用户名: 密码: 验证码:
胚胎化石的磷酸盐化模拟实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华南埃迪卡拉系陡山沱组及寒武纪早期的含磷地层中产出大量保存精美的磷酸盐化球状化石(phosphatized spheroidal fossils),由于其特殊的磷酸盐化保存方式,许多超微细结构(细胞级及亚细胞级)得以保存,并且以立体的方式展现出来,这些化石为研究后生动物的起源及早期后生动物的发育生物学提供了重要素材。
     对于磷酸盐化球状化石来说,其大小、纹饰和形态是判断化石属性的重要标准。研究者通常基于球状化石的与现代生物的一些特征比较(如大小、分裂方式、整体形态等)做出其生物属性的解释,将磷酸盐化球状化石的起源解释为多种来源。由于化石都经历了死亡、腐败和成岩等变化,化石的现有特征是一系列不同作用的结果,因此化石的大小特征是否真实的反应了生物本身的属性特点尚待确定。因为这些化石特征与生物结构对应关系理解存在分歧,故其特征直接与生物体对比常常引起争议。如果不把化石的不同形态表征和观察的化石特征相互区分的话,那么同一种个体的两种不同状态很可能会被描述成不同的属种,进而影响到更复杂的化石组合解释,尤其是建立个体之间的亲缘关系基础之上的分析。
     在目前的矿化实验中,虽然现有研究证实很多极易腐败的组织可以通过早期磷酸盐或硅质交代而得到精细保存,但对于有可能发生的初始形态变化,矿化实验提供的信息非常有限。目前没有足够的证据来揭示生物形态结构在不同环境下的变化趋势,这些直接的证据经常被后期成岩作用所掩盖。目前的实验结果表明环境化学梯度(比如氧气、酸碱度等)的变化可能是造成生物卵早期形态变化的主要原因。然而化石胚胎形态大小的变化显然不能通过化学分析测量。而针对早期不同环境的形态统计分析可以帮助了解这个趋势。由于形态变化是多因素造成的结果,单一条件下的实验有可能提供更好的论证依据,并可以揭示造成该形态变化的主要因素。
     现代人工模拟磷酸盐化动物卵实验可以为上述问题的解决提供科学实证。本实验通过模拟不同埋藏条件,发现武昌鱼(Carnis megalobramae)鱼卵可以在不同环境中保存。实验证实在不同保存条件下鱼卵的个体大小、纹饰和形态存在明显的差异,而且在不同环境下,这些鱼卵明显表现出不同的大小、纹饰和形态保存趋势以及巨大的形态差异,因而仅仅根据上述特征无法将其判定为同一物种。由于实验条件可以在自然环境条件下的实现,实验中重要表征消失的现象有可能在现实环境中重现,那么在地质历史中一些重要的生物属性缺失有可能广泛存在。实验结果期望能为磷酸盐化球状化石的鉴别提供参考,并为其成因探讨提供更多依据。
A considerable number of phosphatized spheroidal fossils were found in the Ediacaran Doushantuo Formation and the early Cambrian phosphorus strata in South China. Because of the special mineral that is preserved, many ultra-fine structures (cellular and sub-cellular levels) of the biological specimens can be three-dimensionally preserved. These fossils provide important material for the study of origins and early ontogeny of metazoan.
     For the Doushantuo spherical microfossils, ornamentation and morphology are important criteria for judging the biological properties of the fossils. Researchers usually study the fossils' biological properties by a comparative analysis between the characteristics of the spherical fossils (including the size, the cleavage pattern, and the overall split mode) and the modern biological characteristics. According to the complexity of the structure of these fossil cell structures and their similar characteristics with the morphology features of modern animal tissues, the Doushantuo spherical fossils have been widely interpreted as originating from a variety of sources. Such hypotheses are based on the remarkable similarities between modern eukaryotic embryos and the Doushantuo spherical fossils in size and cell division boundaries. However, recognition of the same types of fossils relied on comparisons between living organisms and fossilized remains. As fossils have all experienced death, corruption, decay and digenetic alteration, few specific characteristics can be used as standards to identify the same biological species. The relationship between the corruption and the remnant morphology of soft tissues has yet to be explored. Because there is a different understanding between fossil characteristics and the biological structure correspondence of the fossil, the understanding of these characteristics is at odds with the identification of fossils, which usually causes controversy. A more complex explanation for the fossil assemblage appears to contain more difficulties (especially with regard to establishing the genetic relationship between individuals).
     Although many mineralization experiments confirmed that vulnerable tissues can be exceptionally preserved, it provided only limited information on the initial biological decomposition. There are insufficient data to separate the primary structures and the corruption changes. The direct evidence may be concealed by subsequent diagenesis, and the remaining traces of the primary structure were not recognized. Clearly, the spatial pattern will not be measured by chemical analysis. Steep chemical gradients that originally existed in the environment (e.g.,O2, nitrate, pH, and redox) may be the main factors that cause morphological changes. The ability to measure morphological changes over time is vital as the decomposition process itself is dynamic. The mineralization experiments, which focus on mineralization, provide an indication of understanding the processes. Providing the possibility of measuring single factors at fine spatial resolutions with minimum disturbance can reveal this process. Whether the native structure changed in a dynamic environment should be explored by the researcher.
     Modern artificial simulation experiments of phosphate animal eggs can provide scientific evidence to settle the aforementioned disputes. This experiment simulated environmental changes to observe the early morphological changes of the Bluntnose black bream eggs(Megalobrama amblycephala). This study in a laboratory confirmed the occurrence of morphological variations under different conditions and that the eggs decomposed in different ways. It was found that the eggs can show a different morphology in the phosphate environment and that these eggs exhibited considerable morphological variations under different conditions. By comparing the perservational state in this experiment with those of other states, the results showed diversified morphological changes that may also have occurred in the real environment. These results may indicate that diversified morphological changes may be widely occurred in geological history. Thus, those eggs cannot be ascribed to the same species based only on the features. The experimental results are expected to provide a useful reference for the identification of phosphatized microfossils and provide a more empirical basis for their genesis.
引文
1. Aigner, T. Storm depositional systems:Dynamic stratigraphy in modern and ancient shallow-marine sequences[M], New York:Springer-Verlag,1985:1-174.
    2. Aldridge, R.J., Briggs, D.E.G, Smith, M.P., et al., The anatomy of conodonts: philosophical transactions of the royal society of london b[J].1993,340:405-421.
    3. Alexander, M., Biodegradation:problems of molecular recalcitrance and microbial fallibility[J]. Advances in Applied Microbiology,1965,7:35-80.
    4. Alexander, M., Nonbiodegradable and other recalcitrant molecules[J]. Biotechnology and Bioengineering,1973,15:611-647.
    5. Alexander, R.R., Comparative hydrodynamic stability of brachiopod shells on current-scoured arenaceous substrates [J]. Lethaia,1984,17:17-32.
    6. Allen, J.R.L., Experiments on the setting, overturning and entrainmernt of bivalve shells and related models[J]. Sedimentology,1984,31:227-250.
    7. Aller, R.C., Carbonate dissolution in nearshore terrigenous muds:The role of physical and biological reworking [J]. Journal of Geology,1982,90:98-154.
    8. Allison, F. E., Sherman, M. S., and Pinck, L. A. (1949), Maintenance of soil organic matter:I. Inorganic soil colloid as a factor in retention of carbon during formation of humus, edited, p.463.
    9. Allison, P. A., Soft-bodied animals in the fossil record:the role of decay in fragmentation during transport[J]. Geology,1986,14(12):979-981.
    10. Allison, P.A., The role of anoxia in the decay and mineralization of proteinaceous macrofossils[J]. Paleobiology,1988,14:139-154.
    11. Allison, P.A., Konservat-Lagerstatten:Cause and classification[J]. Paleobiology,1988b, 14:331-334.
    12. Allison, P. A., The role of anoxia in the decay and mineralization of proteinaceous macro-fossils[J]. Paleobiology,1988c,14(2):139-154.
    13. Allison, P.A., Variation in rates of decay and disarticulation of Echinodermata: Implications for the application of actualistic data[J]. Palaios,1990,5:432-440.
    14. Allison, P. A., and Bottjer, D. J. (2011), Taphonomy:Process and Bias Through Time, in Taphonomy:Process and Bias Through Time [M], edited by Allison, P. A. and Bottjer, D. J., pp.1-17, Springer, Dordrecht.
    15. Allison, P. A., and Briggs, D. E. G. (1991a), Taphonomy of nonmineralized tissues, in Taphonomy:releasing the data locked in the fossil record [M], edited by Allison, P. A. and Briggs, D. E. G, pp.25-30, Plenum Press, New York.
    16. Allison, P. A., and Briggs, D. E. G (1991b), The taphonomy of soft-bodied animals, in The processes of fossilization [M], edited by Donovan, S. K., pp.120-140, Columbia University Press, New York.
    17. Allison, P. A., and Briggs, D. E. G, Exceptional fossils record:Distribution of soft-tissue preservation through the Phanerozoic[J]. Geology,1993,21:527-530.
    18. Allison, P.A., and Pye, K., Early diagenetic mineralization and fossil preservation in modern carbonate concretions[J]. Palaios,1995,9:561-575.
    19. Anderson, M. M., and Conway Morris, S., A review, with descriptions of four unusual forms, of the soft-bodied fauna of the Conception and St. John's Groups (Late Precambrian), Avalon Peninsula, Newfoundland[J]. Proceedings of the third North American Paleontological convention,1982,1:1-18.
    20. Arena, D. A., Exceptional preservation of plants and invertevrates by phosphatization, Riversleigh, Australia[J]. Palaios,2008,23:495-502.
