用户名: 密码: 验证码:
基于零方程湍流模型的非等温城市区域热环境的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去二十多年来,国内外大多数研究采用RANS两方程湍流模型和LES模型来研究城市区域环境,由于城市区域环境的复杂性和较大的空间尺度,两种计算方法需要特别大的计算机资源,因此如何能够快速而又有效地预测非等温城市区域环境成为本研究的主要目标。本文首先分析目前城市风热环境的研究方法、城市环境CFD模拟技术、建筑外表面对流换热系数以及城区区域污染物对流传输的影响等研究进展,提出了本文的主要研究内容:(a)提供优化的零方程湍流模型(Zero-EQ),(b)研究不同街谷和建筑群分布的建筑外表面对流换热系数分布,(c)证明优化的零方程湍流模型以及壁面温度和对流换热系数组合的边界条件能够快速有效地预测城市热环境,(d)研究城市区域环境污染物对流传输的影响。详细的研究内容如下:
     本研究通过研读大量的参考文献和归纳总结长期的CFD计算经验,提出了城市区域环境CFD模拟设置常用的设定方法,包括湍流模型的选择,数值误差的确定,计算区域的设置,计算网格的划定,以及计算边界条件的设定等,建立了简化的CFD模拟设定分类,提供给研究者一些理论和经验的总结。
     本研究选用风洞实验对零方程湍流模型进行优化,分析实验数据,推导出优化的湍流涡粘度表达式,应用新的优化的湍流模型与风洞实验数据进行验证和分析。结果表明,在同等计算机配置下,Zero-EQ能够比MMK湍流模型快60%以上,是LES计算所需时间的1/10,同时Zero-EQ能较准确地预测多栋建筑周围流场的分布。考虑到重复不同工况风洞实验的局限性,本研究首先选择RANS两方程湍流模型来预测不同建筑群分布的流场分布,得到不同建筑群基于应变率和局部速度大小的涡粘度表达式(Zero-EQ2和Zero-EQ3)。利用上述风洞实验的研究结果(Zero-EQ1),选用不同的建筑群分布,对比三种模型的模拟结果与MMK湍流模型预测数据的优劣,得到Zero-EQ2和Zero-EQ3比Zero-EQ1更能够快速有效地预测建筑群周围流场分布的结论。
     本研究利用CFD模拟计算的方法对不同城市街谷高宽比(H/W)和不同平面面积密度(λp)建筑群分布(并行式和交错式)的室外表面对流换热系数进行研究,推导出不同建筑分布状况下的对流换热系数表达式,和选用风洞实验数据,和现场测试(宾夕法尼亚州立大学校园某学生公寓)数据,获取足够的计算边界条件和验证数据,减少计算区域网格,通过设置对流换热系数和温度边界作为壁面计算条件,来间接验证对流换热系数的准确性;应用零方程湍流模型计算城市街谷的热环境,得到与风洞实验吻合较好的数据,比RANS两方程湍流模型快一倍的速度,证明了其在工程应用领域的优势,同时指出零方程湍流模型对于浮力流动预测的局限性。另外,本研究中计算得到的对流换热系数表达式能够为今后继续能耗模拟研究提供足够的研究依据。
     本研究利用以上研究成果:优化的零方程湍流模型和建筑外表面的对流换热系数,研究二维城市街谷和三维建筑群的热环境对污染物浓度的影响。首先利用RNG湍流模型研究二维城市街谷的不同壁面受热条件下自然对流环境、混合对流环境和强迫对流环境下的速度分布、温度分布和污染物分布。由于零方程湍流模型不能较好地预测浮力流动,三维建筑群只选择强迫对流为主的热环境,选择入口与壁面温度差分别为ΔT=0℃和AT=10℃的两种边界条件,通过分析建筑群周围污染物的分布,验证了其快速预测污染物分布的准确性。最后本文选择成都市蒲江县寿安镇的某一生态建设项目,根据当地气象条件,通过研究寿安旧城区目前城市规划情况下的夏季城市热环境,分析不同区域的热环境特点,提供给新城区规划设计一些建议。EnergyPlus能耗计算最后应用于某一学生公寓建筑,来研究考虑周边建筑环境对流换热系数表达式的实用性。
In the recent two decades, RANS and LES have been widely used to predict thermal environment in urban area. Due to the complex of urban area, two above common methods require large amount of computer resources to resolve the detailed flow field around buildings. Therefore, the main goal of this thesis is to enable quick and accurate simulations of wind flow over different urban terrains while accounting for a non-isothermal boundary layer. This research first analyzed current research status about the research method for studying urban environment, CFD simulation in urban area and the convective heat transfere coefficient at the external surfaces of buildings, and then provided the research content of this paper:(a) improve the Zero-equation turbulence model (Zero-EQ),(b) study the convective heat transfer coefficients at the external surfaces of different street canyon and building arrays,(c) demonstrate improved Zero-EQ and combined wall temperature and convective heat transfer coefficient to prove that this enable to accurately and quickly predict thermal environment in urban area,(d) investigate pollutant convective transport in uran areas. The detailed research content can be found as follows:
     This research provide the commonly used method for CFD simulation setup in urban area, including the choice of turbulence model, definition of numerical error, setup of computational zone, drawing computational grids and setup of computational boundary condition based on large amout of refrences and experiences. Finally, the classification of simplified CFD simulaton setup was built in order to provide the researchers some summery of theory and experience.
