用户名: 密码: 验证码:
PLLA/PLGA/HA复合材料的制备与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     本研究为一种改进的以PLLA为基体的复合材料,通过对其物相组成、力学性能、降解性能、显微结构及其生物学行为进行较系统深入的研究,以探求是否符合生物工程材料的要求,而可运用于临床。
     方法
     以新制备的L-丙交酯和乙交酯(5:1的摩尔比)作单体,在140℃和真空条件下采用开环聚合法制备共聚物PLGA。以HA颗粒与PLLA和PLGA为原料制备复合材料,并采用模压成型的方法制备条形样品。分别测试含不同质量比的HA试样三点抗弯强度及弹性模量、剪切强度、抗扭转强度。
     为了解PLLA、PLGA和复合材料对降解的影响,三者的试样在PBS液中进行降解产物自催化24周,分期检测降解液中的酸度pH值、失重率、吸水率、力学性能变化、分子量分布及变化,并对复合材料不同时间点表面和断面的形貌做扫描电镜检查,以探求降解机制。
     成骨样细胞株MG-63以10~5个/ml与复合材料共同培养,倒置显微镜观察细胞形态变化,电镜观察细胞在复合材料表面黏附情况。连续培养后行Von Kossa染色、碱性磷酸酶染色及碱性磷酸酶含量测定。将复合材料置于兔的皮下肌肉组织中,分别在1周、2周、4周、8周、16周和32周内取材行材料-组织界面的HE染色,按国家医疗器械生物学评价标准分别对复合材料进行急性毒性试验、亚急性毒性试验、热原试验、溶血试验、抑菌试验等检测。
     27只兔,分3组,每组实验动物各9只,在术后12、24、36周分别处死实验动物,取出含植入标本的腰椎行病理切片观察复合材料成骨情况和降解情况;经X线透射检测,自体髂骨植骨、复合材料植入、骨水泥植入三组术后4周、16周、24周,36周时的正侧位片。对植入复合材料中的3只行术后4、12、24、36周时MRI观察。扫描电镜结合能谱观察体内降解12、24、36周后断面和骨-材料界面的形貌变化。所有动物观察椎间植入后的融合情况。
     结果
     复合材料的抗弯强度随着HA添加量的增加而增加,而抗弯模量随着HA添加量的增加而降低。当HA含量为15%时,复合材料的抗弯强度和抗弯模量分别达到220MPa和5.35GPa以上;复合材料中HA颗粒和聚合物基体之间形成良好的界面,后随着HA添加量的减少,复合材料发生了从脆性断裂向韧性断裂转化的过程。PLLA、PLGA和复合材料在PBS溶液中降解时,其吸水率和失重率都逐渐增加,而pH值则逐渐的降低,但复合材料的变化慢于前二者。PLLA、PLGA和复合材料的力学性能随降解时间的增加都呈现出下降的趋势,但复合材料的力学性能衰减速率明显低于前二者;在降解初期PLLA、PLGA和复合材料的分子量下降速率较快,随着降解地进行,下降地速率逐渐的变慢。PLLA在PBS溶液中的降解属于本体水解,由于基体内部水解所产生的低聚物难以通过扩散排出,引起内部链端羧基浓度增加,产生“自催化水解”,从而导致材料内部的降解速率比表面快,材料中心产生空洞,表层形成外壳,即“双态降解”。复合材料中由于HA的碱性中和了PLLA降解中的酸性产物,加快了内部降解产物的扩散,减缓了酸对PLLA的催化降解作用。
     成骨细胞样细胞贴壁生长,成多角形、星形,形态正常贴附、铺展,与复合材料表面紧密连接,电镜下见细胞有伪足伸出,成为细胞在材料表面适宜生长提供了一个有力的证据。细胞生长良好、增殖性能佳,细胞毒性小。骨矿化培养7天胞体出现云雾状钙化灶,培养4周Von kossa染色形成大的黑色结节;碱性磷酸酶钙-钴法染色示胞浆内出现呈深蓝色细颗粒样物质,细胞呈梭形、多角形、椭圆形等,形状各异,大小不等,细胞之间连接成网状,定量检测示第12天达到最高峰14.7U/L,两者结合均说明复合材料可引导部分细胞表达成骨活性。
     将三者的复合材料、自体髂骨、骨水泥三者分别植入3组兔体内,从组织学改变可以看出骨组织随着时间的延长,由分散的块状逐步变为团聚的现象,于术后36周时新生的骨岛间彼此连接,长出新骨。复合材料由最初的大片状逐渐形成小块状,24周时形成“瓦片状”和“鱼鳞状”排列,36周时材料降解彻底的“空泡状”痕迹遍布整个视野,难以与骨质绝然分开,表示降解良好。X线检查显示术后36周时植入材料组动物的侧位片可基本达到与自体髂骨等同良好的融合效果,未见植入的材料沉陷、松动、脱出,移位等,椎间隙高度与术前相比,基本保持不变。磁共振显示L5、L6椎间隙处的T_2等信号影,由4周时的大小约为30mm~2逐步缩小到约为6mm~2,体现了显影的无机材料逐步变少的这一个动态过程。扫描电镜观察骨与材料间的“阶梯状”改变随着时间的延长逐渐变得不明显,甚至消失;高倍镜下,骨与复合材料的界面逐渐结合后难以区分,更进一步说明了降解性能良好。从复合材料、自体髂骨、骨水泥三组实验动物术后36周时,与椎骨结合的扫描电镜观察结果显示可以看出:自体髂骨的结合情况最好,复合材料次之,而骨水泥组基本不结合。
     细胞毒性试验显示成骨细胞在复合材料浸提液中生长良好,标准在0~1级之间,增殖良好。全身急性、亚急性、慢性毒性试验、溶血试验、热原试验、抑菌试验均显示复合材料无明显毒性反应。皮内试验炎症反应轻,肌肉植入试验随着时间的变化,炎症程度先增强后减弱,然后在Ⅰ级趋于稳定;而首先无囊壁形成,然后囊壁逐渐增厚至Ⅳ级,最后维持在Ⅰ级趋于稳定,显示了良好的生物相容性。
     结论
     PLLA/PLGA/HA复合材料由于良好的力学性能和生物降解性能,细胞毒性小,在随时间降解的同时能促进成骨,是一种可供安全、有效使用的内置材料。
objective
     To explore the advanced composite material whose matrix ingredient is polylactic acid,which is systematically and deeply investigated by its phase component,mechanical property,degradation property,microstructure, biological behavior,in order to find out whether it can be applicated to Clinical work or not,if in accordance with the need of biological engineering materials.
     method
     The new monomer is made up of the L-lactide and L-glycolide with the mol ratio(5:1),which is adopted ring opening polymerization process to preparate multipolymer PLGA in vacuum and in 140℃.The composite materialis consisted raw material of PLLA,PLGA and HA kernel, adopted compression moulding forming method with column sample. Test different mass ratio HA type with flexure strength,flexure modulus, shear(ing) strength and anti-torsional strength separately.