    21. Arouri, K., Greenwood, P. F., Walter, M. R., A possible chlorophycean affinity of some Neoproterozoic acritarchs[J]. Organic Geochemistry,1999,30:1323-1337.
    22. Arouri, K., Greenwood, P. F., Walter, M. R., Biological affinities of Neoproterozoic acritarchs from Australia:Microscopic and chemical characterization [J]. Orgnnic Geochemistry,2000,31:75-89.
    23. Baas, M., Briggs, D.E.G., van Heemest, J.D.H., Kear, A.J., et al., Selective preservation of chitin during the Decay of shrimps [J]. Geochimica Cosmochimica Acta,1995,59: 945-951.
    24. Bailey, J. V., Joye, S. B., Kalanetra, K. M., et al., Evidence of giant sulphur bacteria in Neoproterozoic phosphorites[J]. Nature,2007,445:198-201.
    25. Behrensmeyer, A.K., The taphonomy and paleoecology of PlioPleistocene vertebrate assemblages east of Lake Rudolf, Kenya[J]. Bulletin of the Museum of Comparative Zoology,1975,146:473-578.
    26. Behrensmeyer, A.K., Time resolution in fluvial vertebrate assemblages[J]. Paleobiology, 1982,8:211-227.
    27. Behrensmeyer, A. K., Taphonomy and paleobiology[J]. Paleobiology,2000,26(4): 103-147.
    28. Behrensmeyer, A. K., and Kidwell, S. M., Taphonomy's contributions to paleobiology [J]. Paleobiology,1985,11:105-119.
    29. Bengtson, S., and Yue, Z., Predatorial borings in late Precambrian mineralized exoskeletons[J]. Science,1992,257(5068):367-369.
    30. Bengtson, S., and Yue, Z., Fossilized metazoan embryos from the earliest Cambrian[J]. Science,1997,277:1645-1648.
    31. Bengtson, S., and Budd, G, Comment on "Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian"[J]. Science,2004,306:1291.
    32. Berner, R.A., Calcium carbonate concretions formed by the decomposition of organic matter[J]. Science,1968,159:195-197.
    33. Berner, R.A., Authigenic mineral formation resulting from organic matter decomposition in modern sediments[J]. Fortschritte der Mineralogie,1981,59:117-136.
    34. Blair, J. E., Hedges, B., Molecular clocks do not support the Cambrian explosion[J]. Molecular Biology and Evolution,2004,22(3):387-390.
    35. Boynton, H. E., and Ford, T. D., Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England[J]. Mercian Geologist,1995, 13:165-182.
    36. Brett, C. E. (1990), Obrution deposits, in Palaeobiology:A Synthesis [M], edited by Briggs, D. E. G. and Crowther, P. R., pp.239-243, Blackwell Scientific Publications, Oxford, England.
    37. Brett, C. E., Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments[J]. Palaios,1995,10:597-616.
    38. Brett, C. E. (1999), Middle Devonian Arkona Shale of Ontario, Canada, and Silica Shale of Ohio, USA, in Fossil Crinoids [M], edited by Hess, H., et al., pp.137-141, Cambridge University Press, Cambridge, UK.
    39. Brett, C. E., and Baird, G C, Comparative Taphonomy:A key to paleoenvironmental interpretation based on fossil preservation[J]. Palaios,1986,1:207-227.
    40. Brett, C. E., Baird, G. C., and Speyer, S. E. (1997), Fossil Lagerstatten:Stratigraphic record of paleontological and taphonomic events, in Paleontological Events:Stratigraphic, Ecologic, and Evolutionary Implications [M], edited by Brett, C. E. and Baird, G. C., pp. 3-40, Columbia University Press, New York.
    41. Brett, C. E., and Seilacher, A. (1991), Fossil Lagerstatten:A taphonomic consequence of event sedimentation, in Cycles and Events in Stratigraphy [M]. edited by Einsele, G, et al., pp.283-297, Springer-Verlag, Berlin.
    42. Brett, C. E., Speyer, S. E., and Baird, G C. (1986), Storm-generated sedimentary units: tempestite proximality and event stratification in the Middle Devonian Hamilton Group of New York, in Dynamic Stratigraphy and Depositional Environment of the Hamilton Group (Middle Devonian) in New York State, Part 1 [M], edited by Brett, C. E., pp. 129-156, New York State Museum Bulletin.
    43. Briggs, D. E. G, Extraordinary fossils[J]. American Scientist,1991,79:130-141.
    44. Briggs, D. E. G, Experimental taphonomy[J]. Palaios,1995,10:539-550.
    45. Briggs, D. E. G. (2001), Exceptionally preserved fossils, in Palaeobiology [M], edited by Briggs, D. E. G and Crowther, P. R., pp.328-332, Blackwell Science Press, Oxford, UK.
    46. Briggs, D. E. G, The role of decay and mineralization in the preservation of soft-bodied fossils[J]. Annual Review of Earth and Planetary Sciences,2003,31:275-301.
    47. Briggs, D. E. G, Bottrell, S. H., and Raiswell, R., Pyritization of soft-bodied fossils: Beecher's Trilobite Bed, Upper Ordovician, New York State[J]. Geology,1991a,19(12): 1221-1224.
    48. Briggs, D. E. G, Clark, N. D. L., and Clarkson, E. N. K., The Granton "shrimp-bed", Edinburghp-A Lower Carboniferous Konservat-Lagerstatte[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences,1991b,82:65-85.
    49. Briggs, D. E. G., and Clarkson, E. N. K., The Lower Carboniferous Granton "shrimp-bed", Edinburgh[J]. Special Papers in Palaeontology,1983,30:161-177.
    50. Briggs, D. E. G., and Clarkson, E. N. K., Malacostracan Crustacea from the Dinantian of Foulden, Berwickshire, Scotland[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences,1985,76:35-40.
    51. Briggs, D. E. G, and Clarkson, E. N. K., An enigmatic chordate from the Lower Carboniferous Granton "shrimp-bed" of the Edinburgh District, Scotland[J]. Lethaia, 1987,20:107-115.
    52. Briggs, D. E. G, and Gall, J. C., The continuum in soft-bodied biotas from transitional environments:A quantitative comparison of Triassic and Carboniferous Konservat-Lagerstatten[J]. Paleobiology,1990,16:204-218.
    53. Briggs, D. E. G, and Kear, A. J., Decay and preservation of polychaetes:Taphonomic thresholds in soft-bodied organisms[J]. Paleobiology,1993a,19(1):107-135.
    54. Briggs, D. E. G, and Kear, A. J., Fossilization of soft tissue in the laboratory [J]. Science, 1993b,259:1439-1442.
    55. Briggs, D. E. G, and Kear, A. J., Decay and mineralization of shrimps[J]. Palaios,1994,9: 431-456.
    56. Briggs, D. E. G, Kear, A. J., Martill, D. M., et al., Phosphatization of soft-tissue in experiments and fossils[J]. Journal of the Geological Society, London,1993,150: 1035-1038.
    57. Briggs, D. E. G, Kear, A. J., Baas, M., et al., Decay and composition of the hemichordate Rhabdopleura:Implications for the taphonomy of graptolites[J]. Lethaia,1995,28:15-23.
    58. Briggs, D.E.G, and Kear, A.J., Decay of the lancelet Branchiostoma lanceolatum (Cephalochordata):Implication for the interpretation of soft-tisssue preservation in conodonts and other primitive chordates[J]. Lethaia,1994,26:275-287.
    59. Briggs, D.E.G, Kear, A.J., Martill, D.M., et al., Phosphatization of soft-tissue in experiments and fossils[J]. Journal of the Geological Society of London,1993,150: 1035-1038.
    60. Briggs, D. E. G, and Nedin, C., The taphonomy and affinities of the problematic fossil Myoscolex from the Lower Cambrian Emu Bay Shale of South Australia[J]. Journal of Paleontology,1997,71:22-32.
    61. Briggs, D. E. G, and Robinson, R. A., Exceptionally preserved nontrilobite arthropods and Anomalocaris from the Middle Cambrian of Utah[J]. The University of Kansas Paleontological Contributions, Paper,1984,111:1-23.
    62. Briggs, D. E. G, and Siveter, D. J., Soft-bodied fossils from a Silurian volcaniclastic deposit[J]. Nature,1996,382:248-249.
    63. Briggs, D. E. G, Stankiewicz, B. A., Meischner, D., et al., Taphonomy of arthropod cuticles from Pliocene lake sediments, Willershausen, Germany[J]. Palaios,1998,13: 386-394.
    64. Briggs, D. E. G, Sutton, M. D., Siveter, D. J., et al., A new phyllocarid (Crustacea: Malacostraca) from the Silurian fossil-Lagerstatten of Herefordshire, UK[J]. Proceedings of the Royal Society, Seris B,2004,271:131-138.
    65. Briggs, D. E. G, and Wilby, P. R., The role of calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils[J]. Journal of the Geological Society, London,1996,153:665-668.
    66. Briggs, D. E. G, Wilby, P. R., Perez-Moreno, B. P., et al., The mineralization of dinosaur soft tissue in the Lower Cretaceous of Las Hoyas, Spain[J]. Journal of the Geological Society, London,1997,154:587-588.
    67. Broadhead, T.W., and Driese, S.G, Experimental and natural Abrasion of conodonts in marine and eolian environments [J]. Palaios,1994,9:546-560.
    68. Broadhead, T.W., Driese, S.G, and Harvey, J.L., Gravitation settling of conodont elements:Implications for paleoecologic interpretations of conodont assemblages[J]. Geology,1990,18:850-853.
