用户名: 密码: 验证码:
一种新的SiC外延材料质量评估方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然现在SiC外延层在缺陷密度和尺寸等方面都有较大改进,但生长速率低、缺陷密度高、产量低、成本高以及不能大批量生产等因素依然限制着SiC外延层材料和器件的发展。提高SiC外延材料生长速率,降低其缺陷密度和生产成本,都需依据其质量特性参数寻找相应的解决方法,从而有目的地对外延工艺进行改进、优化。
     光学无损表征是目前表征技术发展的新潮流。傅立叶变换红外反射谱(FTIR)不但费用低廉,而且具有无损和可在线测试的优点。由于在中红外区的13~10μm波段,SiC中的长波光学声子与红外光谐振产生剩余射线带,在该波段以外的区域,长波光学声子不与红外光谐振,因此在碳化硅中可传播较长的距离,因此根据红外响应介电函数和多层膜反射理论对红外镜面反射谱进行模拟和解析,可获得外延层与衬底系统的质量特性参数。
     本文重点研究了用近垂直入射的红外镜面反射谱对SiC外延材料的无损表征,并将其解析结果与其它的表征技术如X射线光电子能谱(XPS)(原位宽扫描和窄扫描模式)、傅立叶变换红外衰减全反射谱、拉曼散射谱(RSS)(背散射模式)、X射线衍射(XRD)(θ-2θ模式、薄膜反射模式和ω扫描模式)和横截面扫描电子显微镜(SEM)等的所有解析结果进行了比较,获得了以下结果:
     1)解析了SiC外延层表面的红外衰减全反射谱和XPS宽扫描谱,研究了拟合峰数目、峰型和背底对XPS窄扫描谱拟合结果的影响,确定的C1s、Si2p和O1s窄扫描谱的最优拟合参数为:位置、半高宽和峰面积不固定的10个高斯峰和Shirley背底;确定的SiC外延层表面化学态结构及其原子的芯电子束缚能分别为: Si(CH_2)_4(BE_(C1s)=282.50eV,BE_(Si2p)= 99.86eV),SiO(CH_2)_3(BE_(C1s)=283.18eV, BE_(Si2p)=100.41eV,BE_(O1s)=532.34eV),SiO_2(CH_2)_2/SiO_2(CH_3)_2(BE_(C1s)=284.99eV,BE_(Si2p)= 101.44eV,BE_(O1s)=532.95eV),SiO_3(CH_3)(BE_(C1s)=286.36eV,BE_(Si2p)=102.43eV),BE_(O1s)= 533.55eV),Si-Si(BE_(Si2p)=99.23eV),H_2O(BE_(O1s)=529.76eV),缔合OH(BE_(O1s)=530.96 eV),Si-OH(BE_(O1s)= 531.70eV),填隙O(BE_(O1s)= 533.96eV),O_2(BE_(O1s)= 541.50eV);
     2)根据红外响应介电函数、能量损失函数和红外光与SiC外延层-衬度系统作用等对SiC外延层-衬底系统的测试红外镜面反射谱进行解析,得到的SiC外延层的ωT O和ωLO频率分别为796.4cm~(-1)和963.5cm~(-1),组分为SiC和Si-OH键,表面法线与光轴(c轴)夹角为90°,晶轴与表面法线垂直,高频介电常数为6.56;
     3)构建了单面抛光SiC衬底的半无限体结构模型和半无限衬底上单层膜结构模型,根据菲涅耳公式和多层膜转移矩阵理论计算了模型系统的反射率,研究了其各个参数对系统红外镜面反射谱的影响,并用模型系统对衬底的测试红外镜面反射谱谱进行了模拟,结果表明半无限体结构模型不适合描述该SiC衬底结构,半无限衬底上单层膜结构模型非常适合描述其结构,衬底表面存在光学声子衰减常数远大于体材料光学声子衰减常数,等离子体频率大于体材料等离子体频率,等离子衰减常数小于体材料衰减常数的薄的非晶层。
     4)除了构建外延层-衬底系统的半无限衬底上单层膜结构模型外,本文还构建了外延层-衬底系统的半无限衬底上双层膜和半无限衬底上三层膜结构模型,用红外响应介电函数和多层膜转移矩阵理论分别计算了其反射率,研究了其各参数对模型系统红外镜面反射谱的影响,并用模型系统分别对三个测试的谱形差异较大的外延层-衬底系统的红外镜面反射谱进行模拟,结果表明SiC外延层-衬底系统应用半无限衬底上三层膜结构模型来描述,外延层表层存在与前面衬底表层类似的薄非晶层,外延层与衬底间存在等离子体非零的界面层。
     5)对比了SiC外延层样品红外镜面反射谱的解析结果与RSS谱、XRD、XPS和横截面SEM图的解析结果发现,红外镜面反射谱的解析结果,不但包含了其它表征技术提供的凄凉参数信息,而且其结果吻合地非常好。加之,红外镜面反射谱具有测试费用低、无需样品制备、无损及可在线检测的优点,由此作者指出,傅立叶变换红外镜面反射谱是一种新的SiC外延材料质量评估技术。
The fact such as low growth rate, high defects density, low yield and high cost hinders the development of SiC epitaxy material and devices. To overcome all these problems, quality parameters of SiC epilayer must be obtained frequently, so as to improve the epitaxy process technologically.
     Being one of the popular optical nondestructive characterization techniques, Fourier transformation infrared spectroscopy(FTIR) pertains the features of low cost and nondestructive, and can be used in online testing occasions. In SiC, long-wavelength optical phonons resonate only with intermediate infrared photons, so according to the infrared response dielectric function and multi-layer reflection theory, the infrared specular reflection spectroscopy can be simulated and analyzed, from which the quality parameters of SiC epilayer and substrate system can be acquired.
     In this thesis, different techniques such as FTIR(attenuation total refection mode and specular reflection mode), x-ray photoelectronic spectroscopy(XPS)(in-situ wide scanning and narrow scanning modes),Raman scattering spectra(back scattering mode),x-ray diffraction pattern(θ-2θmode, thin film refection mode andωscanning mode), spectra and cross-section scanning electron microscopy(SEM) were used to characterize SiC epilayer, and the following results were obtained:
     (1) By the analysis of the attenuation total refection spectroscopies and the wide scanning XPS, the influences of peak number, peak types and backgrounds on the fitting results of narrow scanning XPS were studied in detail. Based on that, the optimum fitting parameters of narrow scanning spectroscopies of C1s, Si2p and O1s were determined to be ten Gaussian peaks with unpredictable locations, FWHM and peak areas and Shirley background. The chemical states and core-level electrons bonding energies on the surface of SiC epilayer were further determined to be: Si(CH_2)_4 (BE_(C1s)=282.50eV, BE_(Si2p)=99.86eV), SiO(CH_2)_3 (BE_(C1s)=283.18eV, BE_(Si2p) =100.41eV, BE_(O1s)=532.34eV), SiO_2(CH_2)_2/SiO_2(CH_3)_2 (BE_(C1s)=284.99eV, BE_(Si2p)=101.44eV, BE_(O1s)=532.95eV), SiO_3(CH_3) (BE_(C1s)=286.36eV, BE_(Si2p)=102.43eV, BE_(O1s)= 533.55eV), Si-Si(BE_(Si2p)=99.23eV), H_2O(BE_(O1s)=529.7eV), OH associate complex (BE_(O1s)=530.96eV),Si-OH(BE_(O1s)=531.70eV), interstitral O atom (BE_(O1s)= 533.96eV), O_2(BE_(O1s)= 541.50eV).
     (2) According to the infrared response dielectric function , energy loss function and interaction theory of the infrared photons with long optical phonons in SiC crystal, the frequencies of the transverse and longitudinal optical phonons in SiC epilayer were decided to be 796.4cm~(-1) and 963.5cm~(-1), respectively. And the composition of SiC epilayer was further determined to be SiC and Si-OH bonds, with surface normal line perpendicular to crystal axis. The high frequency relative permittivity of SiC epilayer was determined to be 6.56.