     The wind tunnel was selected to collect velocity data to derive improved the expression of turbulence visocistiy. The comparison with wind tunnel experiment was made. The results show that running Zero-EQ is60%faster than running MMK model and1/10of running LES. The Zero-EQ can relatively accurately predict the flow field around the buildings. Taking into account the limition for application in different case in the wind tunnel, this study then run two-equation turbulence model to predict velocity distribution around building arrays and obtained the expression (Zero-EQ2and Zero-EQ3) based on!! and local velocity magnitude. The three Zero-equaiton turbulence models were simulated to compare with the MMK model to analyze the accurancy in building arrays. The results show Zero-EQ2and Zero-EQ3can more accurately and quickly predict the flow field aournd building arrays.
     This research studied the convective heat transfer coefficients in different H/W of street canyon and λp of building arrays using CFD method, and derived different expressions for convective heat transfer in different building type, The wind tunnel made by previous research and field measurement were conducted to collect enough computational boundary conditions and validation data. The accurancy was indirectly proved that using combined convective heat transfer coefficient and wall temperature and also decreased computational grids. The Zero-EQ was used to predict thermal environment in street canyon and collect better data agreed with that of wind tunnel. Compared with RANS two equation turbulence model, it showed that the advantage of Zero-EQ in engineering field. The results also show the Zero-EQ cannot more accurately simulate buoyance flow. In addition, the convective heat transfer can be used for further study about energy simulation.
     The outcome which is improved Zero-EQ and convective heat transfer coefficient in this study were used to study pollutant distribution affected by thermal environment in the street canyon and building arrays. The RNG model was selected to investigate velocity, temperature and pollutant distribution under the condition of natural convection, combined convection and forced convection for different wall heated in street canyon, because of the limitation of Zero-EQ to simulate buoyancy flow. Moreover, only forced convection was selected to anlyze the pollutant distribution under the temperature difference (△T=0℃,10℃) between inlet temperature and wall temperature. The result shows the Zero-EQ can quickly and accurately predict the pollutant distribution. In the end, the ecological planning in Shouan twon was studied using Zero-EQ model. The thermal environment in old city area was firstly simulated on the basis of local weather condition. The velocity and temperature distribution around building were analyzed to provide some suggestions for palnning innew Shouan town. In the end, EnergyPlus was used to simulate the building energy consumption for a student dorm, so as to study the application of convective heat transfer coefficient when taking into account shielding effect.
引文
[1]ZHAO X L, LI N, MA C B. Residential energy consumption in urban China:A decomposition analysis [J]. Energ Policy,2012,41(1):644-53.
    [2]HIRANO Y, FUJITA T. Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo [J]. Energy,2012,37(1):371-83.
    [3]陈宏.改善城市热环境方法初探[J].武汉工业大学学报,2000(01).
    [4]BANTA R M, SENIFF C J, NIELSEN-GAMMON J, et al. A bad air day in Houston [J]. Bulletin of the American Meteorological Society,2005,86(5).
    [5]王纪武,张晨,冯余军.街谷空气污染研究评述及城市规划应对框架[J].城市发展研究,2012(05).
    [6]李鹍.基于遥感与CFD仿真的城市热环境研究[D];华中科技大学,2008.
    [7]张雷,刘济帆,邹武合.城市人居生态中热的红外小尺度探测方法研究[J].红外,2012(01).
    [8]高凯,秦俊,胡永红.城市居住区景观绿化格局改善热环境变化的遥感监测分析[J].生态环境学报,2012(03).
    [9]罗庆.基于图像分析的城市建筑群室外热环境分析[D];重庆大学,2006.