    69. Bromley, R.G., Hanken, N-M., and Asgaard, U., Shallow marine bioerosion:Preliminary results of an experimental study[J]. Bulletin of the Geological Society of Denmark,1990, 38:85-99.
    70. Brower, J. C., Some Disparid Crinoids from the Upper Ordovician (Shermanian) Walcott-Rust Quarry of New York[J]. Journal of Paleontology,2008,82:57-77.
    71. Brower, J. C., Camerate and Cladd Crinoids from the Upper Ordovician (Katian, Shermanian) Walcott-Rust Quarry of New York[J]. Journal of Paleontology,2010,84: 626-645.
    72. Budd, G, A Cambrian gilled from Greenland:[J]. Nature,1993,364:709-711.
    73. Butterfield, N.J., Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale[J]. Paleobiology,1990,16:272-286.
    74. Butterfield, N. J., Exceptional fossil preservation and the Cambrian Explosion[J]. Integrative and Comparative Biology,2003,43:166-177.
    75. Butterfield, N. J., Probable proterozoic fungi[J]. Paleobiology,2005a,31(1):165-182.
    76. Butterfield, N. J., Reconstructing a complex early Neoproterozoic eukaryote, Wynniatt Formation, arctic Canada[J]. Lethaia,2005b,38(2):155-169.
    77. Butterfield, N. J., Modes of pre-Ediacaran multicellularity[J]. Precambrian Research, 2009,173:201-211.
    78. Cai, Y, and Hua, H., Discussion of 'First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin'[J]. Geological Magazine,2011,148(2):329-333.
    79. Cao, R., and Zhao, W., The algal flora of the Tongying Formation (upper Sinian System) in southwestern China[J]. Memoir Nanjing Institute of Geology and Palaeontology, Academia Sinica,1978,10:1-28.
    80. Cohena, P. A., Knoll, A. H., Kodnerc, R. B., Large spinose microfossils in Ediacaran rocks as resting stages of early animals [J]. Proceedings of National Academy of Sciences of the United States of America,2009,106(16):6519-6524.
    81. Condon, D., Zhu, M., Bowring S., et al., U-Pb ages from the Neoproterozoic Doushxntuo Formation, China[J]. Science,2005,308:95-98.
    82. Colbath, G. K., Jaw mineralogy in eunicean polychaetes (Annelida) [J]. Micropaleontology,1986,32:186-159.
    83. Colbath, G K., Taphonomy of Recent polychaete jaws from Florida and Belize[J]. Micropaleontology,1988,34:83-89.
    84. Chen, J., The dawn of animal world[M]. Nanjing:Jiangsu Press of Science xnd Technology,2004:1-104.
    85. Chen, J., Oliveri, P., Li, C., et al., Precambrian animal diversity:Putative phosphatized embryos from the Doushantuo Formation of China [J]. Proceedings of Nationnl Academy of Sciences of the United States of America,2000,97:4457-4462.
    86. Chen, J., Oliveri, P., Gao, F., et al., Precambrian animal life:Probable developmental and adult cnidarian forms from Southwest China [J]. Developmental Biology,2002,248: 182-196.
    87. Chen, J., Bottjer, D. J., Oliveri P., et al., Small bilaterian fossils from 40 to 55 million years before the Cxmbrixn[J]. Science,2004,305:218-222.
    88. Chen, J., Bottjer, D. J., Davidson, E. H., et al., Phosphatized polar lobeforming embryos from the Precambrian of Southwest China [J]. Science,2006,312:1644-1646.
    89. Chen, J., Bottjer, D. J., Li, G, et al., Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng'an, Guizhou, China[J]. Proceedings of National Academy of Sciences of the United States of America,2009,106: 19056-19060.
    90. Chen, J., Bottjer, D. J., Davidson, E. H., et al. Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils:Phylogenetic diversity and evolutionary implications[J]. Precambrian Research,2009,173:191-200.
    91. Daley, G.M., Passive deterioration of shelly material:A study of the Recent Eastern Pacific articulate brachiopod Terebratalia transversa Sowerby[J]. Palaios,1993:226-232.
    92. Davidson, E. H., Peterson, K. J., Cameron, R. A., Origin of bilaterian body plans: Evolution of develpmental regulatory mechanisms[J]. Science,1995,270:1319-1325.
    93. Donoghue, P. C. J., Bengtson, S., Dong, X., et al., Synchrotron X-ray tomographic microscopy of fossil embryos[J]. Nature,2006,442:682-683.
    94. Doolittle, R. F., Feng D., Tsang S., et al., Determining divergence times of the major kingdoms of living organisms with a protein clock[J]. Science,1996,271:470-477.
    95. Dumont, H. J., Nandini, S., Sarma, S., Cystornamentation in aquatic invertebrates:A defence against egg-predation[J]. Hydrobiologia,2002,486 (1):161-16.
    96. Einsele, G, and Mosebach, R., Zur Petrographie, Fossilerhaltung und Entstehung der Gesteine des Posidonienschiefers im Schwabischen Jura[J]. Neues jahrbuch fur Geologie und Palaontologie, Abhandlungen,1955,101:319-430.
    97. Fedonkin, M. A. (2007), New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia):palaeoecological and evolutionary implications, in The Rise and Fall of the Ediacaran Biota [M], edited by Vickers-Rich, P. and Komarower, P., pp. 157-179, Geological Society of London Special Publications.
    98. Ferguson, D.K., The origin of leaf-assemblages-New light on and old problem[J]. Review of Palaeobotany and Palynology,1985,46:117-188.
    99. Flessa, K.W., and Kowalewski, M., Shell survival and time averaging in nearshone and shelf environments:Estimates from the radiocarbon literature[J]. Lethaia,1994,27: 97-184.
    100.Gabbott, S. E., Aldridge, R. J., Theron, J. N., A giant conodont with preserved muscle tissue from the Upper Ordovician of South Africa[J]. Nature,1995,374:800-803.
    101.Gabbott, S. E., Hou, X. G, Norry, M. J., et al., Preservation of Early Cambrian animals of the Chengjiang biota[J]. Geology,2004,32:901-904.
    102.Gabbott, S.E., Aldridge, R.J., and Theron, J.N., A giant conodont with preserved muscle tissue from the Upper Ordovician of South Africa[J]. Nature,1995,374:800-803.
    103.Gall, J.-C., Bernier, P., Gaillard, C., et al., Influence du developpement d'un voile algaire sur la sedimentation et la taphonomie des calcaires lithographiques. Exemple du gisement de Cerin (Kimmer-idgien superieur, Jura meridional francais) [M]. Comptes rendues Academie des Sciences, Paris,1985,301:547-552.
    104.Gall, J. C. (1983), The Gres a Voltzia delta, in Ancient Sedimentary Environments and the Habitats of Living Organisms:Introduction to Palaeoecology [M], edited by Gall, J. C., pp.134-148, Springer-Verlag, Berlin.
    105.Gaudier, C., and Sprechmann, P., Upper Vendian skeletal fauna of the Arroyo del Soldado Group, Uruguay [J]. Beringeria,1999,23:55-91.
    106.Gehling, J. G. (1986), Algal binding of siliciclastic sediments:a mechanism in the preservation of Ediacaran fossils, paper presented at Twelfth International Sedimentology Congress, Abstract.
    107.Gehling, J.G, The case for Ediacaran fossil roots to the Metazoan tree[J]. Memoirs of the Geological Society of India,1991,20:181-223.
    108.Gilbert, S. F., Developmental biology. Sunderland, Massachusetts[M]. Sinauer Associates, Inc.2000,1-228.
    109.Gilbert, J. J., Species-specific morphology of resting eggs in the rotifer Asplanchna[J]. Transactions of the American Microscopical Society,1978,97(3):330-339.
    110.Glasspool,I. J., Edwards, D., and Axe, L., Charcoal in the Early Devonian:A wildfire-derived Konservat-Lagerstatte[J]. Review of Palaeobotany and Palynology,2006, 142:131-136.
    111.Glover, C.P., and Kidwell, S.M., Influence of organic matrix on the post-mortem destruction of molluscan shells[J]. Journal of Geology,1993,101:129-747.
    112.Golenberg, E.M., Amplification and analysis of Miocene plant fossil DNA[J]. Philosophical Transactions of the Royal Society of London B,1991,333:419-427.
    113.Gould, S. J., The book of life [M]. New York:W. W. Norton & Company,2001:1-256.
    114.Gostling, N. J., Thomas, C., Greenwood, J. M., et al., Deciphering the fossil record of early bilaterian embryonic development in light of experimental taphonomy[J]. Evolution & Development,2008,10 (3):339-349.
    115.Greenstein, B.J., An Integrated study of echinoid taphonomy:predictions for the fossil record of four echinoid families[J]. Palaios,1991,6:519-540.
    116.Greenstein, B.J., Taphonomic bias and the evolutionary history of the family Cidaridae (Echinodermata:Echinoidea) [J]. Paleobiology,1991,18:50-79.
    117.Grimaldi, D., Bonwich, E., Delannoy, M., and Doberstein, S., Electron microscopic studies of mummified tissues in amber fossils[J]. American Museum Novitates,1994, 3097:31.
    118.Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., et al., Biostratigraphic and geochronologic constraints on early animal evolution[J]. Science,1995,270:598-604.
    119.Hagadorn, J. W, Xiao, S, Donoghue, P. C. J., et al., Cellular and subcellular structure of Neoproterozoic animal embryos[J]. Science,2006,314:291-294.