     (3) A semi-infinite bulk structural model and a semi-infinite bulk plus single layer structural model were built for the single side polished SiC substrate, based on which the influence of each parameter on the infrared specular reflection spectroscopy were investigated. And further the infrared specular reflection spectroscopy of the two model systems were simulated. Results indicated that the semi-infinite buck structural model was unsuitable for SiC substrate, while the semi-infinite bulk plus single layer structural model fitted the SiC substrate structrue very well, and there were a thin amorphous SiC layer on top of the substrate.
     (4) Besides the above mentioned two models, a semi-infinite bulk plus three-layer structural model was built for SiC epi-layer and substrate system, and by which the influences of the parameters on the infrared specular reflection spectroscopy of the system were investigated. The infrared specular reflection spectroscopy simulations based on the three models showed that, the SiC epilayer and substrate system ought to be described by the semi-infinite bulk plus three-layer structural model. There were a thin amorphous SiC layer on top of the epi-layer, and a interface layer with plasmons between the epilayer and substrate.
     (5) The interpretations of both the infrared specular reflection spectroscopy and other common used charaterization techniques showed that the infrared specular reflection spectroscopy could provide all the quality parameters obtainable by other techniques with equivalent precisions, while pertains features of low cost, nondestructive, without sample preparation and online testing at the same time.
引文
[1.1]郝跃,杨银堂. SiC材料和期间发展状况与趋势.电子评论. 1998, 1: pp.33-35
    [1.2]郝跃,彭军,杨银堂编著.碳化硅宽带隙半导体技术.科学出版社, 2000.
    [1.3] Diplomarbeit von Jan M. Knaup。Simulation of Device Relevant Interface Defects of the SiC/SiO2 system. Universit?t Paderborn,2004
    [1.4]张玉明,张义门,罗晋生. SiC、GaAs和Si的高温特性的比较,固体电子学研究与进展, 1997,17(3): pp305-307
    [1.5] B. J. Baliga. Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Letters.1989, 10(10): pp.455-458
    [1.6] Handbook of Chemistry and Physics , 56th edition, 1975-1976, CRC Press, : pp. 215-219
    [1.7] W. J. Choyke and G. Pensl. Physical properties of SiC. mRS bulletin. 1997, 22(3): pp. 25-29
    [1.8] C. H. Park, B. H. Cheong, K. H. Lee and K. J. Chang. Structural and electronic properties of cubic , 2H, 4H, and 6H-SiC. Physical Review B. 1994, 49(7) : pp.4485-4493
    [1.9] W. R. L. Lambercht, B. Segall, M. Methfessel, et,al. Calculated elastic constant and deformation potential of cubic SiC. Physical Review B. 1991, 44(8) : pp.3685-3694
    [1.10] K. Kamitani, M. Grimsditch, J. C . Nipko, et,al. The elastic constant of silicon carbide: a Brillouin-scattering study of 4H and 6H-SiC single srystal. J. Appl. Physi.. 1997, 82 : pp. 3152-3154
    [1.11] D, I. Florescu, Fred H. Pollak, G. R. Brandes, et, al. High spatial resolution thermal conductivity investigation of SiC wafers. Wide Bandgap Electronics, Proceedings of the 2001 MRS spring meeting, San Francisco, CA. April16-20, 2001, 680E, E2.4
    [1.12] St. Muller, R. Eckstein, J. Fricke, et, al. Experimental and theoretical analysis of the high temperature thermal conductivity of monocrystalline SiC. Mater. Sci. Forum. 1998, 264-268 : pp. 623-626
    [1.13] An- Ban Chen and P. Srichaikul. Shallow donor levels and the conduction band edge structure in polytype of SiC. Phys. Stat. Sol. (b0. 1997, 202 : pp. 81-106
    [1.14] H. Morkoc, S. Strite, G. B. Gao, et, al. Large-band-gap SiC,Ⅲ-Ⅴnitride, and Ⅱ-ⅣZeSe-based semiconductor device technologies. Journal of Applied Physics. 1994, 76(3) : pp. 1363-1398
    [1.15] Rong jun Wang. SiC epitaxial growth for power device applications. Rensselaer Polytechnic Institute, Troy, New York, 2002
    [1.16] R. P. Joshi. Monte Carlo calcalculation of the temperature- and field- dependent electron transport parameters for 4H-SiC. Journal of Applied Physics. 1995, 78(9) : pp.5518-5521
    [1.17] H.-E. Nilsson, U. Sannermo, and C. S. Petersson. Monte Carlo simulation ofelectron transport in 4H-SiC using a two-band model with multiple minima. Journal of Applied Physics. 1996, 80(6) : pp. 3365-3369
    [1.18] R. Mickevicius and J. H. Zhan. Monte Carlo study of electron transport in SiC. Journal of Applied Physics. 1998, 83(6) : pp. 3161-3167
    [1.19] H.-E. Nilsson, and M. Hjelm. Monte Carlo simulation of electron transport in 2H-SiC using a three vally analytical conduction band model. Journal of Applied Physics. 2002, 86(11) : pp. 6230-6233
    [1.20] M. Hjelm, H.-E. Nilsson, P. Kackell, et, al. A study of the anisotropic electron transport in 4H and 6H silicon carbide by Monte Carlo simulation. Phys. Scr. T. 1999, T79: pp. 42-45
    [1.21] H.-E. Nilsson, M. Hjelm.,C. Frojdh, et, al. Full band Monte Carlo simulation of electron transport in 6H-SiC. Journal of Applied Physics. 1999, 86(2) : pp. 965-973
    [1.22] T. Kinoshita, K. M. Itoh, J. Muto, et, al. Calculation of the anisotropy of th e Hall mobility in n-type 4H- and 6H-SiC. Material Science Forum. 1998, 264-268 : pp295-298
    [1.23] H. Iwata and K. M. Itoh. Theoretical calculation of the electron Hall mobility in n-type 4H- and 6H-SiC. Material Science Forum. 2000, 338-342 : pp729-732
    [1.24] H. Iwata , K. M. Itoh. And G. Pensl. Theory of the anisotropy of the electron Hall mobility in n-type 4H- and 6H-SiC. Journal of Applied Physics. 2000, 88(4) : pp. 1956-1961
    [1.25] M. Schack, G, Pensl, R. R. Devaty, et, al. Anisotropy of the electron Hall mobility in 4H- , 6H, and 15R silicon carbide. Applied Physics Letters. 1994, 65 (24): pp. 3120-3122
    [1.26] G. Rutsch, R. P. Devaty, W. J. Choyke, et, al. Hall scattering factor and electron mobility of 4H-SiC: measurement and numerical simulation. Material Science Forum. 2000, 338-342 : pp733-736
    [1.27] X.M. Wemg and H. L. Cui, High temperature hot electron transport in 6H and 3C-SiC. Phys. Stat. Sol. (b). 1997, 201: pp.161-166
    [1.28] I.A. Khan and J. A. Cooper,Jr.. Measurement of high-field electron transport in silicon carbide. IEEE Transsactions on Electron Devices, 2000, 47 (2): pp.269-273
    [1.29] S. Dhar and S.Ghost. Low field electron mobility in 6H-SiC. Journal of Applied Physics. 2000, 88(11) : pp. 6519-6525
    [1.30] B. K. Meyer, D. M. Hofmann, D. Volm, et, aL. Optically detected cyclotron resonance investigations on 4H and 6H-SiC: Band structure and transport properties. Physical Review B (Condensed mATTER). 2000, 61 (7) : 4844-4849
    [[1.31] H. S. Berrman, T.M. Heng, H. C. Nathenson, et,al. Carrier velocity measurement on silicon carbide . International conference on Silicon Carbide, Columbia, SC, USA, 1973, viii+1