    [10]吴岩等.长春文化广场夏季热环境考察研究[J].吉林建筑工程学院学报,1999(02).
    [11]霍小平,赵华.城市广场热环境的现场实测与分析[J].建筑科学,2005,21(4):19-23.
    [12]刘淑丽.山地城镇室外热环境的测试与评价[D];重庆大学,2004.
    [13]蒋新波,杨昌智,刘泽华等.夏热冬冷地区某教学楼夏季热环境模拟分析[J].南华大学学报,2011(03).
    [14]陈卓伦,赵立华,孟庆林等.广州典型住宅小区微气候实测与分析[J].建筑学报,2008(11).
    [15]李伟强,周孝清.广州市单体建筑室外微气候热环境研究[J].建筑科学,2009(6).
    [16]乐地,李念平,苏林,李靖,魏小清.基于道路布局的城市区域热环境数值模拟研究[J].湖南大学学报,2012(01).
    [17]邢永杰,沈天行等.太阳辐射下不同地表覆盖物的热反应及对城市热环境的影响[J].太阳能学报,2002,23(6).
    [18]SANTAMOURIS M, GEORGAKIS C, NIACHOU A. On the estimation of wind speed in urban canyons for ventilation purposes-Part 2:Using of data driven techniques to calculate the more probable wind speed in urban canyons for low ambient wind speeds [J]. Building and Environment,2008,43(8):1411-8.
    [19]GEORGAKIS C, SANTAMOURIS M. On the estimation of wind speed in urban canyons for ventilation purposes-Part 1:Coupling between the undisturbed wind speed and the canyon wind [J]. Building and Environment,2008,43(8):1404-10.
    [20]NIACHOU K, LIVADA I, SANTAMOURIS M. Experimental study of temperature and airflow distribution inside an urban street canyon during hot summer weather conditions. Part II: Airflow analysis [J]. Building and Environment,2008,43(8):1393-403.
    [21]NIACHOU K, LIVADA I, SANTAMOURIS M. Experimental study of temperature and airflow distribution inside an urban street canyon during hot summer weather conditions-Part I: Air and surface temperatures [J]. Building and Environment,2008,43(8):1383-92.
    [22]TAKAHASHI K, YOSHIDA H, TANAKA Y, et al. Measurement of thermal environment in Kyoto city and its prediction by CFD simulation [J]. Energ Buildings,2004,36(8):771-9.
    [23]BONAN G B. Microclimates of a suburban Colorado (USA)landscape and implications for planning and design [J]. Landscape and Urban Planning 2000,49(3):97-114.
    [24]LIU H Z, LIANG B, ZHU F R, et al. A laboratory model for the flow in urban street canyons induced by bottom heating [J]. Advances in Atmospheric Sciences,2003,20(4): 554-64.
    [25]RUCK B. Wind-Tunnel Measurements of Flow-Field Characteristics around a Heated Model-Building [J]. J Wind Eng Ind Aerod,1993,50(1-3):139-52.
    [26]UEHARA K, MURAKAMI S, OIKAWA S, et al. Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons [J]. Atmospheric Environment, 2000,34(10):1553-62.
    [27]RICHARDS K, SCHATZMANN M, LEITL B. Wind tunnel experiments modelling the thermal effects within the vicinity of a single block building with leeward wall heating [J]. J Wind Eng Ind Aerod,2006,94(8):621-36.
    [28]吴志军,黄震等.城市街道峡谷气流流动的模拟研究,第六届全国流体力学会议论文集,上海,2001.
    [29]齐静.基于CFD风热环境模拟的小区规划方案研究[D];河北工程大学,2010.
    [30]李魁山,王峰,赵彤,李家应.城市超高层建筑群人行区风环境舒适性研究[J].绿色建筑,2012(5).
    [31]史彦丽.建筑室内外风环境的数值方法研究[D];湖南大学,2008.
    [32]YANG L N, LI Y G. Thermal conditions and ventilation in an ideal city model of Hong Kong [J]. Energ Buildings,2011,43(5):1139-48.
    [33]DIMITROVA R, SINI J F, RICHARDS K, et al. Influence of Thermal Effects on the Wind Field Within the Urban Environment [J]. Boundary-Layer Meteorology,2009,131(2):223-43.
    [34]PANAO M J N O, GONCALVES H J P, FERRAO P M C. Numerical analysis of the street canyon thermal conductance to improve urban design and climate [J]. Building and Environment, 2009,44(1):177-87.