    120.Henwood, A., Exceptional preservation of dipteran flight muscle and the taphonomy of insects in amber[J]. Palaios,1992,7:203-212.
    121.Henwood, A., Recent plant resins and the taphonomy of organisms in amber:a review[J]. Modern Geology,1993,19:35-59.
    122.Hesselbo, S.P., The biostratinomy of Dikelocephalus sclerites:Implications for the use of trilobite attitude data[J]. Palaios,1987,2:605-608.
    123.Hua, H., Chen, Z., and Yuan, X., The advent of mineralized skeletons in Neoproterozoic Metazoa-new fossil evidence from the Gaojiashan Fauna[J]. Geological Journal,2007, 42(3-4):263-279.
    124.Jenkins, R. J. F. (1992), Functional and ecological aspects of Ediacaran assemblages, in Origin and Early Evolution of Metazoa [M], edited by Lipps, J. H. and Signor, P. W., pp. 131-176, Plenum Press, New York.
    125.Kear, A. J., Briggs, D. E. G, Donovan, D. T., Decay and fossilization of non-mineralised tissue in coleoid cephalopods[J]. Palaeontology,1995,38:105-131.
    126.Kerr, R. A., Pushing back the origins of animals[J]. Science,1998,279:803-804.
    127.Kidwell, S. M., Tanphonomic Feedback in Miocene Assemblages:Testing the Role of Dead Hardpan in Benthic Communities[J]. Palaios,1986,V1:239-255.
    128.Kidwell, S.M., and Brenchley, P.J., Patterns in bioclastic accumulation through the Phanerozoic:Changes in input or in destruction[J]. Geology,1994,22:1139-1143.
    129.Kinchin, I. M., The Biology of Tardigrades[M]. London:Portland Press,1994:1-145.
    130.Kotler, E., Martin, R.E., and Liddell, W.D., Experimental analysis of abrasion and dissolution resistance of modern reefdwelling Foraminifera:Implications for the preservation of biogenic carbonate[J]. Palaios,1992,7:244-276.
    131.Lask, P.B., The hydrodynamic behavior of sclerites from the trilobite Flexicalymene meeki[J]. Palaios,1993,8:219-225.
    132.Li, C., Chen, J., Tzuen, H., Precambrian sponges with cellular structures [J]. Science, 1998,279:879-882.
    133.Lieberman, B. S., A new soft-bodied fauna:the Pioche Formation of Nevada[J]. Journal of Paleontology,2003,77:674-690.
    134.Liu, P., Xiao, S., Yin, C., et al., Systematic description and phylogenetic affinity of tubular microfossils from the Ediacaran Doushantuo Formation at Weng'an, South China[J]. Palaeontology,2008,51(2):339-366.
    135.Logan, G. A., Collins, M. J., and Eglinton, G (1991), Preservation of organic biomolecules, in Taphonomy; releasing the data locked in the fossil record. [M], edited by Allison, P. A. and Briggs, D. E. G, pp.1-24, Plenum Press, New York, NY, United States.
    136.Logan, GA., Boon, J.J., and Eglinton, G, Structural biopolymer preservation in Miocene leaf fossils from the Clarkia site, northern Idaho [J]. Proceedings of the National Academy of Sciences,1993,90:2246-2250.
    137.Logan, G.A., and Eglinton, G, Biogeochemistry of the Miocene lacustrine deposit, at Clarkia, northern Idaho, U.S.A. [J]. Organic Geochemistry,1994,21:857-870.
    138.Lutz, R.A., Kennish, M.J., Pooley, A.S., and Fritz, L.W., Calcium-carbonate dissolution rates in hydrothermal vent fields of the Guaymas Basin[J]. Journal of Marine Research, 1994,52:969-982.
    139.Marshall, C. P., Javaux, E. J., Knoll, A. H., Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs:A new approach to Palaeobiology [J]. Precambrian Research,2005,138:208-224.
    140.Martill, D. M., Preservation of fish in the Cretaceous of Brazil. Palaeontology,1988,3: 1-18.
    141.Martill, D.M., The Medusa effect:Intantaneous fossilization[J]. Geology Today,1989,5: 201-205.
    142.Martill, D.M., and Harper, E., Critical point drying, a technique for palaeontologists [J]. Palaeontology,1990,33:423-428.
    143.Martill, D.M., Wilby, P.R., and Williams, N., Elemental mapping:A technique for investigating delicate phosphatized fossil soft tissues[J]. Palaeontology,1992,35: 869-874.
    144.Martill, D. M., Macromolecular resolution of fossilized muscle tissue from an elopomorph fish[J]. Nature,1990,346:171-172.
    145.Martill, D. M. (2001), The Santana Formation, in Palaeobiology II [M], edited by Briggs, D. E. G. and Crowther, P. R., pp.351-356, Blackwell, Oxford.
    146.Martin, D., Briggs, D. E. G., and Parkes, R. J., Experimental mineralization of invertebrate eggs and the preservation of Neoproterozoic embryos[J]. Geology,2003, 31(1):39-42.
    147.Martin, D., Briggs, D. E. G, and Parkes, R. J., Experimental attachment of sediment particles to invertebrate eggs and the preservation of soft-bodied fossils[J]. Journal of the Geological Society London,2004,161:735-738.
    148.Martin, D., Briggs, D. E. G, and Parkes, R. J., Decay and mineralization of invertebrate eggs[J]. Palaios,2005,20(562-572).
    149.Martin, M. W., Grazhdankin, D. V., Bowring, S. A., et al., Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia:Implications for metazoan evolution[J]. Science,2000,288:841-845.
    150.Martin, R. E. Taphonomy:A Process Approach[M], Cambridge (UK):Cambridge University Press,1999:508.
    151.Meng, F. W., Zhou, C. M., Yin, L. M., et al., The oldest known dinoflagellates: Morphological and molecular evidence from Mesoproterozoic rocks at Yongji, Shanxi Province[J]. Chinese Science Bulletin,2005,50(12):1230-1234.
    152.Mcgoff, H.J., The hydrodynamics of conodont elements[J]. Lethaia,1991,24:235-247.
    153.McCall, G. J. H., The Vendian (Ediacaran) in the geological record:Enigmas in geology's prelude to the Cambrian explosion[J]. Earth Science Reviews,2006,77:1-230.
    154.McKinney, M. L. (1991), Completeness of the fossil record:an overview, in The processes of Fossilization [M], edited by Donovan, S. K., pp.66-83, Columbia University Press, New York.
    155.Meyer, D. L., and Meyer, K. B., Biostratinomy of recent crinoids (Echinodermata) at Lizard Island, Great Barrier Reef, Australia[J]. Palaios 1986,1:294-302.
    156.Meyer, D. L., Milsom, C. V., and Webber, A. J., A crinoid conundrum[J]. Geotimes,1999, 44:14-16.
    157.Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, J., A new exceptionally preserved biota from the Lower Silurian of Wisconsin, U.S.A[J]. Philosophical Transactions of the Royal Society of London, Series B,1985a,311:75-85.
    158.Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, J., A Silurian soft-bodied biota[J]. Science,1985b,228:715-717.
    159.Miller, K. B., Brett, C. E., and Parsons, K. M., The paleoecological significance of storm-generated disturbance within a Middle Devonian muddy epeiric sea[J]. Palaios, 1988,3:35-52.
    160.Mura, G., Morphological diversity of the resting eggs in the anostracan genus Chirocephalus (Crustacea, Branchiopoda)[J]. Hydrobiologia,2001,450(1-3):173-185.
    161.Moczydlowska, M., Willman, S., Ultrastructure of cell walls in ancient microfossils as a proxy to their biological affinitic[J]. Precamhrian Research,2009,173:27-38.
    162.Narbonne, G. M., The Ediacara Biota:Neoproterozoic origin of animals and their ecosystems[J]. Annual Review of Earth and Planetary Sciences,2005,33:421-442.
    163.Narbonne, G M., and Dalrymple, R. D. (1992), Taphonomy and ecology of deep-water Ediacaran organisms from northwestern Canada, in Fifth north American paleontological convention:abstract and program [M], edited by Lidgard, S. and Crane, P. R., p.219, Paleontological Society Special Publication, no.6, Knoxville.
    164.Narbonne, G M., Dalrymple, R. W., and MacNaughton, R. B. (1997), Deep-water microbialites and Ediacara-type fossils from northwestern Canada, Geological Society of American Sbstract with Programs.
    165.Noffke, N., Gerdes, G, Klenke, T., et al., Microbially induced sedimentary structures-A new category within the classification of primary sedimentary structures[J]. Journal of Sedimentary Research,2001,71:649-656.
    166.Norris, R. D., Cnidarian taphonomy and affinities of the Ediacara biota[J]. Lethaia,1989, 22:381-393.
    167.Orr, P. J., Benton, M. J., and Briggs, D. E. G, Post-Cambrian closure of the deep-water slope-basin taphonomic window [J]. Geology,2003,31:769-772.
    168.Orr, P. J., Briggs, D. E. G, and Kearns, S. L., Taphonomy of exceptionally preserved Crustaceans from the Upper Carboniferous of southeastern Ireland[J]. Palaios,2008,23: 298-312.
    169.Orr, P. J., Briggs, D. E. G, and Parkes, M. A., The "Castlecomer fauna":A new Konservat-Lagerstatte from the Upper Carboniferous of Ireland[J]. Irish Journal of Earth Sciences,1996,15:93-106.
    170.Orr, P. J., Kearns, S. L., and Briggs, D. E. G., Backscattered electron imaging of fossils exceptionally-preserved as organic compressions[J]. Palaios,2002,17:110-117.