    [1.32] W. V. Muench and E. Pettenpaul. Saturated electron drift velocity in 6H silicon carbide. Journal of Applied Physics. 2000, 88(11) : pp. 4823-4825
    [1.33] I. A. Khan and J. A. Cooper, Jr.. Improved measurements of high-field driftvelocity insilicon carbide. Material Science Forum. 2000, 338-342 : pp761-764
    [1.34] W. F. Knippenberg. Growth phenomena in silicon carbide. Phillips Res. Repts. 1963, 18: 161
    [1.35] R. Yakimova, M. Syvajarvi and M. Tuominen. Seeded sublimation growth of 6H and 4H-SiC crystals. Mater. Sci. Eng. B. 1999, 61-62: 54
    [1.36] M. Tairov and V. F. Tsvetkov. Investigation of growth processes of ingots of silicon carbide single crystals. J. Cryst. Growth. 1978, 43: 209
    [1.37]周继承,郑旭强,刘福. SiC薄膜材料与器件最新研究进展.材料导报. 2007, 21(3): 112
    [1.38]崔晓英. SiC半导体材料和工艺的发展状况.电子产品可靠性与环境试验. 2007, 25(4): 58
    [1.39]鲁励.引人注目的SiC材料、器件和市场.世界产品与技术. 2003, 12: 22
    [1.40] D. Lovig. Cree demonstrates 100-mm zero-micropipe silicon carbide substrates. Cree Press Room. Durham, N. C. May 13, 2007
    [1.41] P. G. Neudeck, W. Huang and M. Dudley. Breakdown degradation associated with elementary screw dislocations in 4H-SiC p+n junction rectifiers. Solid-State Electron. 1998, 42(12): 2157
    [1.42] C. H. Carter. Jr., V. F. Tsvetkov and R. C. Glass, et al. Progress in SiC: From material growth to commercial device development. Mater. Sci. Engineer. B: Solid-State Materials for Advanced Technology. 1999, B61-62: 1
    [1.43] H. Matsunami. Current SiC technology for power electronic devices beyond Si. Microelectron. Eng. 2006, 83: 2
    [1.44] K. Shibahara, N. Kuroda and S. Nishino, et al. Fabrication of p-n junction diodes using homoepitaxially grown 6H-SiC at low temperature by chemical vapor deposition. Jpn. J. Appl. Phys. 1987, 26(11): 1815
    [1.45] L. G. Matus, J. A. Powell and C. S. Salupo. High-voltage 6H-SiC p-n junction diodes. Appl. Phys. Lett. 1991, 59(14): 1770
    [1.46] P. G. Neudeck, D. J. Larkin and J. A. Powell, et al. 2000 V 6H-SiC p-n junction diodes grown by chemical vapor deposition. Appl. Phys. Lett. 1994, 64(11): 1386
    [1.47] O. Kordina, J. P. Bergman and A. Henry, et al. A 4.5 kV 6H silicon carbide rectifier. Appl. Phys. Lett. 1995, 67(11): 1561
    [1.48] A. Itoh, T. Kimoto and H. Matsunami. Excellent reverse blocking characteristics of high voltage 4H-SiC schottky rectifiers with Boron implanted edge termination. IEEE Electron Device Letters. 1996, 17(3): 139
    [1.49] T. Nakamura, T. Miyanagi and I. Kamata, et al. A 4.15 kV 9.07- m??cm2 4H-SiC Schottky-barrier diode using Mo contact annealed at high temperature. IEEE Electron Device Letters. 2005, 26(2): 99
    [1.50] A. P. Mihaila, F. Udrea and S. J. Radhid, et al. SiC junction-controlled transistors. Microelectron. Eng. 2006, 83: 176
    [1.51] K. V. Vassilevski, I. P. Nikitina and N. G. Wright, et al. Device processing and characterization of high temperature silicon carbide Schottky diodes. Microelectron. Eng. 2006, 83: 150
    [1.52] D. Peters, R. Schoerner and P. Friedrichs, et al. An 1800 V triple implanted vertical 6H-SiC MOSFET. IEEE Transactions on Electron Devices. 1999, 46(3): 542
    [1.53] S. H. Ryu, S. Krishnaswami and M. O’Loughlin, et al. 10-kV, 123- m??cm2 4H-SiC power DMOSFETs. IEEE Electron Device Letters. 2004, 25(8): 556
    [1.54] A. K. Agarwal, S. Krishnaswami and J. Richmond, et al. Evolution of the 1600 V, 20 A, SiC bipolar junction transistors. Proceedings of the 17th International Symposium on Power Semiconductor Devices & ICs. 2005. 271
    [1.55] M. Domeij, H. S. Lee and E. Danielsson, et al. Geometrical effects in high current gain 1100-V 4H-SiC BJTs. IEEE Electron Device Letters. 2005, 26(10): 743
    [1.56] K. V. Vassilevski, A. V. Zorenko and K. Zekentes, et al. 4H-SiC IMPATT diode fabrication and testing. Mater. Sci. Forum. 2002, 389-393: 1353
    [1.57] J. W. Palmour, S. T. Sheppard and R. P. Smith, et al. Wide bandgap semiconductor devices and MMICs for RF power applications. International Electron Devices Meeting. 2001. 17
    [1.58]尚也淳,张义门,张玉明. 6H-SiC反型层电子迁移率的Monte Carlo模拟.电子学报. 2001, 29(2): 13
    [1.59]王守国,张义门,张玉明. Characteristics of N+ implanted layer of 4H-SiC.半导体学报(英文). 2002, 23(12): 1249
    [1.60]杨林安,张义门,张玉明. SiC功率金属-半导体场效应管的缺陷效应模型. 物理学报. 2003, 12(2): 302
    [1.61]张玉明,张义门,罗晋升. SiC肖特基势垒二极管的研制.半导体学报. 1999, 20(11): 1040
    [1.62]张玉明,张义门. 6H-SiC MOS场效应晶体管的研制.固体电子学研究与进展. 2000, 20(1): 1
    [1.63] Zhang Y M, Zhang Y M and P. Alexandrov, et al. Fabrication of 4H-SiCmerged PN-Schottky diodes. Chinese Journal of Semiconductors. 2001, 22(3): 265
    [1.64] Gao J X, Zhang Y M and Zhang Y M. Fabrication of 4H-SiC buried-channel n MOSFETs. Chinese Journal of Semiconductors. 2004, 25(12): 1597
    [1.65]柏松,陈刚,张涛. Fabrication of SiC MESFETs for microwave power applications. Chinese Journal of Semiconductors. 2007, 28(1): 10
    [1.66] A. J. Steckl, C. Yuan, and J. P. Li. Growth of crystalline 3C-SiC on Si at reduced temperatures by chemical vapor deposition from silacyclobutane. Applied Physics. Letters, 1993, 63(24):pp.3347-3349
    [1.67] G. Yuan, A. J. Steckl, J. Chaudhurl, et,al. Reduced temperature growth of crystalline 3C-SiC films on 6H-SiC by chemical vapor deposition from silacyclobutane. Journal of Applied Physics, 1995, 78(2): pp. 1271-1273
    [1.68] Andrew J. Steckl and J. P. Li. Epitaxial growth ofβ-SiC on Si by RTCVD with C3H8 and SiH4. IEEE Transactions on Electron Devices, 1992, 39(1) : pp. 64-74
    [1.69] Thomas N. Blanton and Liang-Sun Hung. X-ray diffraction characterization of multilayer epitaxial thin films deposited on (0001) sapphire. The Rigaku Journal,1996, 13(1) :pp. 3-8
    [1.70] J.-H. Boo, M. C. Kim, S.-B. Lee, et, al. Growth of SiC thin films on graphite for oxidation-protective coating. Journal of Vacuum Science Technology, 2000, 18(4): pp.1712-1717
    [1.71] Jin-Hyo Boo, S. A. Ustin, W. Ho. Supersonic jet epitaxy of single crystalline cubic SiC thin films on Si substrates from t-Butyldimethylsilane. Thin Solid Films, 1998, 324: pp. 124-128
    [1.72] J.-H. Boo, K.-S. Yu, M. Lee and Y. Kim. Deposition of cubic SiC films on silicon using dimethylisopropylsilane. Applied, Physics, Letters, 1995, 66(25) : pp. 3486-3488
    [1.73] H.-G. Yoon, J.-H. Boo, W. L. Liu, et,al. In situ study of the formation of SiC thin films on Si (111) surfaces with 1,3-disilabutane: adsorption properties and initial deposition characteristics. Journal of Vacuum Science Technology, 2000, 18(4): pp.1464-1468
    [1.74] J.-H. Boo, K.-S. Yu, M. Lee and Y. Kim. Et, al. Growth of cubic SiC films using 1,3-Disilabutane. Chemical Materials,1995, 7 : pp. 694-698
