴、姜安玺、王琨.臭氧引起的室内化学污染.哈尔滨建筑科技大学学报, 1999,32(6): 74~77
    [109] Charles J Weschler, Helen C Shields. Potential reactions among indoor pollutants. Atmospheric Environment,1997, 31(21):3487~3495
    [110]邓南圣、吴峰编著.环境光化学.北京:化学工业出版社,2003
    [111]孙一坚主编.简明通风设计手册.北京:中国建筑工业出版社, 1997
    [112] Freijer Jan I, Bloemen Henk J Th. Modeling relationships between indoor and outdoor air quality. Journal of the Air & Waste Management Association, 2000, 50(2): 292-300
    [113]钱华.基于自然通风的室内空气品质及自然通风复杂性研究[上海交通大学硕士学位论文],中国学位论文全文数据库,2003
    [114] James J. Jettera, Zhishi Guo, Jenia A. McBrian, et al. Characterization of emissions from burning incense. The Science of the Total Environment, 2002, 295: 51–67
    [115] Zhishi Guo. Review of indoor emission source models. Part 1. Overview. Environmental Pollution, 2002, 120:533–549
    [116] Zhishi Guo. Review of indoor emission source models. Part 2. Parameter estimation. Environmental Pollution, 2002, 120 :551–564
    [117] He Congrong, Morawska Lidia, Gilbert Dale, Particle deposition rates in residential houses, Atmospheric Environment, 2005, 39:3891–3899
    [118] Cao J, Lee S C. Indoor, outdoor relationships for PM2.5 carbonaceous pollutants at residences in Hong Kong. In: Proceedings of the 10th International Conference on Indoor Air Quality and Climate, Beijing,2005, 1744-1747
    [119] Xu Ying, Zhang Yinping. A general model for analyzing single surface VOC emission characteristics from building materials and its application. Atmospheric Environment, 2004 38: 113–119
    [120] Hua H P, Zhang Y P, Wang X K, Little J C. An analytical mass transfer model for predicting VOC emissions from multi-layered building materials with convective surfaces on both sides. International Journal of Heat and Mass Transfer, 2007, 50: 2069–2077
    [121] Nazaroff,W. W.. Indoor particle dynamics[J]. Indoor Air, 2004, 14(Suppl):175-183
    [122]朱广一.大气可吸入颗粒物研究进展[J].环境保护科学,2002,28(5):3-5
    [123]中国室内空气质量标准GB/ T18883 2002 ,室内空气质量标准[M],中国标准出版社, 2002
    [124] Ni Riain, C.M., Mark, D., Davies, M., Harrison, R.M., Byrne, M.A.. Averaging periods for indoor–outdoor ratios of pollution in naturally ventilated non-domestic buildings near a busy road [J]. Atmospheric Environment, 2003, 37(29): 4121–4132
    [125]钟珂.室内外空气污染物浓度演化关系的研究[西安建筑科技大学博士论文],中国期刊网学位论文数据库,2004
    [126]杜建伟.建筑室内外气、固态污染物浓度动态规律的研究[东华大学硕士学位论文],中国学位论文全文数据库,2003
    [127]吕琪铭.居民建筑室内外颗粒物浓度水平及相关性研究[中南大学硕士学位论文],中国学位论文全文数据库,2007
    [128] Thomas Kuhn, Subhasis Biswas, Constantinos Sioutas. Diurnal and seasonal characteristics ofparticle volatility and chemical composition in the vicinity ofa light-duty vehicle freeway. Atmospheric Environment, 2005, 39:7154–7166
    [129] Thompson C R, Hensel E G, Kats G. Outdoor–Indoor levels of six air pollutants [J]. Journal of the Air Pollution Control Association, 1973, 23 (10): 881–886.
    [130] Spengler et al. Long-term measurements of respirable sulfates and particles inside and outside homes [J]. Atmospheric Environment, 1981, 15(1):23-30
    [131] Colome Steven D, Kado Norman Y, Jaques Peter, et al. Indoor-outdoor air pollution relations: Particulate matter less than 10μm in aerodynamic diameter (PM10) in homes of asthmatics [J]. Atmospheric Environment, 1992, 26A(12):2173-2178
    [132] Wallace L. Indoor particles: a review [J]. Journal of the Air Waste Management Association, 1996, 46(2): 98–126.
    [133] Monn C, Fuchs A, Hogger D, et al. Particulate matter less than 10 pm (PM10) and fine particles less than 2.5 pm (PM2.5): relationships between indoor, outdoor and personal concentrations [J]. The Science of the Total Environment, 1997, 208(1): 15-21
    [134]邓启红,吕琪铭.室内颗粒污染的源辨识与源解析.建筑热能通风空调, 2006, 25(5):38-43
    [135] Jones A P. Indoor air quality and health. Atmospheric Environment, 1999. 33: 4535-4564
    [136] Li W M, Lee S C, Chan L Y. Indoor air quality at nine shopping malls in Hong Kong. The Science of the Total Environment 2002, 273: 27-40
    [137] Guo H., Lee S. C., Chan L. Y. Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong. The Science of the Total Environment, 2004, 323: 87-98
    [138] ANSI/ASHRAE62.1-2004,Ventilation for Acceptable Indoor Air Quality.
    [139]蔡路得等.武汉市商场空调系统运行现状及综合分析. 97年湖北省暖通空调制冷学术年会论文集.
    [140]胡平放、邹春、江娟等.武汉大型商场室内空气品质的主观评价.武汉城市建设学院学报,1997, 14(2):57—59.
    [141]汪训昌. 62n补遗对ASHRAE62-2001标准修改的解读.暖通空调, 2005, 35(7): 39-45
    [142]王开林,华勇,王琪等. 25K型全列空调客车内环境卫生学研究.铁道劳动安全卫生与环保, 2003,30(6):263-266
    [143]丁力行,黄华军,曾宪均.地铁车内空气参数指标分析,城市轨道交通研究, 2003,(3):61-64
    [144]丁力行,包劲松,陈宁.基于室内环境品质的空调列车车内空气参数标准研究.制冷学报, 2001,(2):45-50
    [145]陈焕新,胡益雄,陈宁.改善空调列车车内空气品质的途径.铁道车辆, 1998,36(8):37-39
    [146]向献红,郝晋豫,彭彪等.空调客车车内空气品质问题探讨.铁道车辆, 1998,36(3):25-27
    [147]张吉光,王利,史自强.空调客车车内空气品质的评价方法.铁道车辆, 2001,39(3):22-24
    [148]王文质,李勇,糠伟等.城市轨道车辆空调系统.城市轨道交通研究,2003,(2):60-65
    [149]周淑贞,束炯编著.城市气候学.北京:气象出版社,1994.
    [150] Hassid S, Santamouris M, Papanikolaou N, The effect of the Athens heat island on air conditioning load, Energy and Buildings, 32(2000) 131–141.
    [151] http://www.sh-profound.com/touziluntan/2002052303.htm
    [152] Davis M L, Cornwell D A. Introduction to environmental engineering, McGraw-Hill, Boston, 1998.
    [153] Nevers N. Air pollution control engineering, McGraw-Hill, Boston, 2000.
    [154] Rubin E S, Davidson C I, Introduction to engineering & the environment, McGraw-Hill, Boston, 2002
    [155] J. F. Kreider, Handbook of Heating, Ventilation, and Air Conditioning, CRC Press LLC, Boca Raton, 2001
    [156]李宗恺等.空气污染气象学原理及应用.北京:气象出版社,1995.
    [157] http://www.whforeigninvest.gov.cn
    [158]采暖通风与空气调节设计规范(GB50019-2003).北京:中国计划出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700