    171.Orr, P. J., Kearns, S. L., and Briggs, D. E. G, Elemental mapping of exceptionally preserved 'carbonaceous compression' fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2009,277:1-8.
    172.Palmer, A. R., Miocene arthropods from the Mojave desert, California[J]. United States Geological Survey Paper,1957,294-G:237-280.
    173.Papazzoni, C. A., and Trevisani, E., Facies analysis, palaeoenvironmental reconstruction, and biostratigraphy of the "Pesciara di Bolca" (Verona, northern Italy):An early Eocene Fossil-Lagerstatte[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,242: 21-35.
    174.Park, L. E., Geochemical and paleoenvironmental analysis of lacustrine arthropod-bearing concretions of the Barstow Formation, Southern California[J]. Palaios, 1995,10:44-57.
    175.Park, L. E., and Downing, K. F., Paleoecology of an exceptionally preserved arthropod fauna from lake deposits of the Miocene Barstow Formation, Southern California, U.S.A.[J]. Palaios,2001,16:175-184.
    176.Parkes, R. J., Senior, E., Multistage chemostats and other models for studying anoxic ecosystems. P.51-71 In (ed. J. W. T. Wimpenny), Handbook of laboratory model systems for microbial ecosystems, Volume 1. CRC Press:Boca Raton, Florida. (1988)
    177.Parsons, K. M., Brett, C. E., and Miller, K. B., Taphonomy and depositional dynamics of Devonian shell-rich mudstones[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988,63:109-139.
    178.Paterson, J. R., and Jago, J. B., New trilobites from the Lower Cambrian Emu Bay Shale Lagerstaette at Big Gully, Kangaroo Island, South Australia[J].Memoir of the Association of Australasian Palaeontologists,2006,32:43-57.
    179.Peel, J. S., Conway Morris, S., and Ineson, J. R., The Sirius Passet fauna:An Early Cambrian Lagerstaette from North Greenland[J].29th International Geological Congress: Kyoto, Japan,1992:257.
    180.Peng, J., Zhao, Y., Wu, Y., et al., The Balang fauna:a new Early Cambrian fauna from Kaili City, Guizhou Province[J]. Chinese Science Bulletin,2005,50:1159-1162.
    181.Peterson, K. J., Lyons, J. B., Nowak, K. S., et al., Estimating metazoan divergence time with a molecular clock[J]. Proceedings of the National Academy of Sciences of United States of America,2004,101:6536-6541.
    182.Petrovich, R., Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and of some other classical localities[J]. American Journal of Science,2001,301:683-726.
    183.Plotnick, R.E., Taphonomy of a modern shrimp:Implications for the arthropod fossil record[J]. Palaios,1986,286-293.
    184.Podkovyrov, V. N., Mesoproterozoic Lakhanda Lagerstatte, Siberia:Paleoecology and taphonomy of the microbiota[J]. Precambrian Research,2009,173:146-153.
    185.Popov, L. E., Bassett, M. G, Holmer, L. E., et al., Early ontogeny and soft tissue preservation in siphonotretide brachiopods:New data from the Cambrian-Ordovician of Iran[J]. Gondwana Research,2009,16:151-161.
    186.Pye, K., Marshrock formed by iron sulfide and siderite cementation in saltmarsh sediments[J]. Nature,1981,294:650-652.
    187.Pye, K., SEM analysis of siderite cements in intertidal marsh sediments, Norfolk, England[J]. Marine Geology,1984,56:1-12.
    188.Pye, K., Dickson, J.A.D., Schiavon, N., Coleman, M.L., and Cox, M., Formation of siderite-Mg calcite-iron sulfide concretions in intertidal marsh and sandflat sediments, north Norfolk, England:Sedimentology,1990,20:523-44.
    189.Qian, Y., and Bengtson, S., Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China[J]. Fossils and Strata,1989,24: 1-156.
    190.Rainey, D. K., and Jones, B., Preferential soft-tissue preservation in the Hot Creek carbonate spring deposit, British Columbia, Canada[J]. Sedimentary Geology,2010,227: 20-36.
    191.Samuelsson, J., Van Roy, P., and Vecoli, M., Micropalaeontology of a Moroccan Ordovician deposit yielding soft-bodied organisms showing Ediacara-like preservation[J]. Geobios,2001,34:365-373.
    192.Savarese, M., Taphonomic and paleoecologic implications of flow-induced forces on concavo-convex articulate brachiopods:An experimental approach[J]. Lethaia,1994,27: 273-362.
    193.Schafer, W., Aktuo-palaontologie nach studien in der Nordsee[J]. Kramer, Frankfurt am Main,1962,668.
    194.Schafer, W., Ecology and Palaeoecology of Marine Environments[M]. Chicago University Press, Chicago,1972,588p.
    195.Schieber, J., Southard, J. B., and Thaisen, K., Accretion of mudstone beds from migrating floccule ripples[J]. Science,2007,318:1760-1763.
    196.Schopf, J. M. (1979), Pennsylvanian paleoclimate in the Illinois Basin, in Deposition and Structural History of the Pennsylvanian System of the Illinois Basin, Guidebook Series/Geological Survey of America, Part 2 [M], edited by Palmer, J. E. and Dutcher, R. R., pp.1-13, Illinois State Geological Survey, Urbana.
    197.Schopf, J. W., Microfossils of the Early Archean Apex Chert:New evidence of the antiquity of life[J]. Science,1993,260:640-646.
    198.Schram, F. R., Lower Carboniferous biota of Glencartholm, Eskdale, Dumfriesshire [J]. Scottish Journal of Geology,1983,19:1-15.
    199.Schultze, H. P., Three-dimensional muscle preservation in Jurassic fishes of Chile[J]. Revista Geologica de Chile,1989,16(2):183-215.
    200.Schwark, L., Ferretti, A., Papazzoni, C. A., et al., Organic geochemistry and paleoenvironment of the Early Eocene "Pesciara di Bolca" Konservat-Lagerstatte, Italy [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2009,273:272-285.
    201.Segui, J., A new pinna (Bivalvia) from the Triassic of Alcover-Montral[J]. Barcelona, 2000,9:21-22.
    202.Segui, J., New posidonia (Bivalvia) from the Triassic of Alcover-Momtral[J]. Barcelona, 2001,10:55-57.
    203.Selacher, A., Vendobionta and Psammocorallia:Lost constructions of Precambrian evolution[J]. Journal of the Geological Society of London,1992,149:607-613.
    204.Selacher, A., Reif, W.-E., and Westphal, F., Sedimentological, ecological and temporal patterns of fossil Lagerstatten[J]. Philosophical Transactions of the Royal Society London B,1985,311:5-23.
    205.Seilacher, A., Begriff und bedeutung der Fossil-Lagerstatten[J]. Neues jahrbuch fur Geologie und Palaontologie, Abhandlungen,1970:34-39.
    206.Seilacher, A. (1984), Late Precambrian and Early Cambrian Metazoa:preservational or real extinctions?, in Patterns of Change in Earth Evolution [M], edited by Holland, H. D. and Trendall, A. F., pp.159-168, Springer-Verlag, Berlin.
    207.Seilacher, A., Vendozoa:organismic construction in the Precambrian biosphere[J]. Lethaia,1989,22:229-239.
    208.Seilacher, A. (1990), Taphonomy of Fossil-Lagerstatten:Overview, in Palaeobiology:A synthesis [M], edited by Briggs, D. E. G. and Crowther, P. R., pp.266-270, Blackwell Science, Oxford.
    209.Seilacher, A. (1991), Event and their signatures-an overview, in Cycles and Events in Stratigraphy [M], edited by Einsele, G, et al., pp.222-226, Springer-Verlag, Berlin.
    210.Seilacher, A., Vendobionta and Psammocorallia:lost constructions of Precambrian evolution[J]. Journal of the Geological Society, London,1992,149:607-613.
    211.Seilacher, A., Biomat-related lifestyles in the Precambrian[J]. Palaios,1999,14(1):86-93.
    212.Seilacher, A., Grazhdankin, D., and Legouta, A., Ediacaran biota:The dawn of animal life in the shadow of giant protists[J]. Paleontological Research,2003,7(1):43-54.
    213.Seilacher, A., Reilf, W. E., and Westphal, F. (1985), Sedimentological, ecological and temporal patterns of Fossil-Lagerstatten, in Extraordinary biotas:their ecological and evolutionary significance [M], edited by Whittington, H. B. and Conway Morris, S., pp. 5-23, Philosophical Transactions of the Royal Society of London.
    214.Shear, W. A., Bonamo, P. M., Grierson, J. D., et al., Early land animals in North America: Evidence from Devonian age arthropods from Gilboa, New York[J]. Science,1984,224: 492-494.
    215.Shear, W. A., Selden, P. A., Rolfe, W. D. I., et al., New terrestrial arachnids from the Devonian of Gilboa, New York (Arachnida, Trigonotarbida)[J]. American Museum Novitates,1987,2901:1-74.
    216.Sheehan, P.M., The hinging mechanisms of brachiopods-Taphonomic considerations [J]. Journal of Paleontology,1978,52:748.
    217.Shen, B., Dong, L., Xiao, S., et al., The Avalon Explosion:Evolution of Ediacara morphospace[J]. Science,2008,319:81-84.
    218.Shen, B., Xiao, S., Dong, L., et al., Problematic macrofossils from Ediacaran successions in the North China and Chaidam blocks:Implications for their evolutionary roots and biostratigraphic significance[J]. Journal of Paleontology,2007,81:1396-1411.
    219.Shields, G, What are Lagerstatten?[J]. Lethaia,1998,31:124.