    [1.75] J.-H. Boo, D.-C. Lim S.-B. Lee, et, al. Growth of cubic SiC thin films on Si(001) by high vacuum chemical vapor deposition using 1,3-disilabutane andan investigation of the effect of deposition pressure. Journal of Vacuum Science Technology, 2003, 21(4): pp.1870-1875
    [1.76] J.-H. Boo, S.-B. Lee, K.-W. Lee, et, al. Epitaxial growth of cubic SiC thin films on silicon using single molecular precursors by metalorganic chemical vapor deposition. Journal of Vacuum Science Technology, 2001, 19(4): pp.1887-1893
    [1.77] J.-H. Boo, S.-B. Lee, K.-S. Yu, et, al.. High vacuum chemical vapor deposition of cubic SiC thin films on Si(001) substrates using single source precursor. Surface and Coating Technology, 2000, 131 : pp. 147-152
    [1.78] Ebenezer Emmanuel Eshun. Study of Silicon Carbide (SiC) Polytype Heterojunctions. Department of Electrical Engineering, Howard University. 2001 :pp.59-93
    [1.79] Chienn Hung Wu. Growth and Characterization of silicon carbide for MEMS pressure sensors. Department of Materials Science and Engineering , Case Western Reserve University, 2001 : pp. 52-177
    [1.80] Sang-Kwon Lee. Processing and Characterization of Silicon Carbide (6H- and 4H-SiC) Contants for High Power and High Temperature Device Applications. 2002, KTH, Royal Institute of Technology, Department of Microelectronics and Information Technology, Device Technology Laboratory, 2002 : pp. 47-81
    [1.81] Jae Kyeong Jeong and Hyeong Joon Kim. Characterization of 4H-SiC Homoepitaxial Films on porous 4H-SiC from Bis(trimethylsilyl)methane Precursor. Journal of the Electrochemical Society, 2003, 150(2) : pp.G90-G95
    [1.82] Jae Kyeong Jeong, Cheol Seong Hwang, and Hyeong Joon Kim. Low Temperature 4H-SiC Epitaxial Growth on 4H-SiC (11-20) and (1-100)Faces by Organometallic Chemical Vapor Deposition. Journal of the Electrochemical Society, 2002, 149(9) : pp.G526-G531
    [1.83] Jae Kyeong Jeong, Myung Yoon Um, Hoon Joo Na, et, al. Homoepitaxial Growth of 4H-SiC on Porous Substrate using Bis(trimethylsilyl)methane Precursor. Materials Science Forum, 2002, 389-393 : pp. 267-270
    [1.84] Jae Kyeong Jeong, Jung-Hae Choi, Hyun Jin Kim, et, al.. Buffer-Layer-free growth of high -quality epitaxial GaN films on 4H-SiC substrate by metal-organic chemical vapor deposition. Journal of Crystal Growth, 2005,276 : pp. 407-414
    [1.85] K. Fujihira, T. Kimoto, and H. Matsunami. High-Purity and high quality 4H-SiC growth at high speed by chimney-type vertical hot-wall chemical vapor deposition. Applied Physics Letters, 2002, 80(9) : pp. 1586-1588
    [1.86] Kyle Sanson. Epitaxial Growth of Silicon carbide on on-axis silicon carbide substrates using methyltrichlorosilane and chemical vapor deposition. 2008, Department of Chemical Engineering College of Engineering, Kansas State University : pp.20-39
    [1.87] R. T. Holm, P. H. Klein, and P. E. R. Nordquist, Jr. Infrared reflectance evaluation of chemically vapor depositedβ-SiC films grown on Si substrates. Journal of Applied Physics, 1986, 60(4) : pp. 1479-1485
    [1.88] Hiroyuki Nakano, Kenji Taniguchi. Method of measuring free carrier concentration and /or thickness of a semiconductor and process of manufacturing semiconductor device and semoconductor wafer using such method. United States Patent, Patent Number: 6153444, Date of Patent : Nov. 28,2000
    [1.89] M. F. Macmillan, A. Henry, and E. Janzén. Thickness determination of low Doped SiC Epi-Films on Highly Doped SiC Substrates. Journal of Electronic Materials,1998,27(4) : pp.300-303
    [1.90] T. Werninghaus, M. Friedrich, V. Cimalls, et,al. Optical characterization of MBE grown cubic and hexagonal SiC films on Si(111). Diamond and Related Materials , 1998, 7 : pp. 1385-1389
    [1.91] W. Y. Chang, Z. C. Feng, S. J. Chua and J. Lin. Infrared reflectance study of chemical vapor deposition grown 3C-Silicon Carbide on silicon substrate. Optoelectronic Materials and DevicesⅡ,Yan-Kuin Su, Pallab Bhattacharya, Editors, Proceeding of SPIE,2000, 4078 : pp.203-210
    [1.92] N. S. Savkina, V. V. Ratnikov, A. Yu. Rogachev, et, al. Structure and properties of silicon carbide grown on porous substrate by vacuum sublimation epitaxy. Semiconductors, 2002, 36(7) :pp.758-762
    [1.93] Shingo Oishi, Yasuto Huikata, Hiroyuki Yaguchi, et,al. Simultaneous determination of carrier concentration, mobility and thickness of SiC Homoepilayers by Infrared Reflectance Spectroscopy. Japanese Journal of Applied Physics , 2006, 45(46): pp. L1226-L1229
    [1.94] J.Camassel, J. Pernot, H. Y. Wang, et,al. Modeling the infrared reflectance of n-/n+ layers on top of n+ SiC substrates for epitaxy control application. Phys. Stat. Sol. (a), 2003, 195(1) : pp. 38-43
    [1.95] Zhe Chuan Feng. Optical properties of cubic SiC grown on Si substrate by chemical vapor deposition. Microelectronic Engineering, 2006, 83 : pp. 165-169
    [2.1] D. J. Larkin. An overview of SiC epitaxial growth. MRS Bulletin, 1997,22(3):PP.36-41
    [2.2] A. Itoh and H. Matsunami. Single Crystal Growth of SiC and Electronic Devices. Crystal Reviews inSolid State and Materials Science, 1997<22(2): pp.111-197
    [2.3] V. Heine, C. Cheng, R. J. Needs. The preference of silicon carbide for growth in the metastable cubic form. J. Am. Ceram. Soc., 1991 74:pp,2630-2633
    [2.4] H. Matsunami and T. Kimoto. Step-controlled rpitaxial growth of SiC: high quality homoepitaxy. Material Science and Enigineering R20, 1997, 3: pp.125-166
    [2.5] T. Kimoto,Nakazawa, K. Hashimoto and H. Matsunami. Reduction of doping and trap concentration in 4H-SiC epitaxial layers grown by chemical vapor deposition. Applied Physics Letters, 2001, 79(17): pp. 2761-2763
    [2.6] V. Dmitriev and A. Cherenkov. Growth of SiC and SiC-AlN solid solutionby container-free liquid phase epitaxy, J. Cryst. Growth, 1993, 128:pp 343-348
    [2.7] H. Shimize, K. Naito and S. Ishio. AC plasma-assisted chemical vapor deposition of cubic silicon carbide on silicon substrate. Amorphous and Crystal Silicon CarbideⅣ. Proceedings of the 4th International Conference ,1992, 432:pp. 119-125
    [2.8] M. A. Capano, S. D. Walck, P. T. Murray, et,al. Plused laser deposition of silicon carbide at room temperature. Applied Physics Letters, 1994, 64(25): pp.3413-3415
    [2.9] S. Nishino, K.Matsumoto, Y. Chen and Y. Nishio. Epitaxial growth of 4H-SiC bu sublimation close space technique. Material Science and Engineering. 1999,B61-62:pp.121-124
    [2.10] H. Nakazawa, M. Suemitsu and S. Asami. Formation of high quality SiC on Si(100) at 900°C using monomethylsilane gas-source MBE. Material Science Forum , 2000, 338-342: pp. 269-272
    [2.11] S. Nakamura, T. Hatayama, T. Kimoto, et,al. Growth of SiC (0114) substrate by gas source molecular beam epitaxy. Material Science Forum , 2000, 338-342: pp. 201-204