     To understand the influence of degradation with PLLA,PLGA and composite material,and autocatalysis 24 weeks in simulated-body fluid. The degradated-liquids tests are carried out in different periods with PH, rate of weight loss,water absorption,the changeable of mechanical property, the changeable or distribution of molecular weight,and concentration of calciumion.Further the surface and section appearance in SEM were detected in different time in order to explore the machine processed of degradation.
     The Osteoplast MG-63 with contents of 10~5/ml and composite material are co-cultivation,the forms of cells are detected by inverted microscope and the adhesive are detected by electron microscope.The cells are stained by Von Kossa,alkaline phosphatase,and the determination of alkaline also measured.The composite materials are put into the musculature of the rabbits,which are taken out and stained in the stuff-tissue inter face at 1w、2w、4w、8w、16w and 32w.Biological safty tests of the composite materials,such as acute toxicity,subacute toxicity, pyrogen,hemolysis,and antibacterial,which were performed according to the biomedical safty assessment standards.
     Twenty-seven rabbits are divided into three groups which are nine ones,it turns out the osteogenesis fusion and degradation of composite materials procedures by histological observation at 4w、12w、24w and 36w.
     The iliac bone group,the composite material group,bone cement group were taken anterioposterior and lateral film at 4w、12w、24w and 36w.The three rabbits of composite material group were implement by MRI at 4w、12w、24w and 36w.The section and material-bone surface appearance in SEM and energy spectrum were detected at 12w、24w and 36w.The intervertebral bone fusion were observed by all the rabbits.
     Result
     With the increasing of the HA,the flexure strength is raising,while the flexure modulus is reducing.When the HA is 15%,the flexure strength of the composite materials are reaching 220MPa and 5.35GPa respectively.With degradation of the PLLA,PLGA and composite material in PBS,the rate of weight loss and water absorption are increasing,and the pH is decreasing.The changeable of the composite material and mechanical property are slower than the former two.After twelve week's degradation The mechanical property of the PLLA can offer Define spongy bone fixation,and the composite material still can supplied cortex bone fixation.The changeable of molecular weight are reducing fast at the beginning,and slowly in the end.The degradation kinetics of the composite material were indicative of an autocatalysis process simple bulk hydrolysis,and presented the modal of "biomodal degradation".
     The Osteoplast MG-63 growth adherence in the composite materials with,polygon Shape,star pattern,outstretch pseudopod in electron microscope. Seven days after cultivation,there was nebulous calcific focus in the corpus neuroni.Four weeks later,big black nodus was occurred by Von Kossa staining.The corpus neuroni were blue with kernels by alkaline phosphatase staining,there were polygon Shape,fusiformis,oval pattern.The alkaline phosphatase was 14.7U/L in the twelve days after cultivation.
     The composite material,iliac bone and bone cement were put into three group rabbits.Thirty-six weeks later,the scattered-lump bone were turned to union with the new bone formation.At the same time,the big mass of composite material were degradation thoroughly,like "vacuolated-shape" There was no signs of subsidence,prolapsus,loosen, dislocation and no loss of the intervertebral height.The fusion is satisfying in the 36 weeks X-ray after operation.The area of middle-signal image in T2 are from 30mm~2 in the four weeks postoperatively to 6mm~2 in the Thirty-six weeks postoperatively.The fusion of which is good in the composite material group,is fair in the iliac bone group,and is poor in the bone cement group by SEM in thirty-six weeks postoperatively.
     No toxicity of the composite material,such as acute toxicity、subacute toxicity、pyrogen、hemolysis、antibacterial were detected by the toxicology studies.
     Conclusion
     The composite material of which is made up of PLLA,PLGA and HA is a safety,effective internal fixation,because it has a good mechanical property,degradation property and no toxicity.Furthermore,it can promote osteogenesis in vivo.
引文
[1] Steveson S,Emery SE,Goldberg VM.Factors affecting bone graft incorpo ration[J] .Clin Orthop, 1996,3(24):66-74.
    [2] Damier CJ, Parsons JR. Bone graft and bone graft substitutes: A review of current technology and application[J].J Appi Biomater,1991,2(18): 187-208.
    [3] Yourger M GProblems of autograft for boned effects[J].Clin Orthop and Relat Res,1996,20(8):98-102.
    [4] Chapman TB.Statistics on complications of bone graft[J].Arch Orthop Trauma Surg,1999,94:135-139.
    [5] Perry CR.Bone repair techniques,bone graft and bone graft substitu- tes[J].Clin Orthop, 1999,360:71 -86.
    [6] Ripamonti U.Bone formation in non-human primates[J].Clin Orthop, 1997,269:284-294.
    [7] Cunningham N, Ma S, Reddi A H. Biologic principles of bone induction: application to bone grafts.In:Habal MB,ed.Bone Graft&Bone Substitutes. [J] Philadel phia: W.B.Sauders, 1998,93-98.
    [8]Wakitani S,Goto T,Pineda SJ,et al.Mesenchymal cell-based repair of large.full-thickness defects of articular cartilage[J].Bone Jiont Surg Am, 1994,76(4):579-592.
    [9]Laitinen O, Pihlajamaki H, Sukura A et al.Transmission electron microscopic visualization of the degradation and phagocytosis of a poly-L-lactide screw in cancel ous bone: a long-term experimental study[J]. J Biomed Mater Res, 2002; 61(1): 33- 39.