    220.Shu, D. G, Morris, S. C., Han, J., et al., Lower Cambrian Vendobionts from China and Early Diploblast evolution[J]. Science,2006,312(5):731-734.
    221.Signor, P. W., Mount, J. F., and Onken, B. R., A pre-trilobite shelly fauna from the White-Inyo region of eastern California and western Nevada[J]. Journal of Paleontology, 1987,61(3):425-438.
    222.Simon, A., Poulicek, M., Velimirov, B., And Mackenzie, F.T., Comparison of anaerobic and aerobic biodegradation of skeletal structures in marine and estuarine conditions[J]. Biogeochemistry v.1994,25:167-195.
    223.Siveter, D. J., Williams, M., and Waloszek, D., A phosphatocopid crustacean with appendages from the Lower Cambrian[J]. Science,2001,293:479-481.
    224.Skinner, E. S., Taphonomy and depositional circumstances of exceptionally preserved fossils from the Kinzers Formation (Cambrian), southeastern Pennsylvania[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,220(1-2):167-192.
    225.Skovsted, C. B., and Peel, J. S., Early Cambrian brachiopods and other shelly fossils from the basal Kinzers Formation of Pennsylvania[J]. Journal of Paleontology,2010,84:754-762.
    226.Smiley, C. J., Gray, J., and Huggins, L. M., Preservation of Miocene fossils in unoxidized lake deposits, Clarkia, Idaho[J]. Journal of Paleontology,1975,49:833-844.
    227.Sokolov, B. S., and Fedonkin, M. A. The Vendian System, Volume 1:Paleontology[M], Heidelberg:Springer-Verlag,1990:1-383.
    228.Sour-Tovar, F., Hagadorn, J. W., and Huitron-Rubio, T., Ediacaran and Cambrian index fossils from Sonora, Mexico [J]. Palaeontology,2007,50:169-175.
    229.Southward, E. C., Schulze, A., and Gardiner, S. L. (2005), Pogonophora (Annelida):form and function, in Morphology, Moleculars, Evolution and Phylogeny in Polychaeta and Related Taxa [M], edited by Bartolomaeus, T. and Purschke, G., pp.227-251, Hydrobiologia.
    230.S(?)rensen, J., and Jorgensen, B.B., Early diagenesis in sediments from Danish coastal waters:Microbial activity and Mn-Fe-S geochemistry [J]. Geochimicaet Cosmochimica Acta,1987,51:1583-1590.
    231.Speyer, S.E., and Brett, C.E., Trilobite taphonomy and Middle Devonian taphofacies[J]. Palaios.1986,1:312-327.
    232.Spicer, R.A., The sorting and deposition of allochthonous plant material in a modern environment at Silwood Lake, Silwood Park, Berkshire, England[J]. U.S. Geological Survey Professional Paper,1981,1143:1-77.
    233.Sperling, E. A., Pisani, D., and Peterson, K. J. (2007), Poriferan paraphyly and its implications for Precambrian palaeobiology, in The Rise and Fall of the Ediacaran Biota [M], edited by Vickers-Rich, P. and Komarower, P., pp.355-368, Geological Society of London Special Publications.
    234.Speyer, S. E. and Brett, C. E., Taphofacies Models for Epeiric Sea Environments:Middle paleozoic examples, Paleoecol. Paleoclim. Paleoeol.,1988,63:1-3.
    235.Sturmer, W., and Bergstrom, J., New discoveries on trilobites using X-rays[J]. Palaontologische Zeitschrift,1973,47:104-141.
    236.Steiner, M., and Reitner, J., Evidence of organic structures in Ediacara-type fossils and associated microbial mats[J]. Geology,2001,29(12):1119-1122.
    237.Stoermer, L., Arthropods from the lower Devonian (lower Emsian) of Alken an der Mosel, Germany:part 1, Arachnida[J]. Senckenbergiana Lethaea,1970,51:335-359.
    238.Stoermer, L., Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany:Part 2, Xiphosura[J]. Senckenbergiana Lethaea,1972,53:1-18.
    239.Stoermer, L., Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany:Part 3, Eurypterida, Hughmilleriidae[J]. Senckenbergiana Lethaea, 1973,54:119-204.
    240.Stokes, W. L., Transported fossil biota of the Green River Formation, Utah[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1978,25:353-364.
    241.Stormer, L., Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany:Part 4, Eurypterida, Drepanopteridae, and other groups[J]. Senckenbergiana Lethaea,1974,54:359-451.
    242.Stormer, L., Arthropods from the lower Devonian (lower Emsian) of Alken an der Mosel, Germany:Part 5, Myriapoda and additional forms, with general remarks on fauna and problems regarding invasion of land by arthropods [J]. Senckenbergiana Lethaea,1976, 57:87-183.
    243.Stotzky, G (1980), Surface interactions between clay minerals and microboes, viruses and soluble organics, and the probable importance of these interactions to the ecology of microbes in soil, in Microbial Adhesion to Surfaces [M], edited by Berkeley, R. C. W., et al., Ellis Horwood Ltd., Chichester.
    244.Sutton, M. D., Briggs, D. E. G, Siveter, D. J., et al., Anexceptionallypreservedvermiform mollusc from the Silurian of England[J]. Nature,2001,410:461-463.
    245.Sutton, M. D., Briggs, D. E. G, Siveter, D. J., et al., Silurian brachiopods with soft-tissue preservation[J]. Nature,2005,436:1013-1015.
    246.Sutton, M. D., Briggs, D. E. G, Siveter, D. J., et al., A soft-bodied lophophorate from the Silurian of England[J]. Biology Letters,2010, xxx:xxx-xxx.
    247.Tafforcau, P., Boistel, R., Boller, E., et al., Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens[J]. Applied Physics A,2006,83:195-202.
    248.Tang, F., Yin, C., Bengtson, S., et al., Octoradiate spiral organisms in the Ediacaran of South China[J]. Acta Geologica Sinica,2008,82:27-34.
    249.Taylor, M. E., Precambrian mollusc-like fossils from Inyo Conuty, California[J]. Science, 1966,153:198-201.
    250.Taylor, P. D., Preservation of soft-bodied and other organisms by bioimmuration-a review[J]. Palaeontology,1990,33:1-17.
    251.Taylor, P. D., and Todd, J. A. (2001), Bioimmuration, in Palaeobiology Ⅱ [M], edited by Briggs, D. E. G and Crowther, P. R., pp.285-289, Blackwell Science Press, Oxford.
    252.Tegelaar, E.W., De Leeuw, J.W., Derenne, S., and Largeau, C., A reappraisal of kerogen formation[J]. Geochimica Cosmochimica Acta,1989,53:3103-3106.'
    253.Wade, M., Preservation of soft-bodied animals in Precambrian sandstones at Ediacara, South Australia[J]. Lethaia,1968,1(3):238-267.
    254.Walton, D., Cusack, M., And Curry, G.B., Implications of the amino acid composition of Recent New Zealand brachiopods [J]. Palaeontology,1993,36:883-896.
    255.Wilby, P. R. (2001), La Voulte-sur-Rhone, in Palaeobiology Ⅱ [M], edited by Briggs, D. E. G. and Crowther, P. R., pp.349-351, Blackwell Science, Oxford.
    256.Wilby, P. R., and Briggs, D. E. G., Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues[J]. Geobios, Memoire special,1997, No.20:493-502.
    257.Wilby, P. R., Briggs, D. E. G., Bernier, P., et al., Role of microbial mats in the fossilization of soft tissues[J]. Geology,1996a,24:787-790.
    258.Wilby, P. R., Briggs, D. E. G., and Riou, B., La Voulte-sur-Rhone (Callovian):Fossilized soft tissues from a "toxic sludge"[J]. Palaeontology Newsletter,1995,28:25.
    259.Wilby, P. R., Briggs, D. E. G., and Riou, B., Mineralization of soft-bodied invertebrates in a Jurassic metalliferous deposit[J]. Geology,1996b,24:847-850.
    260.Wilby, P.R., Briggs, D.E.G., And Pinna, G, Soft tissue preservation in the Sinemurian of Osteno, Italy-Comparisons with Solnhofen and with experimental results:Extended abstracts, II International Symposium on Lithographic Limestones, Cuenca, Spain, July 1995, Universidad Autonoma de Madrid,1995,163-164.
    261.Wilby, P. R., Hudson, J. D., Clements, R. G., et al., Taphonomy and origin of an accumulate of soft-bodied cephalopods in the Oxford Clay Formation (Jurassic, England)[J]. Palaeontology,2004,47:1159-1180.
    262.Wilby, P. R., Martill, D. M., Fossil fish stomachs:A microenvironment for exceptional preservation. Historical Biology,1992,6:25-36.
    263.Wild, R. (1990), Holzmaden, in Palaeobiology II [M], edited by Briggs, D. E. G and Crowther, P. R., pp.282-285, Blackwell, Oxford.
    264.Williams, L. A., Deposition of the Bear Gulch limestone:A Carboniferous plattenkalk from central Montana[J]. Sedimentology,1983,30:843-860.
    265.Willman, S., Moczydlowska, M, Wall ultrastructure of an Ediacaran acritarch from the officer Basin, Australia[J]. Lethaia,2007,40:111-123.
    266.Willman, S., Morphology and wall ultrastructure of leiosphaeric and acanthomorphic acritarchs from the Ediacaran of Australia[J]. Geobiology,2009,7:8-20.
    267.Williams, M. E., A new specimen of Tamiobatis vetustus (Chondrichthyes, Ctenacanthoidea) from the Late Devonian Cleveland Shale of Ohio[J]. Journal of Vertebrate Paleontology,1998,18(2):251-260.