    [2.12] S. Nakamura, T. Kimoto, and H. Matsunami. Fast growth and doping characteristtics ofα-SiC in horizontal cold -wall CVD. Materials Science Forum, 2002,389-393: pp.183-186
    [2.13] R. Rupp, P. Lanig, J. Volkl, D. Stephani. Silicon carbide CVD approaches industrial needs.Ⅲ-Nttride, SiC and Diamond Materials for Electronic Devices. Symposium p,1996, xvii+792: pp.253-263
    [2.14] O. Kordina, K. Irvine, J. Sumakeris, et,al. Growth of thick epitaxial 4H-SiC layers by chemical vapor deposition. Material Science Forum ,1998, 264-268:pp.107-110
    [2.15] T. Kimoto, S. Nakamura, K. Fujihira, et,al. Recent achievement and future challenges in SiC homoepitaxial growth. Material Science Forum ,2002, 389-393: pp. 165-170
    [2.16] A. Schoner , A. Konstantinov, S. Karisson, et, al. Highly uniform epitaxial SiC-layers growth in a hot wall CVD reactor with mechanical rotation. Material Science Forum ,2002, 389-393: pp. 187-190
    [2.17] Zhang J., Ellison A, Janzen E. Morphology control for growth of thick epitaxial 4H-SiC layers. Material Science Forum ,2000, 338-342: pp. 137-140
    [2.18] A. Ellison , J. Zhang, W. Magnusson, et,al. Fast SiC epitaxial growth in a chimney CVD reactor and HTCVD crystal growth developments. Material Science Forum ,2000, 338-342: pp. 131-136
    [2.19] K. Fujihira, T. Kimoto, and H. Matsunami. Fast epiyaxial growth of 4H-SiC by chimney-type hot-wall CVD. Material Science Forum ,2002, 389-393: pp. 175-178
    [2.20] Agarwal A., skowronski, M., Cooper J. A., et,al. HTCVD growth of semi-insulating 4H-SiC crystals with low defect density. Materials Research Society Symposium Proceedings , 2001, 640: pp. H1.2.1-11
    [2.20] M. Syvajarvi, R. Yakimova, H. Jacobsson, et,al. High growth rate epitaxy of thick 4H-SiC layers. Material Science Forum ,2000, 338-342: pp. 165-168
    [2.21] M. E. Okhuysen, M, S. Mazzola and Y. -H. Lo. Low temperrature growth of 3C-SiC ON silicon for advanced substrate development. Material Science Forum ,2000, 338-342: pp. 305-308
    [2.22] M. -A. Hasan, A. Faik, D. Purser and D. Lieu. Heterepitaxy of cubic-SiC (3C-SiC) on Si (001) using porous Si as a compliant seed crystal. Technical Diges of Int'l conf. On SiC and Related Material-ICSCRM2001,Tsukuba, Japan, 2001,pp. 492-493
    [2.23] Y. Ishida, K. Kushibe,T. Takahashi, et,al. 3C-SiC (100) homoepitaxial grpwth by chemical vapor deposition and Schotty barrier junction characteristics.Material Science Forum ,2002, 389-393:pp275-278
    [2.24] F. R. Chien, S. R. Nutt, J. M. Carulli, et,al Heteroepitaxial growth of beta-SiC films on TiC substrate: interface structure and defects. J. Mater, Res., 1994,9(8): pp. 2086-2095
    [2.25] C. Hallin, A.O. Konstantinov, O. Kordina, et,al. The mechanism of cubic SiC nucleation on off-axis substrates. Proc. 6th Int. Conf. On Silicon Carbide and Related Materials 1995,edited by S. Nakashima, H. Matsunami, S. Yoshida, et,al. (Institute of Physics, Conference Series No. 142, Bristol),1996: pp.85-88
    [2.26] J. A. Powell, D. J. Larkin, P. B. Abel, et,al. Effect of tilt angle on the morphology of SiC epitaxial films grown on vicinal (0001)SiC substrates. Silicon Carbide and Related Materials 1995, Proceedings of the sixth international conference p, 1995,xxv+1120:pp.77-80
    [2.27] V. F. Tsvetkov, S. T. Allen, H. S. Kong, et,al. Recent progress in SiC crystal growth . Proc. 6th Int. Conf. On Silicon Carbide and Related Materials 1995,edited by S. Nakashima, H. Matsunami, S. Yoshida, et,al. (Institute of Physics, Conference Series No. 142, Bristol),1995: pp.17-22
    [2.28] H. Matsunami. Silicon carbide technology in new era. Material Science Forum ,2002, 389-393: pp. 3-8
    [2.29] T. Kimoto, T. Yamamoto, Z. Y. Chen,et,al. 4H-SiC(11-20) epitaxialgrowth .Material Science Forum ,2000, 338-342: pp. 189-192
    [2.30] H. Tano, T. Hirao, T. Kimoto, et,al. Anisotropy of inversion channel mobility in 4H-and 6H-SiC MOSFETs on (11-20)face. Science Forum ,2000, 338-342: pp. 1105-1108
    [2.31] K. Nakayama, Y. Miyanagi,H. Shiomi, et,al. The development of 4H-SiC(03-38) wafers.Material Science Forum ,2002, 389-393: pp. 123-127
    [2.32] T. Hirao, H. Yano, T.kimoto, et,al. 4H-SiC MOSFETs on (03-38) face.Material Science Forum ,2002, 389-393: pp. 1065-1068
    [2.33] S. Nishino, J. A. Powell and H. A. Will。Production of large-area single -crystal wafers of cubic SiC for semiconductor devices. Appl. Phys. Lett., 1983, 42(5) :pp. 460-462
    [2.34] Y. Gao AND J. H. Edgar. Seletive epitaxial growth of SiC : Thermodynamic analysis of the Si-C-Cl-H and Si-C-Cl-H-O system. J. Electrchem.Soc.. 1997, 144(5):pp1875-1880
    [2.35] K. Yagi and H. Nagasawa. 3C-SiC growth by alternate supply of SiH2Cl2 and C2H2. Journal of crystal Growth,1997,174:pp. 653-657
    [2.35] C. Jacob, M.-H. Hong, J. Chung, et,al. Selective epitaxial growth of silicon carbide patterned silicon substrates using hexachlorodisilane and propane. Material Science Forum ,2002, 389-393: pp. 249-252
    [2.36] T. Miyanagi and S. Nishino. Hot wall CVD growth of 4H-SiC using Si2Cl6+C3H8+H2 system. Material Science Forum ,2002, 389-393: pp. 199-202
    [2.37] C. Sartel, V. Souliere, Y. Monteil, et,al. Epitaxial growth of 4H-SiC with hexamethyldisilane HMDS. Material Science Forum ,2002, 389-393: pp. 263-266 [2.38] R. Rodriguer-Clemente, A. Figueras, S. Garelik. et, al. Influence of temperature and teramethylsilane partial pressure on the beta-SiC deposition by cold wall chemical vapor deposition. J. Crystal Growth, 1992, 125: pp. 532-542
    [2.39] B. Segall,S. A. Alterovitz, E. J. Haugland, et, al. Compensation in epitaxial cubic SiC films, 1986, Appl. Phys. Lett. 49::pp. 584-486 [2.40] J. A. Freitas Jr., S. G. Bishop, P. E. R. Nordquist Jr, et,al. Donor binding energies determined from temperature dependence of photoluminescence spectra in undoped and aluminum- doped beta-SiC films. Appl. Phys. Lett., 1988, 52: pp. 1695-1697
    [2.41] G. Pensl and W. J. Choyke. Electrical and optical characterization of SiC. Physics B, 1993, 185: pp. 264-283
    [2.42] W. Suttop, G. Pensl, W. J. Choyke, et,al. Hall effect and infrared absorption measurements on nitrigen donors in 6H-SiC. Amorphous and Crystalline Silicon CarbideⅣ. Proceedings of 4th International Conference p, 1992, xii+432;pp. 129-135
    [2.43] D.J. Larkin. SiC dopant incorporation control using site-competition CVD. Phys. Stat. Sol. (b), 1997, 202: pp. 305-320
    [2.44] J. A. Gardner, A. Edwards, M. V. Rao, et, al. Materials and n-p JUNCTION PROPERTIES OF N-, P-, and N/P-implanted SiC. J.Appl. Phys., 1998, 83,(10):pp. 5118-5124
    [2.45] M. A. Gapano, J. A. Cooper, Jr,. M. R. Melloch, et, al. Ionization energies and electron mobilities in Phosphous- and nitrogen-implanted 4H-silicon carbide . J. Appl. Phys. 2000, 87(12): pp. 8773-8777.