    [10]Manninen MJ,Pohjonen T.Intramedullary nailing of the cortical bone osteotomies in rabbits with self-reinforced poly-L-Lactide rods manufactured by the fibrillation method[J]. Biomaterials,1993; 14(4):305-312
    [11]Cicchinelli LD, Gonzalez SJM, Aycart TJ.Current concepts of absorbabl fixation in first ray surgery[J].Clin Podiatr Med Surg,1996,13(3):533-547.
    [12]Tuompo P,Arvela V,Partio EK,et al.Osteochondritis dissecans of the knee fixed with biodegradable self-reiforced polyglycolide and polylactide rods on 24patients[J].Int Orthop,1997,21(6):355-360.
    [13]Kenley R,Marden L.Osseous regeneration in the rat calvarium using novel delivery systems for recombinant human bone morphogenetic protein-2(rhBMP-2)[J].J Biomed Mater Res,1994,28(10):1139-1147.
    [14]周强,石国华,杨柳等.复合多孔生物材料在股骨头坏死模型中诱导成骨的观察[J].中华外科杂志,2002,40(6):458-461.
    [15]刘建国,徐执扬,齐欣等.三维多孔生物降解活性支架材料在骺软骨工程中的应用[J].国外医学·骨科学分册,2001,22(1):45-47.
    [16]Saito N,Okada T,Horiuchi H,et al.Local bone formation by injection of recombinant human bone morphogenetic protein-2 contained in polymer carriers[J].Bone,2003,32(4):381-386.
    [17]Nelson CL,Hickmon SG,Sknner RA.Treatment of experimental osteomyelitis by surgical debridement and the implantation of bioerodible.Polyanhydride gentamicin beadd[J].J Orthop Res,1997,15(2):249-255.
    [18]Jarcho M.Retrospective analysis of hydroxyapatite development for oral implant applications[J].Dent Clin North Am,1992,36(1):19-26.
    [19]Verheyen CC,de Wijn JR,van Blitterswijk CA,et al.Hydroxylapatite/poly (L-lactide) composites:an animal study on push-out strengths and interface histology [J].J Biomed Mater Res,1993,27(4):433-444.
    [20]Shikinami Y,Okuno M.Bioresorbable devices made of forged composites of hydroxyapatite(HA) particles and poly-L-lactide(PLLA):Part Ⅰ Basic characteristics [J].Biomaterials,1999,20(9):859-877.
    [21]Furukawa T,Matsusue Y,Yasunaga T,et al.Biodegradation behavior of ultra high-strength hydroxyapatite/poly(L-lactide) composite rods for in ternal fixation of bone fractures[J].Biomaterials,2000,21(9):889-898.
    [22]Kemal Kesenci,Luca Fambri,Claudio Migliaresi,et al.Preparation and proper ties of poly(1-1actide)/hydroxyapatite eomposites[J].Journal of Biomaterials Science- Polymer Edition[J].2000,11(6):617-632.
    [23]李亚军,阮建明.聚乳酸/羟基磷灰石复合型多孔状可降解生物材料[J].中南工业大学学报,2002,33(3):261-265.
    [1]杜荣归,胡融刚,胡仁。若干无机缓蚀剂对混凝土中钢筋的阻锈作用[J],厦门大学学报(自然科学版),2001,49(4):908-913.
    [2]Vert M,Mauduit J,Li S.Biodegradation of PLA/GA polymers:increasing complexity [J].Biomaterials,1994,15(15):1209-1213.
    [3]Chang BS,Lee CK,Hong KS,et al.Osteoconduction at porous hydroxya patite with various pore configurations[J].Biomaterials,2000,21(12):1291 - 1298.
    [4]Kokubo T,Kim HM,Kawashita M.Novel bioactive materials with different mechanical properties[J].Biomaterials,2003,24(13):2161-2175.
    [5]Hutmacher DW.Scaffolds in tissue engineering bone and cartilage[J].Biomaterials,2002,21(24):2529-2543.
    [8]强小虎,王彦平.聚磷酸钙纤维/纳米羟基磷灰石/聚乳酸复合材料的降解行为[J].中国组织工程研究与临床康复,2008,12(27):5275-5278.
    [9]Guo XD,Zheng QX,Du JY,et al.Biogradation and mechanical Properties of hydroxyapatite/poly-DL-lactide composites for fracture fixation[J].J Wuhan Univer Technol,1998,13(5):9-15.
    [10]Ma PX,Zhang RY,Xiao GZ,et al.Engineering new bone tissue in vitro on highly porous poly(alpha- hydroxylacids)/hydroxyapatite composite scaffolds[J].J Biomed Mater Res,2001,54(2):284-293.
    [11]Bucholz RW.Nonallograft osteoconductive bone graft substitutes[J].Clin OrthopRelat Res,2002(395):44-52.[1]Cicchinelli LD,Gonzalez San Juan M,Aycart Testa J.Current concepts of absorbable fixation in first ray surgery[J].Clin Pediatr Med Surg,1996,13(3):533-547.
    [2]Brady JM,Cutright DE,Miller RA,et al.Resorption rate,route of elimi- nation and uhrastructure of the implant site ofpolylactic acid in the abdominal wall of the rat [J].J Biomed Mater Res,1993,7(2):155-166.
    [3]刘建伟,赵强,万昌秀,等.医用聚乳酸体内降解机理及应用研究进展[J].航天医学与医学工程,2001,14(4):308-312.
    [4]王立,金大地,朴仲贤等.生物可吸收高强度左旋聚丙交酯材料在体内的力学特征[J].医用生物力学,2001,16(3):135-139.
    [5]Doyle C,Tanner ET,Bonfield W.ln vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite[J].Biomaterials,1991,12(9):841-847.
    [6]Boeree NR,Dove J,Cooper JJ,et al.Development of a degradable composite for orthopaedic use:mechanical evaluation of a hydroxyapatite polyhydroxybutyrate composite material[J].Biomaterials,1993,14(10):793-796.