    [35]MEMON R A, LEUNG D Y C, LIU C H. Effects of building aspect ratio and wind speed on air temperatures in urban-like street canyons [J]. Building and Environment,2010,45(1): 176-88.
    [36]孙越霞,卢建津,董文志等.基于CTTC和STTC模型的城市热岛分析[J].煤气与热力,2005(25).
    [37]林波荣.绿化对室外热环境的影响研究[D];清华大学,2004.
    [38]于震,李先庭.单栋建筑室外热环境的模拟计算方法[J].太阳能学报,2004(25).
    [39]李晓锋.住区微气候模拟方法研究[D];清华大学,2003.
    [40]TANIMOTO J, HAGISHIMA A, CHIMKLAI P. An approach for coupled simulation of building thermal effects and urban climatology [J]. Energ Buildings,2004,36(8):781-93.
    [41]CHEN H, OOKA R, HARAYAMA K, et al. Study on outdoor thermal environment of apartment block in Shenzhen, China with coupled simulation of convection, radiation and conduction [J]. Energ Buildings,2004,36(12):1247-58.
    [42]HUANG H, OOKA R, KATO S. Urban thermal environment measurements and numerical simulation for an actual complex urban area covering a large district heating and cooling system in summer [J]. Atmospheric Environment,2005,39(34):6362-75.
    [43]HE J, HOYANO A, ASAWA T. A numerical simulation tool for predicting the impact of outdoor thermal environment on building energy performance [J]. Applied Energy,2009,86(9): 1596-605.
    [44]胡孝俊,汤小敏,解铭刚,罗庆.城市住区室外热环境模拟研究[J].建筑科学,2012(S2).
    [45]FRANKE J. Recommendations of the COST action C14 on the use of CFD in predicting pedestrian wind environment [J]. In:The Fourth International Symposium on Computational Wind Engineering, Yokohama, Japan,2006.
    [46]FRANKE J, HELLSTEN A, SCHELLEN H, et al. Best practice guideline for the CFD simulation of flows in the urban environment, COST Action 732:Quality assurance and improvement of microscale meteorological models [J].2007.
    [47]YOSHIE R, MOCHIDA A, TOMINAGA Y, et al. Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan [J]. J Wind Eng Ind Aerod, 2007,95(9-11):1551-78.
    [48]MOCHIDA A, LUN I Y F. Prediction of wind environment and thermal comfort at pedestrian level in urban area [J]. J Wind Eng Ind Aerod,2008,96(10-11):1498-527.
    [49]TOMINAGA Y, MOCHIDA A, YOSHIE R, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings [J]. J Wind Eng Ind Aerod,2008, 96(10-11):1749-61.
    [50]MURAKAMI S. Comparison of Various Turbulence Models Applied to a Bluff-Body [J]. J Wind Eng Ind Aerod,1993,46-7(21-36.
    [51]MURAKAMI S. Overview of turbulence models applied in CWE-1997 [J]. J Wind Eng Ind Aerod,1998,74-6(1-24).
    [52]MURAKAMI S, OOKA R, MOCHIDA A, et al. CFD analysis of wind climate from human scale to urban scale [J]. J Wind Eng Ind Aerod,1999,81(57-81).
    [53]BLOCKEN B, CARMELIET J, STATHOPOULOS T. CFD evaluation of wind speed conditions in passages between parallel buildings-effect of wall-function roughness modifications for the atmospheric boundary layer flow [J]. J Wind Eng Ind Aerod,2007, 95(9-11):941-62.
    [54]BLOCKEN B, STATHOPOULOS T, CARMELIET J. CFD simulation of the atmospheric boundary layer:wall function problems [J]. Atmospheric Environment,2007,41(2):238-52.
    [55]KATO M, LAUNDER B E. The modeling of turbulent flow around stationary and vibrating square cylinders [J]. In:Preprints of 9th Symposium on Turbulent Shear Flow,1993,10(4):1-6.
    [56]TSUCHIYA M, MURAKAMI S, MOCHIDA A, et al. Development of a new kappa-epsilon model for flow and pressure fields around bluff body [J]. J Wind Eng Ind Aerod,1997, 67-8(169-82).
    [57]CHEN Q, XU W. A zero-equation turbulence model for indoor airflow simulation [J]. Energ Buildings,1998,28(2):137-44.
    [58]SREBRIC J, CHEN Q, GLICKSMAN L. Validation of a zero-equation turbulence model for complex indoor airflow simulaiton [J]. ASHRAE Transactions,1999,105(2):414-27.