    [2.46] M. Tkeda, H. Matsunami and T. Tanaka, site effect on the impurity level in 4H, 6H, and 15R-SiC. Phys. Rev. B., 1980, 22, : pp. 2842-2854
    [2.47] A. H. Anikin, A.A. Lebedev, A. L. Syrkin. Et, al. Investigation of deep level in SiC BY CAPACITANCE SPECTROSCOPY METHODS. Phys. Semicond., 1985, 19: pp. 69-71
    [2.48] W. Suttrop, G. Pensl, and P. Lanig. Boron-related deep centers in 6H-SiC. Appl. Phys.. A, 1990, 51: PP. 231-237.
    [2.49]林沝,吴平平,周文敏,王俊德等编著.实用傅里叶变换光谱学,中国环境科学出版社, 1991.
    [2.50]吴瑾光主编,近代傅里叶变换红外光谱技术及应用,科学文献出版社,1994
    [2.51]张叔良,易大年,吴天明编著。红外光谱分析与新技术,中国医药科技出版社,1993
    [2.52] R. G. J.密勒, B. C.斯特斯主编,于铨林译,。红外光谱学的实验方法, 机械工业出版社, 1985
    [2.53]刘世宝,王当憨,潘承璜编著, X射线光电子能谱分析,科学出版社,1988
    [2.54]染野檀,安盛岩雄编著,郑伟谋译,表面分析,科学出版社,1980
    [2.55]王建祺,吴文辉,冯大明编著.电子能谱学(XPS/XAES/UPS).国防工业出版社,1992
    [2.56]潘承璜,赵良仲编著.科学出版社, 1981
    [2.57]杨于兴,漆璿编著. X射线衍射分析,上海交通大学出版社,1984
    [2.58]胡恒亮,穆祥祺编著,X射线衍射技术,纺织工业出版社,1990
    [2.59]何崇智,郗秀荣,孟庆恩,佟玉昆,吕世琴编著. X射线实验技术
    [2.60]丛秋滋著.多晶二维X射线衍射.科学出版社, 1997.
    [2.61]陈英方编著.纺织工业出版社, 1988
    [2.62]郑顺旋编著.上海科学技术出版社, 1985
    [2.63]程光煦编著.拉曼布里渊散射——原理及应用,科学出版社, 2001.
    [2.64]中国科学院半导体研究所理化分析中心研究室著.半导体的检测与分析, 科学出版社,1984.
    [2.65] A. W.赞德纳主编,强俊,胡兴中译表面分析方法.国防工业出版社, 1984.
    [2.66]杜学李,潘子昂编著.扫描电子显微镜分析技术,化学工业出版社, 1986
    [3.1] Gerald Lucovsky and Hiro Niimi, Remote plasma-assisted oxidation of SiC: a low temperature process for SiC-SiO2 interface formation that eliminates interfacial Si oxycarbide transition regions, J. Phys.: Condens. Matter, 2004, 16 : S1815-S1837.
    [3.2] S.Kennou, A. Siokou, I. Dontas, et,al. An interface study of vapor-deposited rhenium with the two (0001) polar face faces of single crystal 6H-SiC. Diamond and Related Materials, 1997, 6 : 1424-1427.
    [3.3] Z. Bastl, H. Bürger, R. Fajgar, et,al. Si/C Phase from the IR Laser-induced Decomposition of Silacyclobutane and 1,3-Disilacyclobutance. Applied organometallic chemistry, 1996, 10 : 83-99.
    [3.4] Carl-Mikael Zetterling,Mikael ?stling, Chris I. Harris, et al. UV-ozone precleaning and forming gas annealing applied to wet thermal oxidation of p-type silicon carbide. Materials Science in Semiconductor processing, 1998, 2 : 23-27.
    [3.5] V. van Elsbergen, M. Rohleder, W. M?nch. Formation of nitride layers on 6H-SiC surfaces. Applied Surface Science, 1998, 134 : 197-201.