    [7]Liu JW,Zhao Q,Wan CX.Research progresses on degradation mechanism in vivo and medical applications of polylactic acid[J].Space Med Eng(Bei jing),2001,14(4):308-312.
    [8]Lucke A,Tessmar J,Schnell E,et al.Biodegradable poly(D,L-lactie acid) -poly (ethylene glycol)-monomethyl ether diblock copolymers:structures and surface properties relevant to their use as biomaterials[J].Bio materials,2000,21(23):2361-2370.
    [9]LU L,Zhu X,Valenzuela RG,et al.Biodegradable polymer scaffolds for cartilage tissue engineering[J].Clin Orthop Relat Res,2001,(Suppl 391):S251-S270.
    [10]Sittinger M,Reitzel D,Dauner M,et al.Resorbable polyesters in cartilage engineering:affinity and biocompatibility of polymer fiber structures to chondrocytes [J].J Biomed Mater Res,1996,33(2):57-63.
    [11]Agrawal CM,Athanasiou KA.Technique to control pH in vicinity of biodegrading PLG-PGA implants[J].Biomed Mater Res,1997,38(2):105-114.
    [12]Tuompo P,Arvela V,Partio EK,et al.Osteochondfitis dissecans of the knee fixed with biodegradable self-reinforced polyglycolide and polylactide rods in 24 patients[J].Int Orthop,1997,21(6):355-360.
    [13]Tormala P,Vasenius J,Vainionpaa S,et al.Ultra-high-strength absorbable selfreinfoced polyglycolide(SR-PGA)composite rods for interal fixation of bone fractures:in vitro and in vivostudy[J].J Biomed Mater Res,1991,25(1):1-22.
    [14]Amy CR.Grayson,GabrielaVoskerician,et al.Differential degradation ratesin vivo and in vitro of biocompatible poly(lactic acid)and poly(glycolic acid) homo-and co-polymers for a polymeric drug delivery microchip[J].journal of Biomaterials Science,polymer Edition,2004,10(15):1281-1304.
    [15]蔡晴,贝建中.乙交酯/丙交酯共聚物的体内外降解行为及生物相容性研究[J],功能高分子学报,2000,3(13):249-254.
    [16]Nuo WangXue Shen Wu,A.novel approach to stabilization of protein drugs in poly(lactic-co-glycolic acid) microspheres using agarose hydrogel[J]International Journal of Pharmaceutics,1998,1(166):14.
    [17]Youxin Li,Christian Volland,Thomas Kissel,Biodegradable brush-like graft polymers from poly(D,L-lactide) or poly(D,Llactide-coglycolide) and chargemodified,hydrophilic dextrans as backbone-in-vitro degradation and controlled release of hydrophilic macro-molecules[J],Polymer,1998,14(39):3087-3097.
    [18]罗丙红,金大萍等.低热-高压法制备PLGA多孔支架及其体外降解研究[J],功能高分子学报,2003,22(16):150-154.
    [19]刘霞,王常勇.聚乙交酯-丙交酯泡沫材料的生物学评价[J],西北农林科技大学学报(自然科学版),2005,5(33):237.
    [20]刘国辉,郭晓东等.聚(丙交酯-co-乙交酯)仿生基质材料的制备[J],中华实验外科杂志,2004,4(21):461-464.
    [21]Daniel Conn and Hani Younes,Compositional and structural analysis of PE LA biodegradable block copolymers degrading under in vitro conditions[J],Biomaterials,1999,7(10):466-474.
    [1]Li SP.Introduction of biomedical materials[M].Wu han:Wu han Univer- sity of Technology Press,2000,1-2.
    [2]Langer R,Vancanti JP.Tissue engineering[J].Science,1993,260:920.
    [3]姚康德,王向辉,侯信,等.组织工程相关生物材料[J].天津理工学院学报,2000,16(4):1.
    [4]Boyan BD,Hummert,Dean DD,et al.Role of material surfaces in re- gulating bone and cartilage cell response[J].Biomaterials,1996,17:137.
    [5]BloomL,Ingham KC,Hynes RO.Fibronectin regulates assembly of actin filaments and focal contacts in cultured cells via the heparinbiding site in repeat Ⅲ-13[J].Mol Biol Cell,1999,10(5):1521-1536.
    [6]Stanford CM,Solursh M,Keller JC.Significant role of adhesion properties of primary osteoblast-like cells in early adhesion events for chondroitin sulfate and dermatan sulfate surface molecules[J].J Biomed Mater Res,1999,47(3):345-352.
    [7]Kuo SM,Tsai SW,Huang L H,et al.Plasma-modified nylonmeshes as supports for cell culturing[J].Art Cell Blood Subs Immo Biotech,1997,25:551.
    [8]曾永前,郑启新,王运涛.两种高分子生物材料的细胞粘附性比较[J].华中科技大学学报(医学版),2003,32(4):435-438.
    [9]Shelton RM,Rasmussen AC,Davies JE.Protein adsorption at the interface between charged polymer substrata and migrating osteoblasts[J].Biomaterials,1998,9:24-29.
    [10]Ohgaki M,Kizuki T,Katsura M.Manipulation of selective cell adhesion and growth by surface charges of electrically polarized hydroxyl apatite[J].J Biomed Mat er Res,2001,57(3):366-373.
    [11]Anselme K,Bigerelle M,Noel B.Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughness[J].J Biomed Mater Res,2000,49:155-166.
    [12]Zigmond S H.Signal transduction and act in filament organization[J].Curr Opin Cell Biol,1998,8:66-73.
    [13]O'Neill CA,Galasko CS.Calcium mobilization is required for spreading in human osteoblasts[J].Calcif Tissue Int,2000,67(1):53-59.
    [14]Ruoslahiti E,Pierschbacher MD.New perspectives in cell adhesion:RGD and integrins[J].Science,1987;238:491.
    [15]Sand A,Rostami K,Weaver F,et al.New evidence and new hope concern ing endothelial seeding of vascular grafts[J].Am J Surg,1992,164:199.
    [16]Lam K,Esselbrugge H,Schakenraad J,et al.Biodegradable of porous versus non-porous poly(L-lactic acid) films[J].J Mater Sci Mater Med,1994,5(2):101.