    [59]ZHAI Z Q, CHEN Q Y, HAVES P, et al. On approaches to couple energy simulation and computational fluid dynamics programs [J]. Building and Environment,2002,37(8-9):857-64.
    [60]QIAN Y. Development of algebraic turbulence model for airflow and contaminant simulations around building [D]; The Pennsylvania State University,2004.
    [61]QIAN Y, SREBRIC J. Development and validation of an algebraic turbulence model for outdoor airflow and contaminant simulations [J]. invited paper for the inaugural issue of International Journal in Building, Urban, Interior and Landscape Technology,2012.
    [62]FISHER D E, PEDERSEN C O. Convective heat transfer in building energy and thermal load calculations [J]. ASHRAE Transactions,1997,103(2):137-48.
    [63]BEAUSOLEIL-MORRISON I. An algorithm for calculating convection coefficients for internal building surfaces for the case of mixed flow in rooms [J]. Energ Buildings,2001,33(4): 351-61.
    [64]WIJEYSUNDERA N E, CHOU B R, JAYAMAHA S E G. Heat flow through walls under transient rain conditions [J]. Journal of Building Physics,1993,17(1):118-41.
    [65]CHANDRA R, GOEL V K, RAYCHAUDHURI B C. Universal Curves for Natural-Convection Heat-Transfer Coefficients in Flat-Plate Solar-Energy Collectors [J]. Applied Energy,1983,13(2):101-7.
    [66]AYATA T, TABARES-VELASCO P C, SREBRIC J. An investigation of sensible heat fluxes at a green roof in a laboratory setup [J]. Building and Environment,2011,46(9):1851-61.
    [67]TAKEBAYASHIH, MORIYAMA M. Surface heat budget on green roof and high reflection roof for mitigation of urban heat island [J]. Building and Environment,2007,42(8):2971-9.
    [68]NAKAMURA H, IGARASHI T, TSUTSUI T. Fluid flow and local heat transfer around two cubes arranged in tandem on a flat plate turbulent boundary layer [J]. Jsme International Journal Series B-Fluids and Thermal Engineering,2001,44(4):584-91.
    [69]NAKAMURA H, IGARASHI T, TSUTSUI T. Local heat transfer around a wall-mounted cube at 45 degrees to flow in a turbulent boundary layer [J]. Int J Heat Fluid Fl,2003,24(6): 807-15.
    [70]WANG K C, CHIOU R T. Local mass/heat transfer from a wall-mounted block in rectangular channel flow [J]. Heat and Mass Transfer,2006,42(7):660-70.
    [71]MEINDERS E R, VANDERMEER T H, HANJALIC K, et al. Application of infrared thermography to the evaluation of local convective heat transfer on arrays of cubical protrusions [J]. Int J Heat Fluid Fl,1997,18(1):152-9.
    [72]SHARPLES S. Full-Scale Measurements of Convective Energy-Losses from Exterior Building Surfaces [J]. Building and Environment,1984,19(1):31-9.
    [73]LOVEDAY D L, TAKIA H. Convective heat transfer coefficients at a plane surface on a full-scale building facade [J]. International Journal of Heat and Mass Transfer,1996,39(8): 1729-42.
    [74]LIU Y, HARRIS D J. Full-scale measurements of convective coefficient on external surface of a low-rise building in sheltered conditions [J]. Building and Environment,2007,42(7): 2718-36.
    [75]SHAO J T, LIU J, ZHAO J N, et al. A novel method for full-scale measurement of the external convective heat transfer coefficient for building horizontal roof [J]. Energ Buildings, 2009,41(8):840-7.
    [76]HAGISHIMA A, TANIMOTO J. Field measurements for estimating the convective heat transfer coefficient at building surfaces [J]. Building and Environment,2003,38(7):873-81.
    [77]EMMEL M G, ABADIE M O, MENDES N. New external convective heat transfer coefficient correlations for isolated low-rise buildings [J]. Energ Buildings,2007,39(3): 335-42.
    [78]BLOCKEN B, DEFRAEYE T, DEROME D, et al. High-resolution CFD simulations for forced convective heat transfer coefficients at the facade of a low-rise building [J]. Building and Environment,2009,44(12):2396-412.
    [79]DEFRAEYE T, BLOCKEN B, CARMELIET J. CFD analysis of convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer [J]. International Journal of Heat and Mass Transfer,2010,53(1-3):297-308.
    [80]DEFRAEYE T, BLOCKEN B, CARMELIET J. Convective heat transfer coefficients for exterior building surfaces:Existing correlations and CFD modelling [J]. Energy Conversion and Management,2011,52(1):512-22.