    [3.6] D. Briggs等编著,桂琳琳,黄惠忠,郭国霖译。X射线与紫外光电子能谱,北京大学出版社,1984
    [3.7]刘世宝,王当憨,潘承璜编著, X射线光电子能谱分析,科学出版社, 1988
    [3.8]染野檀,安盛岩雄[日]编著,郑伟谋译。表面分析,科学出版社,1983
    [3.9]华中一,罗维昂编著。表面分析,复旦大学出版社,1989
    [3.10] A. W.赞德纳主编,强俊,胡兴中译。表面分析方法,国防工业出版社, 1984
    [3.11]陆家和,陈长彦等编著。表面分析技术,电子工业出版社,1987
    [3.12]曹茂盛等编著,材料近代分析测试方法,哈尔滨工业大学出版社,1999
    [3.13]史保华编著。材料微分析技术概论,西安电子科技大学出版社,1991
    [3.14]张国栋,张佳科,张定金,王亚男。材料研究与测试方法,冶金工业出版社,2001
    [3.15]王建祺,吴文辉,冯大明编著。电子能谱学(XPS/XAES/UPS)引论,国防工业出版社,1992
    [3.16]周清编著。电子能谱学,南开大学出版社,1995
    [3.17] B. Hornetz. ARXPS studies of SiO2-SiC interfaces and oxidatiob of 6H-SiC single crystal Si-(001) and C(001) surface. Journal of Material Research, 1996, 9(12): pp.3088-3092
    [3.18] Sima Dimitrijev, Hui-feng Li, H. Barry Harrison and Denis Sweatman. Nitridation of Silicon-Dioxide films growth on 6H-silicon carbide. IEEE Electron Device Letters, 1997, 18(5):pp. 175-177
    [3.19] K. Fukuda, S. Suzuki and T. Tanaka. Reduction of interface-state density in 4H-SiC n-type metal-oxide-semiconductor structures using high-temperature hydrogen annealing. Applied Physics Letters. 2000, 76 (12): pp.1585-1587
    [3.20] Zhang Chen, Yuxia Wang, Youming Zou. Origin of the blue photoluminescence from SiO2 (SiC)/SiC on Si substrate. Applied Physics Letters, 2006, 89(141913) : pp.1-3
    [3.21] Y. Hijikata, H. Yaguchi, Y. Ishida, et, al. Photoemission Spectroscopic studies on oxide/SiC Interfaces Formed by Dry and Pyrogenic Oxidation. Materials Science Forum, 2004, 457-460: pp1341-1344
    [3.22] Y. Hijikata, H. Yaguchi and S. Yoshida. Effect of Ar post-oxidation annealing on oxide-4H-SiC interfaces studied by capacitance to voltage measurements and photoemission spectroscopy. Journal of Vacuum Science Technology A,2005, 23(2): pp. 298-303
    [3.23] Katsunori Ueno, Anomalous Oxidation Rate in 6H-SiC Depending on thePartial Pressure of O2 and H2O. Journal of Electronic Materials, 1998, 27(4): pp.313-316
    [3.24] Robert S. Okojie, Dorothy Lukco, Luann Keys, et, al. Surface Morphology and Chemistry of 4H- and 6H-SiC after cyclic Oxidation. Materials Science Forum, 2002, 389-393: pp.1101-1104
    [3.25] Profiling of the SiO2-SiC interface using X-ray photoelectron spectroscopy. Materials. Research. Society 2001,640 : pp.H3.7.1-H3.7.6
    [3.26] C. Radtke, R.V. Brand?o, R. P. Pezzi, et, al. Characterization of SiC thermal oxidation. Nuclear Instruments and Methods in Physics Research B, 2002,190: pp.579-582
    [3.27] Y. Hijikata, H. Yaguchi, S. Yoshida, et,al. Characterization of Oxidation films on SiC epitaxial (000-1) face by angle-resolved photoemission spectroscopy measurements using synchrotron radiation. Materials Science Forum, 2005, 483-485: pp. 585-588
    [3.28] Kazuhiro Yamamoto, Yoshinori Koga, Shuzo Fujiwara. XPS studies of amorphous SiCN thin films prepared by nitrogen ion-assisted pulsed-laser deposition of SiC target. Diamond and Related Materials,2001, 10: pp.1921-1926
    [3.29] Lianwei Wang, Jipo Huang, Xinzhong Duo, et,al. Investigation of damage behaviour and isolation effect of n-type 6H-SiC by implantation of oxygen. Journal of Physics D : Applied Physics,2000, 33: pp.1551-1555
    [3.30] L. I. Johansson, P. A. Glans, Q. Wahab, et,al. Characterization of SiO2 layers thermally grown on 4H-SiC using high energy photoelectron spectroscopy. Applied Surface Science,1999, 150 : pp.137-142
    [3.31] Y. Hijikata, H. Yaguchi, M. Yoshikawa, et,al. Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurement using slope-shaped oxide films. Applied Surface, 2001, 184: pp. 161-166
    [3.32] Cezary Czosnek, Janina Wolszczak, Mariusz Dryga?, et,al. Nano-SiC implantation into the structure of carbon/ graphite materials made by pyrolysis(carbonization) of the precursor system coal tar pitch.poly(dimethylsiloxane). Journal of Physics and Chemistry of Solids, 2004, 65, PP.647-653.
    [3.33] A. Koh, A. Kestle, C. Wright, et,al. Comparative surface studies on wet and dry sacrificial thermal oxidation on silicon carbide. Applied Surface Science, 2001,174: pp.210-216
    [3.34] H. W Yeom, Y. -C. Chao, S. Terada,et,al. Surface core level of the 3C-SiC (001) 3×2 surface: Atomic origins and surface reconstruction. Physical Review B. 1997, 56 (24): pp.R15525-15528
    [3.35] R. P. Socha, K. Laajalehto and P. Nowak. Oxidation of the silicon carbide surface in Watts' plating bath. Surface and Interface Analysis,2002, 34: 413-417
    [3.36] Hui-feng Li, Sima Dimitrijev, Denis Sweatman. Distribution and Chemical bonding of N at NO Nitrided SiC/SiO2 interface. IEEE, 1999: pp.164-166
    [3.37] Qingyi Lu, Junqing Hu, Kaibin Tang, and Yitai Qian. Growth of SiC nanorodsat low temperature. Applied Physics Letters, 75(4):507-509
    [3.38] A. Tabata, S. Fujii, Y. Suzuoki, T. Mizutani and M leda. X-ray phototelectron spectroscopy (XPS) of hydrogenated amorphous silicon carbide (α-SixC1- x:H) prepared by the plasma CVD method. Journal of Physics D: Applied Physics ,1990,23:pp.316-323
    [3.39] Anna Carina ?nneby. XPS study of silicon oxycarbide formation on SiC surfaces at ambient temperatures. The Pennsylvania State University, The Graduate School, 1997
    [3.40] A.T.S. Wee, Z. C. Feng, H. H. Hng, et,al. Surface chemical states on 3C-SiC/Si epilayers. Applied surface Science, 1994, 81:pp.377-385
    [3.41] A.T. S. Wee, K. Li,C. C. Tin. Surface chemical states on LPCVD-grown 4H-SiC epilayers. Applied Surface Science, 1998, 126 : 34-42.
    [3.42] Christopher J. Jensen, Wilson K. S. Chiu. Open-air laser-induced chemical vapor deposition of silicon carbide coatings. Surface & Coatings Technology, 2006, 210:pp.2822-2828
    [3.43] H. G. Yoon, J.-H. Boo, W. L. Liu, and S.-B. Lee. In situ study of the formation of SiC thin films on Si(111) surfaces with 1,3-disilabutane: Adsorption properties and intial deposition characteristics. Journal of Vacuum Science Technology, 2000,18(4):pp.1464-1468
    [3.44] Xiaobing Yi, Guoshi Wu, Fengcai Lu, Jinbiao Zhang. Structural characterization and electrical properties of pyrolyzed polyimide containing silicon in the main chain. Synthetic Matals, 2002, 126;pp.325-330
    [3.45] S. Oswald, and H. Wirth. Core-level Shifts at B- and Al-doped 6H-SiC studied by XPS. Surface and Interface analysis, 1999,27: pp. 136-141
    [3.46] Ming-Jeng Chiang, Min-Hsiung Hon. X-ray photoelectron spectroscopy investigation of substrate surface pretreatments for diamond nucleation by microwave plasma chemical vapor deposition. Journal of Crystal Growth, 2000, 211 : 211-215.
    [3.47] S. Kerdiles, R.Rizk, F. Gourbilleau, et, al. Low temperature direct growth of nanocrystalline silicon carbide films. Materials Science and Engineering, 2000, B69-70: PP.530-535
    [3.48] M. Wang,, X. G. Diao, A. P. Huang, et, al. Influence of substrate bias on the composition of SiC thin films fabricated by PECVD and underlying mechanism. Surface & Coatings Technology,2006, 9 : 65-69.