    [17]Uganuma J,Alexander H.Biological response of intramedullary bone to poly-L-lactic acid[J].J Appl Biomater,1993,4(1):13.
    [18]孙卫斌,吴亚菲,丁一,等.纳米羟基磷灰石对人牙周膜细胞增殖活性的影响[J].东南大学学报,2004,34(6):802-805.
    [19]Alliot-Licht B,De Lange GL,Gregoire M.Effects of hydroxyapatite particles on periodontal ligament fibroblast-liked cell behavior[J].J Per iodontol,1997,68(2):158-165.
    [20]Zhang Rui-yun,Ma PX.Poly(α-hydroxylaeids/hydroxyapatite poprous com posites for bone-tissue engineering Ⅰ Preparation and morphology[J].J Biomed Mater Res,1999,44:455-465.
    [21]Laurencin CT,Attawia MA,Elgendy HE,et al.Tissue engineered bone regeneration using degradable polymers.The formulation of mineralized matrices[J].Bone,1996(1):93-99.
    [22]Zhang Rui-yun,Ma PX.Poly(α-hydroxylacids/hydroxyapatite poprous comp osites for bone tissue engineering.I.Preparation and morphology[J].J Biomed Mater Res,1999,44:455-465.
    [23]Laurencin CT,Attawia MA,Elgendy HE,et al.Tissue engineered bone regene ration using degradable polymers.The formulation of mineralized matrices[J].Bone,1996,19(Suppl 1):93-99.
    [24]Ignjatovic N,Savic V,Najman S,et al.A Study of Hap/PLLA composite as a substitute for bone powder,using FT-IR spectroscopy[J].Biomaterials,2001,22:571-575.
    [25]Li WJ,Laurencin CT,Caterson EJ,et al.Electrospun nanofibrous stru- cture:A novel scaffold for tissue engineering[J].J Biomed Mat Res,2002,60(4):613-621.
    [26]Bognitzki M,Frese T,Steinhar tM,et al.Prepartion of fibers with nano scaled morphologies:Electrospinning of polymer blends[J].Polym Eng Sci,2001,41(6):982-989.
    [27]Min-li Zhao,Gang Sui,Xu-liang Deng,et al.PLLA/HA electrospin hybrid nanofiber scaffolds:morphology,in vitro degradation and cell culture potential[J].Advanced Mater ials Research,2006,11(12):243-246.
    [28]王琳,邓旭亮,梅芳,等.电纺左旋聚乳酸和左旋聚乳酸羟基磷灰石纳米纤维细胞相容性的比较研究[J],口腔颌面修复学杂志,2007,8(2):83-85.
    [29]刘刚,胡蕴玉,廉凯,等.Ⅰ型胶原对骨髓基质干细胞粘附及分化的影响[J],骨与关节损伤杂志,2002,17(5):361-363.
    [30]赵莉,何晨光,高永娟,等.PLGA的不同组成对支架材料性能的影响研究[J],中国生物工程杂志,2008,28(5):22-28.
    [31]张利,查振刚,周长忍,等.骨髓间质干细胞与Ⅱ型胶原修饰的PLGA黏附性的观察[J],中国矫形外科杂志,2007,15(20):1566-1569.
    [32]许建中,范东伟,张文霞,等.经Ⅱ型胶原修饰后的PLGA对诱导后的骨髓基质干细胞粘附及分化的影响[J],郑州大学学报(医学版),2005,40(3):424-426.
    [33]胡稷杰,裴国献,全大萍,等.新型聚乳酸-羟基乙酸PLGA支架的细胞相容性研究[J],中华创伤骨科杂志,2005,7(4):358-362.
    [34]刘琳,孔祥东,蔡玉荣,等.纳米羟基磷灰石/丝素蛋白复合支架材料的降解特性及生物相容性研究[J],2008,66(16):1919-1923.
    [35]杨大志,郑启新,郭晓东,等.多肽修饰聚合物PLGA-[ASP-PEG]对骨髓基质细胞黏附特性的影响生物医学工程学杂志[J],2007,24(1):71-75.
    [36]易诚青,张明贵,曹云,等.骨髓基质细胞与交联明胶-聚羟基丁酸酯膜的生物相容性研究[J],中国组织化学与细胞化学杂志[J],2006,15(3):261-265.
    [37]李毅,陈君长,王坤正,等.新型骨组织工程支架材料β-磷酸三钙/聚磷酸钙纤维/聚左旋乳酸的细胞生物相容性[J],中国组织工程研究与临床康复,2007,11(18):3492-3495.
    [1]全大萍,廖凯荣,罗丙红,等.聚DL-乳酸-磷酸盐复合多孔支架材料的制备及 降解性能[J].生物医学工程学杂志,2004,21(2):174-177.
    [2]Blaker JJ,Gough JE,Maquet V,et al.In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering sca ffolds[J].J Biomed Mater Res A,2003,67(4):1401-1411.
    [3]Roether JA,Gough JE,Boccaccini AR,et al.Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineer ing[J].J Mater Sci Mater Med,2002,13(12):1207-1214.
    [4]Roether JA,Boccaccini AR,Hench LL,et al.Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications[J].Biomaterials,2002,23(18):3871-3878.
    [5]Hasegawa S,Neo M,Tamura J,et al.In vivo evaluation of a porous hydroxyapa tite poly-DL-lactide composite for bone tissue engineering[J].J Biomed Mater Res A,2007,81(4):930-938.
    [6]Hasegawa S,Tamura J,Neo M,et al.In vivo evaluation of a porous hydroxyapatite poly-DL-lactide composite for use as a bone substitute[J].J Biomed Mater Res A,2005,75(3):567-579.
    [7]赵建华,廖维宏,王远亮,等.消旋聚乳酸/羟基磷灰石/脱钙骨基质的制备及其体外降解特性研究[J].中国修复重建外科杂志,2003,17(1):61-64.
    [8]Dong Jian,Kojima H,Uemura T,et al.in vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplanted bone marrow-derived osteoblastic cells[J].J Biomed Mater Res,2001,57(2):208-216.