    268.Wood, R. A., Grotzinger, J. P., and Dickson, J. A. D., Proterozoic modular biomineralized metazoan from the Nama Group, Namibia[J]. Science,2002,296:2383-2386.
    269.Wood, S. P., New basal Namurian (Upper Carboniferous) fishes and crustaceans found near Glasgow[J]. Nature,1982,297:574-577.
    270. Woods, S. P., and Rolfe, W. D. I. R., Introduction to the palaeontology of the Dinantian of Foulden, Berwickshire, Scotland[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences,1985,76:1-6.
    271.Xiao, S., Mitotic topologies and mechanics of Neoproterozoic algae and animal embryos[J]. Paleobiology,2002a,28(2):244-250.
    272.Xiao, S., Multiple taphonomic windows in the Doushantuo Formation and the Neoproterozoic evolution of algae and animals[J]. International Palaeontological Congress, Geological Society of Australia Abstracts,2002b,68(3):176.
    273.Xiao, S., Hagadorn, J. W., Zhou, C., et al., Rare helical spheroidal fossils from the Doushantuo Lagerstatte:Ediacaran animal embryos come of age[J]. Geology,2007,35(2): 115-118.
    274.Xiao, S., and Knoll, A. H., Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte, South China[J]. Lethaia,2000a,32:219-240.
    275.Xiao, S., and Knoll, A. H., Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China[J]. Journal of Paleontology, 2000b,74(5):767-788.
    276.Xiao, S., Knoll, A. H., Yuan, X., et al., Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae [J]. American Journnl of Botany,2004,91(2):214-227.
    277.Xiao, S., and Laflamme, M., On the eve of animal radiation:phylogeny, ecology and evolution of the Ediacara biota[J]. Trends in Ecology and Evolution,2009,24(1):31-40.
    278.Xiao S H, Yuan X L, Knoll A H. Eumetazoan fossils in terminal Proterozoic Phosphorites? Proc Natl Acad Sci U S A,2000,97:13684-13689
    279.Xiao, S., Zhang, Y, and Knoll, A. H., Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite [J]. Nature,1998,391:553-558.
    280.Xiao, S., Zhou, C., Yuan, X., Undressing and redressing Ediacaran embryos[J]. Natrue, 2007,446:E9.
    281.Yang, H., and Yang, S., The Shanwang fossil biota in eastern China:A Miocene Konservat-Lagerstatte in lacustrine deposits[J]. Lethaia,1994,27:345-354.
    282.Yang, S., and Zheng, Z., The Sinian trace fossils from Zhengmuguan Formation of Helanshan Mountain, Ningxia[J]. Earth Science (Journal of Wuhan College of Geology), 1985,10:9-18.
    283.Yin, C., Bengtson, S., Yue, Z., Silicified and phosphatized Tianzhushania from the Neoproterozoic Doushantuo phosphorites at Weng'an, Guizhou, South China[J]. Acta Palaeontologica Polonica,2004,49 (1):1-12.
    284.Yin, L., Xue, Y., An extraordinary microfossil assemblage from Terminal Proterozoic phosphate deposits in South China [J]. Chinese Jourual of Botany,1993,5(2):168-175.
    285. Yin, L., Yuan, X., Meng, F., et al., Protists of the Upper Mesoproterozoic Ruyang Group in Shanxi Province, China[J]. Precambrian Research,2005,141:49-66.
    286.Yin, L., Zhu, M., Knoll, A. H., et al., Doushantuo embryos preserved inside diapause egg cysts[J]. Nature,2007,446:661-663.
    287. Yochelson, E. L., and Stump, E., Discovery of Early Cambrian fossils at Taylor Nunatak, Antarctica[J]. Journal of Paleontology,1977,51:872-875.
    288.Young, G. A., Rudkin, D. M., Dobrzanski, E. P., et al., Exceptionally preserved Late Ordovician biotas from Manitoba, Canada[J]. Geology,2007,35:883-886.
    289.Yuan, X., Hofmann, H. J., New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Weng'an, Guizhou Province, southwestern China[J]. Alcheringa, 1998,22:189-222.
    290.Yuan, X., Xiao, S., Taylor, T. N., Lichen-like symbiosis 600 million years ago[J]. Science, 2005,308:1017-1019.
    291.Yuan, X. L., Xiao S. H., Yin L. M., et al., Doushantuo fossils:Life on the eve of animal radiation[M]. Hefei:University of Science and Technology of China Press,2002:1-171.
    292.Zhang, X., and Briggs, D. E. G., The nature and significance of the appendages of Opabinia from the Middle Cambrian Burgess Shale[J]. Lethaia,2007,40:161-173.
    293.Zhang, X., and Hou, X., Gravitational constraints on the burial of Chengjiang fossils[J]. Palaios,2007,22:448-453.
    294.Zhang, X., and Hua, H., Soft-bodied fossils from the Shipai Formation, Lower Cambrian of the Three Gorge area, South China[J]. Geological Magazine,2005,142:699-709.
    295.Zhang, X., Hua, H., and Reitner, J., A new type of Precambrian megascopic fossils:the Jinxian biota from northeastern China[J]. Facies,2005,52:169-181.
    296.Zhang, X., Liu, W., and Zhao, Y., Cambrian Burgess Shale-type Lagerstatten in South China:Distribution and significance[J]. Gondwana Research,2008a,14:255-262.
    297.Zhang, X., and Pratt, B. R., Middle Cambrian arthropod embryos with blastomeres[J]. Science,1994,266:637-639.
    298.Zhang, X.G., Siveter, D. J., Waloszek, D., et al., An epipodite-bearing crown-group crustacean from the Lower Cambrian[J]. Nature,2007,449(4):595-598.
    299.Zhang, Z., Robson, S. P., Emig, C., et al., Early Cambrian radiation of brachiopods:A perspective from South China[J]. Gondwana Research,2008b,14:241-254.
    300.Zhang. Y., Multicellular thallophytes with differentiated tissues from Late Proterozoic phosphate rocks of South China[J]. Lethaia,1989,22:113-132.
    301.Zhang. Y., Yin, L., Xiao, S., et al., Permineralized fossils from the Terminal Proterozoic Doushantuo Formation, South China [J]. Journal of Paleontology, The Paleonto logical Society Memoir,1998,50:1-52.
    302.Zhang. Y, Yuan, X., New data on multicellular thallophytes and fragments of cellular tissues from Late Proterozoic phosphate rocks, South China[J]. Lethaia,1992,25:1-18.
    303.Zhang. Y, Yuan, X, Yin, L., Interpreting late Precambrian microfossils[J]. Science,1998, 282:1783.
    304.Zhang. Y, Yuan, X. L., Sexual reproductive structures of latest Proterozoic multicellular rhodophytes (red algae) form South China[J]. Science in China:Series C.,1996,39: 27-36.
    305.Zhao, Y, Zhu, M., Babcock, L. E., et al., Kaili biota:A taphonomic window on diversification of metazoans from the basal Middle Cambrian:Guizhou, China[J]. Acta Geologica Sinica,2005,79:751-765.
    306.Zhu, M., Babcock, L. E., and Steiner, M., Fossilization modes in the Chengjiang Lagerstatte (Cambrian of China):testing the roles of organic preservation and diagenetic alteration in exceptional preservation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,220(1-2):31-46.
    307.Zhu, M., Gehling, J. G., Xiao, S., et al., Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia[J]. Geology,2008,36: 867-870.
    308.Zhu, M., Li, G., Zhang, J., et al., Early Cambrian stratigraphy of east Yunnan, southwestern China:A synthesis[J]. Acta Palaeontologica Sinica,2001a,40 (supplement): 4-39.
    309.Zhu, M., and Zhang, J. (2005), Ediacaran-Cambrian boundary sections and Early Cambrian Chengjiang nonmineralized fossils in eastern Yunnan Province, southwestern China in Cambrian System of China and Korea:Guide to Field Excursions [M], edited by Peng, S., et al., pp.1-12, University of Science and Technology of China Press, Hefei.
    310.Zhu, M., Zhang, J. M., Steiner, M., et al., Sinian-Cambrian Stratigraphic Framework for Shallow- to Deep-Water Environments of the Yangtze Platform:an Integrated Approach[J]. Progress in Natural Sciences 2004(Special Issue):75-84.
    311.Zhu, M. Y., Zhang, J. M., and Li, G. X., Sedimentary environment of the Early Cambrian Chengjiang biota:Sedimentology of the Yu'anshan Formation in Chengjiang County, Eastern Yunnan[J]. Acta Palaeontologica Sinica,2001b,40 (Supplement):80-105.
    312.Zhu, M. Y, Zhang, J. M., and Yang, A. H., Integrated Ediacaran (Sinian) chronostratigraphy of South Chian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,254:7-61.
    313.Zhuravlev, A. Y., Vintaned, J. A. G., and Ivantsov, A. Y., First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin[J]. Geological Magazine,2009, 146(5):775-780.
    314.蔡耀平,陕西宁强埃迪卡拉纪晚期高家山生物群中的Conotubus hemiannulatus及Gaojiashania cyclus:化石埋藏学与古生态学研究[M].西北大学,2011.
    315.曹瑞骥,唐天福,薛耀松等,扬子区震旦纪含矿地层研究,见:扬子区上前寒武系[M],中国科学院南京地质古生物研究所编,南京大学出版社,南京.1989.
    316.曹瑞骥,赵文杰,西南地区震旦纪藻类一新科——套管藻科Manicosiphoniaceae的发现及其分类位置的讨论[J].古生物学报,1978,17(1):29-40.