    [81]PILLAI S S, YOSHIE R. Experimental and numerical studies on convective heat transfer from various urban canopy configurations [J]. J Wind Eng Ind Aerod,2012,104(447-54).
    [82]DEFRAEYE T, CARMELIET J. A methodology to assess the influence of local wind conditions and building orientation on the convective heat transfer at building surfaces [J]. Environmental Modelling & Software,2010,25(12):1813-24.
    [83]NOTTROTT A, ONOMURA S, INAGAKI A, et al. Convective heat transfer on leeward building walls in an urban environment:Measurements in an outdoor scale model [J]. International Journal of Heat and Mass Transfer,2011,54(15-16):3128-38.
    [84]SANEINEJAD S, MOONEN P, DEFRAEYE T, et al. Analysis of convective heat and mass transfer at the vertical walls of a street canyon [J]. J Wind Eng Ind Aerod,2011,99(4):424-33.
    [85]TSAI M Y, CHEN K S. Measurements and three-dimensional modeling of air pollutant dispersion in an Urban Street Canyon [J]. Atmospheric Environment,2004,38(35):5911-24.
    [86]GHENU A, ROSANT J M, SINI J F. Dispersion of pollutants and estimation of emissions in a street canyon in Rouen, France [J]. Environmental Modelling & Software,2008,23(3): 314-21.
    [87]武建刚,胡嘉莹.关于汽车尾气对城市环境污染现状的调查[J].科技咨询,2011(32).
    [88]GROMKE C, RUCK B. Influence of trees on the dispersion of pollutants in an urban street canyon-Experimental investigation of the flow and concentration field [J]. Atmospheric Environment,2007,41(16):3287-302.
    [89]GOMES M S D P, ISNARD A A, PINTO J M D C. Wind tunnel investigation on the retention of air pollutants in three-dimensional recirculation zones in urban areas [J]. Atmospheric Environment,2007,41(23):4949-61.
    [90]练章华周万.污染气体扩散风洞试验的大涡模拟[J].计算力学学报,2011(S1).
    [91]LIU C H, BARTH M C, LEUNG D Y C. Large-eddy simulation of flow and pollutant transport in street canyons of different building-height-to-street-width ratios [J]. Journal of Applied Meteorology,2004,43(10):1410-24.
    [92]HANG J, SANDBERG M, LI Y G, et al. Pollutant dispersion in idealized city models with different urban morphologies [J]. Atmospheric Environment,2009,43(38):6011-25.
    [93]马晓宇,朱元励,梅琨,张艳军,张明华.SWMM模型应用于城市住宅区非点源污染负荷模拟计算[J].环境科学研究,2012(01).
    [94]GROMKE C, RUCK B. Aerodynamic modelling of trees for small-scale wind tunnel studies [J]. Forestry,2008,81(3):243-58.
    [95]STATHOPOULOS T, LAZURE L, SAATHOFF P, et al. The effect of stack height, stack location and rooftop structures on air intake contamination:a laboratory and full-scale study. In Report-392. Institut de recherche Robert-Sauve en sante et en securite du travail (IRSST) [J].
    [96]SALIM S M, CHEAH S C, CHAN A. Numerical simulation of dispersion in urban street canyons with avenue-like tree plantings:Comparison between RANS and LES [J]. Building and Environment,2011,46(9):1735-46.
    [97]SINI J F, ANQUETIN S, MESTAYER P G. Pollutant dispersion and thermal effects in urban street canyons [J]. Atmospheric Environment,1996,30(15):2659-77.
    [98]KIM J J, BAIK J J. A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons [J]. Journal of Applied Meteorology,1999,38(9):1249-61.
    [99]KIM J J, BAIK J J. Effects of inflow turbulence intensity on flow and pollutant dispersion in an urban street canyon [J]. J Wind Eng Ind Aerod,2003,91(3):309-29.
    [100]XIE X M, HUANG Z, WANG J S, et al. The impact of solar radiation and street layout on pollutant dispersion in street canyon [J]. Building and Environment,2005,40(2):201-12.
    [101]XIE X M, LIU C H, LEUNG D Y C. Impact of building facades and ground heating on wind flow and pollutant transport in street canyons [J]. Atmospheric Environment,2007,41(39) 9030-49.
    [102]XIE X M, HUANG Z. Impact of aspect ratio and surface heating on pollutant transport in street canyons [J]. Journal of Mechanical Science and Technology,2007,21(11):1781-90.