    [9]Vande Vord PJ,Nasser S,Wooley PH.Immunological responses to bone soluble proteins in recipients of bone allografts[J].J Orthop Res,2005,23(5):1059-1064.
    [10]Hofmann A,Konrad L,Hessmann MH,et al.The influence of bone allograft processing on osteoblast attachment and function[J].J Orthop Res,2005,23(4):846-854.
    [11]Mourikis A,Mankin HJ,Hornicek FJ,et al.Treatment of proximal humeral chondrosarcoma with resection and allograft[J].J Shoulder Elbow Surg,2007,16(5):519-524.
    [12]毕树雄,戴魁荣,汤亭亭.同种异体与异种骨移植免疫反应的比较研究[J].中华骨科杂志,2004,24(10):609-614.
    [13]刘玉增,李琪文,王继芳.冻干同种异体骨与冻干异种骨移植治疗骨缺损的比较实验研究[J].中国骨伤,2005,18(5):282-284.
    [14]Wenz B,Oesch B,Horst M.Analysis of the risk of transmitting bovine spongi form encephalopathy through bone grafts derived from bovine bone[J].Biomaterials,2001,22(12):1599-1606.
    [15]王志刚,刘建,胡蕴玉,等.重组合异种骨植骨的临床安全性研究[J].滨州医学院学报,2007,30(1):25-27.
    [16]Mansfield K,Teixeira CC,Adams CS,et al.Phosphate ions mediate Chondrocyte apoptosis through a plasma membrane transporter mechanism[J].Bone,2001,28(1):1-8.
    [17]Kitchel SH.A preliminary comparative study of radiographic results using mineralized collagen and bone marrow aspirate versus autologous bone in the same patients undergoing posterior lumbar interbody fusion with instrumented posterolateral lumbar fusion[J].Spine J,2006,6(4):405-412.
    [18]Kraiwattanapong C,Boden SD,Louis-Ugbo J,et al.Comparison of Healos /bone marrow to INFUSE(rhBMP-2/ACS) with a collagenceramic sponge bulking agent as graft substitutes for lumbar spine fusion[J].Spine,2005,30(9):1001-1007.
    [19]肖祥池,李健.骨髓基质干细胞与骨基质明胶复合构建组织工程化骨[J].广东医学,2005,26(10):1343-1345.
    [20]Salgado AJ,Coutinho OP,Reis RL.Bone tissue engineering:state of the art and future trends[J].Macromol Biosci,2004,4(8):743-765.
    [21]Srouji S,Livne E.Bone marrow stem cells and biological scarf old for bone repair in aging and disease[J].Mech Ageing Dev,2005,126(2):281-287.
    [22]Tsiridis E,Bhalla A,Ali Z,et al.Enhancing the osteoinductive properties of hydroxyapatite by the addition of human mesenchymal stem cells,and recombinant human osteogenic protein-1(BMP-7) in vitro[J].Injury,2006,37(Suppl 3):S25-S32.
    [23]Kai T,Shao-qing G,Geng-ting D.In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft sub stitute for lumbar intervertebral spinal fusion[J].Spine,2003,28(15):1653-1658.
    [24]Volpon JB,Xavier CA,Concalves RP.The use of decalcifi ed granulated homologous cortical bone matrix in the correction of diaphyseal bone defect,An experimental study in rabbits[J].Arch Orthop Trauma Surg,1992,99(3):199-207.
    [25]Kanayama M,Hashimoto T,Shigenobu K,et al.A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1(OP-1) versus local autograft with ceramic bone substitute:emphasis of surgical exploration and histologic assessment[J].Spine,2006,31(10):1067-1074.
    [26]Kessler S,Koepp HE,Mayr-Wohlfart U,et al.Bone morphogenetic protein accelerates osteointegration and remodelling of solvent dehydrated bone substitutes [J].Arch Orthop Trauma Surg,2004,124(6):410-414.
    [27]Vaccaro AR,Anderson DG,Toth CA.Recombinant human osteogenic protein-1(bone morphogenetic protein-7) as an osteoinductive agent in spinal fusion [J].Spine,2002,27(16 Suppl 1):S59-S65.
    [28]张少华,牛海涛,张斌,等.经椎弓根椎体内植入自体骨、同种异体骨、重组蛋白异种骨碎块等材料治疗胸腰段爆裂骨折56例[J].中国组织工程研究与临床康复,2008,12(19):3677-3680.
    [1]胡雪峰,廖耀祖,黄义德,等.O,O-双十二酰基壳聚糖/聚乳酸复合膜的特性和生物相容性的研究[J],组织工程与重建外科杂志,2006,2(6):304-307.
    [2]吕凯歌,张丽红,裴庆国,等.多孔支架材料PLGA/HA生物相容性的实验研究[J],口腔颌面外科杂志,2007,17(2):114-117.
    [3]张士杰,裴庆国,潘可风,等.PLGA/HA支架材料生物相容性的动物实验研究[J],口腔颌面外科杂志,2007,17(1):40-45.
    [4]扈梅,林兆全.4种生物材料大鼠体内生物相容性的对比实验研究[J],新疆医科大学学报,2006,29(5):436-439.
    [5]汪建,付晓燕,熊敏,等.羟基磷灰石/聚乳酸-三亚甲基碳酸酯软腭植入材料的生物相容性与安全性[J],中国组织工程研究与临床康复,2008,12(19):3609-3612.
    [1]Lunt James.Large-scale production,properties and commercial applica- tions of polylactic acid polymers[J].Polymer Degradation and Stability,1998,59(1-3):145-152.
    [2]Wang Kun.A new type of polymer biological material-polylactic acid[J].Journal of Shangdong Institute of Light Industry,2006,20(4):85-88.
    [3]Zhang Chao-wu,YANG Hai-bo.An Introduction to Biomaterials[M].Beijing:Chemical Industry Press,2006:68.
    [4]Wang Hua-lin,DAI Jing,ZHAI Lin-feng,et al.Preparation and degradation of poly lactic acid/bone dust hybrid material[J].Polymer Materials Science and Engi neering,2007,23(3):167-170.