    317.迟慧梅,陈均远,李家维,前寒武纪瓮安生物群具围卵腔结构的胚胎及其发育序列[J].古生物学报,2003,42(3):448-451.
    318.陈孟莪,四川峨眉麦地坪剖面震旦系一寒武系界线的新认识及有关化石群的记述[J].地质科学,1982,3:253-262.
    319.陈孟莪,刘魁梧,震旦世陡山沱期磷块岩中微体化石的发现及其地质意义[J].地质科学,1986,1:46-53
    320.陈孟莪,王义昭,峡东区上震旦统灯影组中段的管状动物化石[J].科学通报,1977,22:219-221.
    321.陈孟莪,刘魁梧,震旦世陡山沱期磷块岩中微体化石的发现及其地质意义[J].地质科学,1986(第1期):46-53.
    322.陈孟莪,陈祥高,劳秋元,陕南震旦系上部地层中的后生动物化石及其地层意义[J].地质科学,1975(第2期):181-190.
    323.陈均远,动物世界的黎明[M].南京:江苏科技出版社,2004,1-104.
    324.陈均远,迟慧梅,贵州前寒武纪陡山沱组磷酸盐化胚胎和幼虫化石及其亲缘性[J].科学通报,2005,(16):1750-1757.
    325.丁莲芳,张录易,李勇等,扬子地台北缘震旦世一早寒武世早期生物群研究[M].北京:科学技术文献出版社,1992,1-156
    326.戴永定,生物矿物学[M].北京:石油工业出版社,1994,1-572.
    327.戴永定,沈继英,生物矿化硬体显微构造(生矿体结构)的分类和演化[J].动物学杂志,1996,31(1):49-54.
    328.范晓,韩丽君,周天成等,中国沿海经济海藻化学成份的测定[J].海洋与湖沼,1995:199-207.
    329.李国祥,钱逸,磷酸盐化球状化石研究述评[J].微体古生物学报,1999,16(3):287-296.
    330.华洪,张录易,陈哲,陕南震旦世骨骼化石中的微生物磷酸盐化作用[J].古生物学报,2003,42(2):189-199.
    331.华洪,陈哲,张录易,Shaanxilithes在贵州的发现及其意义[J].地层学杂志,2004,28(3):265-269.
    332.胡立嵩,廖阖或,罗国强,等.,动物非矿化组织化石化过程的地球化学作用研究进展[J].地质与资源,2006,15(2):152-156.
    333.桂建芳,易梅生,发育生物学[M].北京:科学出版社,2002,1-556.
    334.刘鹏举,尹崇玉,唐烽,瓮安生物群中多次分叉的微管状后生动物化石[J].科学通报,2006,51(4):488-490.
    335.刘鹏举,尹崇玉,陈寿铭,唐烽,高林志,埃迪卡拉纪陡山沱期瓮安生物群中磷酸盐化球状化石新材料及其问题讨论[J].地球学报,2009,30:457-464.
    336.刘志礼,刘雪娴,方贻功等,藻类对磷酸盐形成和沉积作用影响的模拟实验[J].地质学报,1991,(2):166-175.
    337.罗惠麟,蒋志文,武希彻等,云南东部震旦系一寒武系界线[M].云南人民出版社,1982,1-265.
    338.钱逸,华中西南区早寒武世梅树村阶软舌螺及其它化石[J].古生物学报,1977,16(2): 255-275
    339.钱逸,中国小壳化石分类学与生物地层学[M].北京:科学出版社,1999,1-247.
    340.钱逸.陈孟莪,陈忆元.峡东地区下寒武统黄鳝洞组的古动物化石[J].古生物学报,1979,18(3):207-230.
    341.苏丽娜,李晓晨,缓步动物休眠现象研究进展[J].四川动物,2006,25(1):191-195.
    342.盛章祺,磷质叠层石的成因探讨[J].地质学报,1984,(3):214-221.
    343.王桂忠,吴荔生,李少菁,海洋浮游桡足类滞育及其生理生态学研究进展[J].厦门大学学报:自然科学版,2006,45(2):46-53.
    344.王素凤,卤虫休眠卵的若干生物学特性研究进展[J].中国海洋大学学报,2009,39(1):47-52.
    345.王曰伦,云南磷矿之成因及时代[J].地质评论,1941,6(1-2):73-94.
    346.王竹泉,何春荪,澄江东山磷矿地质说明书[J],1940.
    347.吴惠仙,薛俊增,南京丰年虫休眠卵的饰纹结构[J].四川动物,2009,28(1):77-78.
    348.吴祥和,新元古代瓮安生物群研究新进展[J].贵州地质,2002,19(1):1-5.
    349.吴荔生,王桂忠,李少菁,海洋浮游桡足类滞育的研究进展[J].生态学杂志,2003,22(4):65-69.
    350.唐烽,高林志,尹崇玉等.贵州瓮安陡山沱组球状化石元素地球化学浅析[J].地质评论,2011,57:175-184
    351.肖书海,安德鲁.诺尔,张录易,等,Wengania globosa在陕西勉县茶店陡山沱组磷块岩中的发现[J].微体古生物学报,1999,16(3):259-266.
    352.肖书海,安德鲁·诺尔,是胚胎还是藻类?—兼答薛耀松、周传明、唐天福先生[J].微体古生物学报,1999,16(3):313-323.
    353.邢裕盛,丁启秀,罗惠麟,等.中国震旦系-寒武系界线[M],北京:地质出版社,1984:260.
    354.杨暹和,何原相,邓守和.四川南江地区震旦系一寒武系界线及小壳化石群[J].中国地质科学院成都地质矿产研究所所刊,1983,4:91-105.
    355.尹崇玉,本格森,岳昭.中国南方新元古代可能后生动物成因的硅化和磷酸盐化球状微化石Tianzhushania [J].地球学报,2005,26:31-43.
    356.尹崇玉,高林志,邢裕盛.疑源类Tianzhushania在贵州瓮安震旦纪陡山沱组磷块岩中的发现[J].古生物学报,2001,40:479-504.
    357.尹崇玉,高林志,邢欲盛,贵州瓮安震旦纪陡山沱期磷酸盐化球状化石的新观察[J].地质学报,2001,75(2):145-152.
    358.尹崇玉,岳昭,高林志,磷酸盐化原肠胚化石在瓮安陡山沱组磷块岩中的发现[J].科学通报,2001,46(12):1036-1039.
    359.尹磊明,周传明,袁训来,湖北宜昌埃迪片拉系陡山沱组天柱山卵囊胞——Tianzhushania的新认识[J].古生物学报,2008,47(2):129-140.
    360.尹磊明,肖书海,袁训来,贵州瓮安陡山沱组磷块岩中针状结构新观察[J].科学通报,2001,46(21):1828-1832.
    361.殷宗军,朱茂炎,贵州埃迪片拉纪瓮安生物群化石含量统计分析[J].古生物学报,2008,47(4):477-487.
    362.殷宗军,朱茂炎,同步辐射X射线相衬显微CT在古生物学中的应用[J].物理,2009,38(7):504-410.
    363.岳昭,Olivooides属的微结构及其系统位置[J].中国地质科学院地质研究所所刊,1986,14:147-162.
    364.薛耀松,唐天福,俞从流,等,贵州瓮安—开阳地区陡山沱期含磷岩系的大型球形绿藻化石[J].古生物学报,1995,34(6):688-706.
    365.薛耀松,周传明,唐天福,“动物胚胎”—对瓮安地区陡山沱组微体化石的错误解释[J].微体古生物学报,1999,16(1):1-4.
    366.闫冬春,董双林,黄倢,轮虫体眠卵研究进展[J].海洋湖沼通报,2005(3):95-102.
    367.袁训来,新元古代陡山沱期瓮安生物群研究概况[J].古生物学报,1999,16(3):281-286.
    368.袁训来,王启飞,张昀,贵州瓮安磷矿前寒武纪陡山沱期的藻类化石群[J].微体古生物学报,1993,10(4):409-420.
    369.袁训来,王丹,肖书海,新元古代陡山沱期的动物[J].古生物学报,2009,48(3):375-389.
    370.袁训来,肖书海,尹磊明等,陡山沱期生物群——早期动物辐射前夕的生命[M].合肥:中国科技大学出版社,2002:1-171.
    371.张东升,宋良国,姜静颖,轮虫休眠卵用小同浓度盐溶液处理后卵壳的扫描电镜观察[J].大连水产学院学报,2001,6(2):106-111.
    372.周利,相建海,关于轮虫体眠卵孵化的若十术语的探讨[J].海洋科学,2001,25(7): 47-51.
    373.张杰,张覃,陈代良,贵州织金新华含稀土磷矿床稀土元素地球化学及生物成矿基本特征[J].矿物岩石,2003,23(3):35-38.
    374.张喜光,陈雷,Wituchi M. K., Orsten型特异保存化石研究概述[J].古生物学报,2009,48(3):428-436.
    375.张兴亮,舒德干,试论动物非矿化组织的保存[J].沉积学报,2001,19(1):13-19.
    376.张录易,华洪,震旦纪期管壳化石类群及其意义[J].古生物学报,2000,39(3):326-333.
    377.朱茂炎.云南澄江化石群埋藏学[D].南京:中国科学院南京地质古生物研究所,1992.
    378.忠华,我国南方的古老动物群及有关问题的初步探讨[J].地质科学,1977,21118-129
    379.张长年,罗铸金,郭秀云,有机地球化学概论[M].北京地质出版社,1993,1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700