    [103]KIM J J, BAIK J J. A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k-epsilon turbulence model [J]. Atmospheric Environment,2004,38(19):3039-48.
    [104]CHAM. "PHOENICS USER MANUAL FOR PROGRAM VERSION 2008 C L, UK.
    [105]ALLARD F. Natural Ventilation in Buildings-A Design Handbook. James & James (Science Publishers) Ltd. London. UK.1998 [J].
    [106]OKE T R. Boundary layer climates [M]. London, UK,1987.
    [107]BURLEY B J. Infiltration mapping for urban environments [D]. University Park, PA, US; The Pennsylvania State University,2009.
    [108]MACDONALD R W, GRIFFITHS R F, CHEAH S C. Field experiments of dispersion through regular arrays of cubic structures [J]. Atmospheric Environment,1997,31(6):783-95.
    [109]MACDONALD R W, GRIFFITHS R F, HALL D J. An improved method for the estimation of surface roughness of obstacle arrays [J]. Atmospheric Environment,1998,32(11): 1857-64.
    [110]MACDONALD R W. Modelling the mean velocity profile in the urban canopy layer [J]. Boundary-Layer Meteorology,2000,97(1):25-45.
    [111]DI SABATINO S, SOLAZZO E, PARADISI P, et al. A simple model for spatially-averaged wind profiles within and above an urban canopy [J]. Boundary-Layer Meteorology,2008,127(1):131-51.
    [112]BENTHAM T, BRITTER R. Spatially averaged flow within obstacle arrays [J]. Atmospheric Environment,2003,37(15):2037-43.
    [113]ELLEFSEN R. Current Assessment of building construction types in world example cities, Report prepared for naval surface warfare center, Dahlgren Laboratory, Dahlgren, VA., 1999, p.16.
    [114]BLOCKEN B, STATHOPOULOS T, SAATHOFF P, et al. Numerical evaluation of pollutant dispersion in the built environment:Comparisons between models and experiments [J]. J Wind Eng Ind Aerod,2008,96(10-11):1817-31.
    [115]MOCHIDA A, TOMINAGA Y, MURAKAMI S, et al. Comparison of various k-epsilon models and DSM applied to flow around a high-rise building-report on AIJ cooperative project for CFD prediction of wind environment [J]. Wind and Structures,2002,5(2-4):227-44.
    [116]LI X X, LIU C H, LEUNG D Y C, et al. Recent progress in CFD modelling of wind field and pollutant transport in street canyons [J]. Atmospheric Environment,2006,40(29): 5640-58.
    [117]MOCHIDA A, MURAKAMI S, SHOJI M, et al. Numerical-Simulation of Flowfield around Texas-Tech Building by Large-Eddy Simulation [J]. J Wind Eng Ind Aerod,1993, 46-7(455-60).
    [118]TOMINAGA Y, MOCHIDA A, MURAKAMI S, et al. Comparison of various revised k-epsilon models and LES applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer [J]. J Wind Eng Ind Aerod,2008,96(4):389-411.
    [119]HUANG S H, LI Q S, XU S L. Numerical evaluation of wind effects on a tall steel building by CFD [J]. Journal of Constructional Steel Research,2007,63(5):612-27.
    [120]MURAKAMI S. Comparison of Various Turbulence Models Applied to a Bluff-Body [J]. J Wind Eng Ind Aerod,1993,46-7(1):21-36.
    [121]ANSYS Fluent 12 Theory Guide, US:ANSYS Inc; April 2009.
    [122]PHOENICS Reference Mannual, CHAM, London,2010.
    [123]http://www.cfd-online.com/Wiki/Turbulence_modeling [J].
    [124]VAN DRIEST E R. On turbulent flow near a wall [J]. JAeroSci,1956,23(1):
    [125]CEBECI T, SMITH A. Analysis of turbulence boundary layers, series in applied mathematics and methods:XV. Academic Press; 1974.
    [126]BALDWIN B S, LOMAX H. Thin-layer approximation and algebraic models for separated turbulence flows AIAA paper. Huntsville, AL; 1978.78-257.
    [127]VDI 3783 Part 9:2005, Environmental meteorology-Prognostic microscale wind field modes-Evaluation for flow around buidlings and obstacles. Beuth Verlag, Berlin.
    [128]ROACHE P J. Perspective-a Method for Uniform Reporting of Grid Refinement Studies [J]. Journal of Fluids Engineering-Transactions of the Asme,1994,116(3):405-13.