    [5]Zhang Zhen-yu,SU Yi-hua,ZHANG Yan-hong,et al.Study on biodegredable materials of poly(DL-lactide)(Ⅱ)-Study on purity method of DL-lactide[J].Journal of Natural Science of Heilongj iang University,1998,15(1):110-112.
    [6]MATSUMURA S,MABUCHI K,TOSHIMA K.Novel ring-opening polymerization of lactide by lipase[J].Macromolecular Symposium,1998,130(5):285-304.
    [7]JACBSON,DEGEEP,FRITZ,et al.Polylactide(PLA)-A new way of production [J].Polymer Engineering Science,1999,39(7):1311-1319.
    [8]LI Ru-zhen,SU Tao.Quantitative determination of residual lactic acid and water in lactide[J].Chemistry World,2002(2):103-106.
    [9]ZHANG Ke,WANG Peng,LI Wen-ke,et al.Synthesize process of poly- lactic acid by microwave radiation[J].Polymer Materials Science and Engineering,2004,20(3):46-48.
    [10]ZHOU ZH,RUAN JM,ZOU JP,et al.Preparation of high viscosity average molecular mass poly-L-lactide[J].Journal of Central South Universtity of Technology,2006,13(6):608-612.
    [11]ZHANG HP,RUAN JM,ZHOU ZC,et al.Preparation of monomer of degra dable biomaterial poly(L-lactide)[J].Journal of Central South Universtity of Techno logy, 2005,12(3):246-250.
    [12] LUO Bing-hong,ZHOU Chang-ren,LIANG Min,et al.Synthesis and charac terization of functional PLA macromonomer [J]. Acta Scientiarum Naturalium Univer sitatis Sunyatseni,2005,44(3):67-70.
    [13]GANAPATHY HS,HWANG HSJEONG YT,et al.Ring-opening polymeri zation of L-lactide in supercritical carbon dioxide using PDMS based stabilizers [J]. European Polymer Journal,2007,43(1):119-126.
    [14] CHEN GP, USHIDA T, TATEISHI T. Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticu lates [J].Bio materials, 2001,22(18):2563-2567.
    [15] CHEN CC,CHUEH JY,TSENG H,et al.Preparation and characterization of biodegradable PLA polymeric blends[J].Biomaterialsm,2003,24(7):1167-1173.
    [16] SUN Rui,PAN Gao-feng,ZHANG Li-fang,et al. Preparation and in vitro characterization of novel hydrophilic poly(D,L-lactide)/poly (ethylene glycol)-poly (lactide) composite scaffolds [J].Journal Biomedicine Engineering,2007,24(1): 91-96.
    [17] TANAKA T,TSUCHYA TJAKAHASHI H,et al.Microfiltration membrane of polymer blend of poly(L-lactic acid)and poly(6-caprolactone)[J].Deslination, 2006, 193(1):367-374.
    [18]WU Yu-long.Introduction of US presidential green chemistry challenge awards [J].Modern Chemical Industry,2004,24(1):8-11.
    [19] AJIOKA M,ENOMOTO K.SUZUKI K, et al.PLEG direct synthesis of bio degradable material PLEG via melt polycondensation[J].Bull Chem Soc Jpn,1995,68 (8):2125-2135.
    [20]WANG Zhen-ping,ZHOU Ke-chao,ZHOU Tao.Kinetics of direct polycon densation preparing polylactic acid by using lactic acid[J].Materials Science and Engi neering of Powder Metallurgy,2007,12(2): 87-90.
    [21] ZHAO Yao-ming,ZHANG Jun,MAI Hang-zhen. Study on the direct poly- condensation of polylactic acid[J]. Synthetic Fibre in China, 2001,30(3): 3-5.
    [22] WANG Chao-yang,ZHAO Yao-ming,MAI Hang-zhen.Study on the direct synthesis of polylactic acid through melt polycondensation[J].Synthetic Fibre in Chi na,2002,31(2):11-13.
    [23]QIN Zhi-zhong,YANG Bai-chun,CAO Xue-qin.Study on direct synthetic method of polylactic acid[J].Synthetic Technology and Application,1999,15(1):12-14.
    [24]MOON SI,LEE CW,TANIGUCHI I,et al.Melt/solid polymerization of L-lactic acid:An alternative routes to poly(L-lactic acid) with high molecular weight[J].Polymer,2001,42(11):5059-5062.
    [25]YU Heng-xing,WANG Chao-sheng,HUANG Nan-xun,et al.Polymerization methods of poly(lactic acid)[J].New Chemical Materials,2002,30(3):16-18.
    [26]KAZUYA S,MASATOSHI M.Solid-state postpolymerization of L-lactide promoted by crystallization of product polymer:An effective method for reduction of remaining monomer[J].Macromolecules,1997,30(21):6438-6444.
    [27]LI YX,VOLLAND C,KISSEL T.Biodegradable brush-like graft polymers from poly(D,L-Lactide) or poly(D,L-Lactide-coglycolide)and chargemodified,hydro philic dextrans as backbone in-vitro degradation and control[J].Polymer,1998,39(14):3087-3097.
    [28]CHENG Rong,QIAN Xin.Modification of polylactid acid[J].Chemical Industry and Engineering Progress,2002,21(11):824-826.
    [29]Slager J,Domb AJ.Heteros tereocomplexes of D-poly(lactic acid) and the LHRH analogue leuprolide,Application in controlled release.[J].Eur J Pharm Bioph arm 2004,58(3):461-469.
    [30]Wang L,Venkatraman S,Kleiner L.Drug release from injectable depots:two different in vitro mechanisms[J].J Control Release 2004,99(2):207-216.
    [31]曹燕琳,尹静波,颜世峰.生物可降解聚乳酸的改性及其应用研究进展[J].高分子通报,2006,19(10):90-97.
    [32]宋存先,陈惠英,冯新德.ε-己内酯与D,L-丙交酯嵌段共聚物的合成及其作为生物降解性恒定释放药物的高分子载体的评价[J].高分子通讯,1993,27(3):177-183.
    [33]Breitenbach A,Pis tel KF,Kis sel T.Biodegradable comb polyesters.Part Ⅱ.Erosion and release properties of poly(vinyl alcohol)-g-poly(lactic-co-glycolic acid) [J].Polymer 2000,41:4781-4792.
    [34]WANG XT,VENKATRAMAN SS,BOEY FYC,et al.Controlled release of sirolimus from a multilayered PLGA stent matrix[J].Biomateriats,2006,27:5588-5595.
    [35]IZUMO N,ISHIHARA T,MIZUSHIMA Y.Corticosteroid-loading PLA-PLGA-nanospheres [J].Nippon Rinsho,2006,64(2):329.
    [36]PU Xi-min,KANG Yun-qing,CHEN Ai-zheng,et al.Prcparation of poly-L-lactide microspheres using supercritical CO2 anti-solvent precipitation[J].Journal of Functional Materials,2007,38(4):549-552.
    [37]费正奇,胡蕴玉,吴道澄等.rhBMP-2:聚乳酸与聚乙醇酸共聚物载药微球的制备及成骨活性研究生物医学工程与临床[J].2006,10(3):121-125.
    [38]Oldham J B,Lu L,Zhu X,et al.Biological activity of rhBMP-2 released from PLGA microspheres[J].J Biomech Eng,2000,122(3):289.
    [39]Eppley BL,Sadove AM,Havlik RJ.Resorbable plate fixation in pediatric craniofacial surgery[J].Plast Reconstr Surg,1997,100(1):1.
    [40]Kenley R,Marden L,Turek T,et al.Osseous regeneration in the rat cal- varium using novel delivery systems for recombinant human bone morpho- genetic protein-2[J].J Biomed Mater Res.1994,28(10):1139.
    [41]费正奇,胡蕴玉,张德志,等.携载rhBMP22微球的新型复合人工骨的释药及成骨活性研究[J],中华实验外科杂志,2006,23(2):151-155.
    [42]Langer R,Vacanti JP.Tissue engineering[J].Science,1993,260(5110):920-926.
    [43]石宗利,杜心康,王彦平.聚磷酸钙/左旋聚乳酸软骨组织工程支架复合材料的分析[J].中国临床康复,2004,8(17):3373-3375.
    [44]Schnabelrauch M,Vogt S,Larcher Y,et al.Biodegradable polymer Net-works based on oligolactide macromers:synthes is,properties and biome-dical applications[J].Biomol Eng 2002,19:295-298.
    [45]李文斌,娄帅,刘晓霞,等.聚乳酸类组织工程支架材料的设计[J].化工新型材料,2005,33(10):70-74.
    [46]刘源岗,罗丙红,廖问陶,等.功能性组织工程支架材料复合微粒的制备分 离方法比较[J].中国临床康复,2005,9(42):149-151.
    [47]孙梁,潘玙,胡蕴玉,等.聚左旋乳酸/磷酸三钙支架修复兔桡骨缺损成骨效果及降解速度的观察[J].中国临床康复,2005,9(6):236-238.
    [48]WANG XY,SHAN XZ,WEI M,et al.Bioactivity and biocompatibility of hydroxyapatite/DL-polylactic acid composite:In-vitro implantation[J].Journal of Cli nical Rehabilitative Tissue Engineering Research,2007,35(11):7094-7097.
    [49]XU Guo-fu,MOU Shen-zhou,ZHOU Ling-ping,et al.Biomimetic strengthen ing PLA scaffold materials for bone tissue engineering[J].Journal of Hunan Univer sity:Natural Sciences,2006,33(2):86-89.
    [50]Kofron MD,Li X,Laurencin CT.Protein-and gene-based tissue engineering in bone repair[J].Curr Opin Biotechnol,2004,15(5):399-405.
    [51]肖越勇,张金山,崔福斋,等.生物可降解性血管内支架的制备及其性能研究[J].中华放射学杂志,2003,37(11):1036-1042.
    [52]周栋,汪钢,赵东锷,等.胶原膜、聚乙醇酸/聚乳酸共聚物在组织工程心脏瓣膜支架材料中的应用[J].中国临床康复,2002,6(12):1751-1752.
    [53]刘竞龙,余斌,高成杰,等.骨组织工程材料修复骨缺损:大鼠成骨细胞与聚乳酸和聚乙醇酸共聚合物支架联合培养观察[J].中国临床康复,2002,6(16):2371.
    [54]Lu XL,Sun ZJ,Cai W,et al.Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone)biodegradable polymers[J].J Mater Sci Mater Med,2008,19(1):395-399.
    [55]Ohtsuki C,Kamitakahara M,Miyazaki T.Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration[J].J R Soc Interface,2009,7:20.
    [56]Devin JE,Attawia MA,Laurencin CT.Three-dimensional degradable por ous polymer-ceramic matrices for use in bone repair.[J]J Biomater Sci Polym ED,1996,7(8):661-669.
    [57]Ignjatovi(?) N,Tomi(?) S,Daki(?) M,et al.Synthesis and properties of hydro xyapatite/poly-L-lactide composite biomaterials[J].Biomaterials,1999,20(9):809-816.
    [58]Laurencin CT,Attawia MA,Elgendy HE,et al.Tissue engineered bone- regen eration using degradable polymers:the formation of mineralized matrices[J].Bone, 1996,19(suppl 1):93S-99S.
    [59]赵峰,尹玉姬,姚康德,等.壳聚糖-明胶网络/羟基磷灰石复合材料支架的研究-成骨细胞培养[J].中国修复重建外科杂志,2002,16(2):130-133.
    [60]ELLMAN PI,REECE TB,MAXEY TS,et al.Evaluation of an absorbable cyanoacrylate adhesive as a suture line sealant[J].Journal of Surgical Research,2005,125(2):161-167.
    [61]YUAN Li-hua,HAN Jian,XU Guo-ping,et al.Processing technics and mecha nical behaviors of biodegradable PLA/jute fiber composites[J].Journal of Zhejiang Sci-Tech University,2007,24(1):28-31.
    [62]KASUGA T,OTA Y,NOGAMI M,et al.Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers[J].Biomateriats,2001,22(1):19-23.
    [63]Miki T,Masaka K,Imai Y,et al.Experience with freeze-dried PGLA/HA/rhBMP-2 as a bone graft substitute[J].J Craniomaxillofac Surg,2000,28(5):294-299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700