    [129]ROACHE P J. Verfication and validation in computational science and engineering [J]. Hermosa Publishers, New Mexico,1998.
    [130]LEE S, LELE S K, MOIN P. Simulation of Spatially Evolving Turbulence and the Applicability of Taylor Hypothesis in Compressible Flow [J]. Physics of Fluids a-Fluid Dynamics,1992,4(7):1521-30.
    [131]ANSYS CFX12 Theory Guide, US:ANSYS Inc; April 2009.
    [132]HARGREAVES D M, WRIGHT N G. On the use of the k-epsilon model in commercial CFD software to model the neutral atmospheric boundary layer [J]. J Wind Eng Ind Aerod,2007 95(5):355-69.
    [133]FLUENT. Airpak 3.0 user's guide. Lebanon, United States:Fluent, Inc; 2007 [J].
    [134]DAVIDOVIC D. Improvements in numerical airflow modeling around multiple buidlings [D]; The Pennsylvania State University,2009.
    [135]TOMINAGA Y, STATHOPOULOS T. Numerical simulation of dispersion around an isolated cubic building:Model evaluation of RANS and LES [J]. Building and Environment, 2010,45(10):2231-9.
    [136]MACDONALD R W, CARTER SCHOFIELD S, SLAWSON P R. Physical modelling of urban roughness using arrays of regular roughness elements [J]. Water,Air and Soil Pollution, 2002,2(541-54).
    [137]OKE T R. Street Design and Urban Canopy Layer Climate [J]. Energ Buildings,1988, 11(1-3):103-13.
    [138]HANG J, SANDBERG M, LI Y G. Age of air and air exchange efficiency in idealized city models [J]. Building and Environment,2009,44(8):1714-23.
    [139]HANG J A, LI Y G. Ventilation strategy and air change rates in idealized high-rise compact urban areas [J]. Building and Environment,2010,45(12):2754-67.
    [140]ALLEGRINI J, DORER V, CARMELIET J. Wind tunnel measurements of buoyant flows in-street canyons. [J]. Building and Environment,2012, (1-12).
    [141]CEHLIN M, MOSHFEGH B, SANDBERG M. Measurements of air temperatures close to a low-velocity diffuser in displacement ventilation using an infrared camera [J]. Energ Buildings,2002,34(7):687-98.
    [142]LICHTENBELT W D V, DAANEN H A M, WOUTERS L, et al. Evaluation of wireless determination of skin temperature using iButtons [J]. Physiology & Behavior,2006,88(4-5): 489-97.
    [143]TAYLOR E N, DENARDO D F, MALAWY M A. A comparison between point-and semi-continuous sampling for assessing body temperature in a free-ranging ectotherm [J]. Journal of Thermal Biology,2004,29(2):91-6.
    [144]HILMER S, ALGAR D, NECK D, et al. Remote sensing of physiological data:Impact of long term captivity on body temperature variation of the feral cat (Felis catus) in Australia, recorded via Thermochron iButtons [J]. Journal of Thermal Biology,2010,35(5):205-10.
    [145]FITZGERALD W B, FAHMY M, SMITH I J, et al. An assessment of roof space solar gains in a temperate maritime climate [J]. Energ Buildings,2011,43(7):1580-8.
    [146]HOLDEN Z A, ABATZOGLOU J T, LUCE C H, et al. Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain [J]. Agricultural and Forest Meteorology,2011,151(8):1066-73.
    [147]GROMKE C, RUCK B. On the Impact of Trees on Dispersion Processes of Traffic Emissions in Street Canyons [J]. Boundary-Layer Meteorology,2009,131(1):19-34.
    [148]GROMKE C. A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies [J]. Environmental Pollution,2011,159(8-9):2094-9.
    [149]ENERGYPLUS.2012. http://www.energyplus.gov.
    [150]OpenStudio, Version 0.11.0, National Renewable Energy Laboratory, Golden, CO (2012).
    [151]Building Component Library,2012, https://bcl.nrel.gov/.
    [152]ASHRAE. ASHRAE Handbook-Fundamentals, Atlanta:American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. [J].1989.
    [153]ASHRAE. ASHRAE Handbook-Fundamentals, Atlanta:American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. [J].1981.
    [154]ALAMDARI F, HAMMOND G P. mproved data correlations for buoyancy-driven convection in rooms [J]. Building Services Engineering Research & Technology,1983,4(3).
    [155]ASHRAE. ASHRAE Handbook-Fundamentals, Atlanta:American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. [J].2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700