    [3.49] I.A.Salama, N. R. Quick, A. Kar. Microstructural and electrical resistance analysis of laser-processed SiC substrates for wide bandgap semiconductor materials. Journal of Materials Science,2005,40:pp.3969-3980
    [3.50] D. W. Kim, H. Y. Lee, S. J. Kyoung, et,al. Magnetically Enhanced Inductively Coupled Plasma Etching of 6H-SiC. IEEE Transactions on plasma science. 2004,32(3):pp. 1362-1366
    [3.51] S. Baunack, S. Oswald, H. K. T?nshoff. et,al. Surface characterisation of laser irradiated SiC ceramics by AES and XPS, Fresenius Journal of Analysis Chemical,1999, 365: pp.173-177
    [3.52] Paul W Wang, S. Bater. Depth profile of chemical species in multiple dopedtrimethysilane film on Si(001) surfaces by low energy Ar ions. Nuclear Instruments and Methods in Physics Research B,1998, 141:pp.181-186
    [3.53] Qingyi Lu, Junqing Hu, Kaibin Tang, and Yitai Qian. Growth of SiC nanorods at low temperature. Applied Physics Letters, 75(4):507-509
    [3.54] Enea C. R. Frascati, V. E.. A valence-band and core-level photoemission study of a-SixC1-x thin films grown by low-temperature low-pressure chemical vapor deposition. Applied Physics A, 2005, 81: pp. 991-996
    [3.55] X. L. Wu, Y. Gu, S. J. Xiong, et,al. Self-origanized growth and optical emission of silicon-based nanoscaleβ-SiC quantum dots. Journal of Applied Physics, 2003, 94(8):pp.5247-5251
    [3.56] J. Sch?fer, J. Ristein, S. Miyazaki, L.Ley. Formation of the interface between c-Si(111) and diamond-like carbon studied with photoelectron spectroscopy. Applied Surface Science, 1998, 123(124): pp.11-16
    [3.57] S. Kennou, S. Ladas, E. C. Paloura, J. A. Kalomiros. Characterization of ex-situ hydrogenated amorphous SiC thin films by X-ray photoelectron spectrpscopy. Applied Surface Science, 1995, 90:pp.283-287
    [3.58] E. Maillard-Schaller, O. M. KüTTEL, P. Gr?rning, P. Aebi, L. Schlapbach. Formation of an orientedβ-SiC layerduring the initial growth phase of diamond on silicon (100). Diamond and Related Materials ,1997,6:pp.282-285
    [3.59] Pascale Rudolph, Klaus-Werner Brzezinka, Rolf W?sche, Wolfgang Kautek. Physical chemistry of the femtosecond and nanosecond laser-material interaction with SiC and a SiC-TiC-TiB2 composite ceramic compound. Applied Surface Science, 2003, 208-209:pp.285-291
    [3.60] A. Gupta, D. Paramanik, S. Varma and C. Jacob. CVD growth and characterization of 3C-SiC thin films.Bulletin of Material Science, 2004, 27(5): pp.445-451
    [3.61] E. Rollings, G. -H. Gweon, S. Y. Zhou, et,al. Synthesis and characterization of atomically-thin graphite films on a silicon carbide substrate. Journal of condensation. Materials. 2005,122(26):pp1-4
    [3.62] K. V. Emtsev, Th. Seyller, F. Speck, L. Ley. Initial stages of the graphite-SiC (0001)interface formation studied by photoelectron spectroscopy. J. Physics: Condensation Materials, 2007,34(3):156-159
    [3.63] A. R. Chourasia. Core Level XPS Spectra of Silicon Carbide using Zirconium and Magnesium Radiations. Surface Science Spectra,2001,8(1):pp.45-56
    [3.64] A. Kakanakova-Georgieva, Ts. Marinova, O. Noblanc. XPS characterization of tungsten-based contact layers on 4H-SiC, Thin Solid Film,1999,337; pp.180-183
    [3.65] Rakesh Sohal. CVD growth of (001) and (111)3C-SiC epilayers and their Interface Reactivity with Praseodymium Oxide Dielectric Layers. Von der Fakult?t für Mathematik, Naturwissenschaften und Informatik der Brandenburgischen Technischen Universit?t Cottbus. 2006.
    [3.66] Chariya Virojanadara, Studies of Surface and Interface Properties of 4H-SiC/SiO2. Institute of Technology, Link?ing university.2004
    [3.67] Spyros Gallis, Vasileios Nikas, Mengbing Huang, et,al. Jornal of AppliedPhysics, 2007,102 (024302): pp.1-9
    [3.68] Xue-Min Liu and Ke -Fu Yao. Large-Scale synthesis and photolumininescence properties of SiC/SiOx nanocables. Nanotechnology,2005,16:pp.2932-2935
    [3.69]季振国,汪雷,袁骏。硅表面氧化膜的X光电子谱及部分参数固定法曲线拟合。半导体学报,1994,15 : 23-28.
    [3.70]吴瑾光1994《近代傅立叶变换红外光谱技术及应用》(北京:科学技术文献出版社) p573
    [3.71] Fabrice Amy, Yves J Chabal. Interaction of H, O2, and H2O with 3C-SiC Surfaces. Journal of Chemical Physics, 2003,119(12):pp.6023-6029
    [3.72] Gobind Das, Paolo Bettotti, Luigi Ferraioli, et,al. Study of the pyrolysis process of an hybrid CH3Si1.5 gel into a SiCO glass. Vivrational Spectroscopy,2007,www.elsevier.com/locate/vibspec
    [3.73] Thomas Bryan Casserly Chemical vapor deposition of organosilicon and sacrifical polymer thin films Massachusetts institute of technology,2005
    [4.1] Darrin Young, Jiang Du, Christian A. Zorman, et,al. High-Temperature Single-Crystal 3C-SiC Capacitive Pressure Sensor. IEEE Sensor Journal, 2004, 4(4): pp.464-470.
    [4.2] D.-C. Lim, H,-G Jee, J .W. Kim, et, al. Deposition of epitaxial silicon carbide films using high vacuum MOCVD method foe MEMS applications. Thin Solid Film, 2004, 459: pp.7-12.
    [4.3] Vorgelegt von Diplom-Ingenieur, Martin Ko?an aus Bratislava, Slowakei. AlGaN/GaN MBE 2DEG Heterostructures: Interplay between Surface-, Interface-and Device-Properties. Von der Fakult?t für Elektrotechnik und Informatiomstechnik der Rheinisch-Westf?lischen Technischen Hochschule Aachen zur Erilangung des akademischen Grades eines Doktorsb der Ingenieurwissenschaften genehmigte Dissertation.2003,pp53-154.
    [4.4] Siddarth G. Ultra-Fast Temperature Microwave Processing of Silicon Carbide and Galliun Nitride. Sundaresan Master of Science George Mason University, 2007: pp.12~131
    [4.5] Amador Pérez Tomás. Novel materials and processes for gate dielectrics on Silicon carbide. Power Devices and Systems Group Centre Nacional de Microelectrònica Consejo Auperior de Investigaciones Cientificas, 2005
    [4.6] Serhii Tumakha,B.S., M.S.. Investigation of 4H- and 6H-SiC thin films and schotty diodes using depth-dependent cathodoluminescence spectroscopy. Philosopy in the Graduate School of the Ohio State University. 2006,pp22-118
    [4.7] Talal Mohammed Ahmad Al Tahtanouni. MOCVD Growth and Characterization of Al-rich AlN/AlGaN epilayers and quantum wells. Department of Physics College of Arts and Sciences of Kansas State University Manhattan, kansas. 2007: pp12-97
    [4.8] Sang-Kwon Lee. Processing and Characterization of Silicon Carbide (6H- and 4H-SiC) Contacts for High Power and High Temperature Device Applications. KTH, Royal Institute of Technology Department of Microelectronics andInformation Technology Device Technology Laboratory Stockholm, 2002:pp26-83
    [4.9] Peng Lu. Sublimation Growth of AlN Bulk Crystals and High-speed CVD growth of SiC epilayers, and their characterization. Department of Chemical Engineering College of Engineering of Kansas State University Manhattan, Kansas, 2006, p41-153
    [4.10] Monica Vendan. Ultrafast laser dEPOSITION AND microfabricction of the films for MEMS structures. Graduate College Iowa State University. 2006, pp42-95
    [4.11] Hyung-Seok Lee. Hogh Power Bipolar Junction Transistors in Silicon Carbide. Laboratory of Solid State Devices (SSD), Department of Microelectronics and Information Technology (IMIT) , Royal Institute of Technology (KTH)Stockholm, Sweden. 2005, pp.33-40.
    [4.12] Yuan Chong (Charlie) . Reduced Temperature heteroepitaxial growth of SiC from organosilane. University of Cincinnati, 1994, pp.58-111
    [4.13] Kasif Teker. Research on the epitaxial growth of Silicon Carbide on Silicon and Aluminum Nitride. Department of Material Science and Engineering Case Western Reserve University, 2001,pp.48-124
    [4.14] Ebenezer Emmanuel Eshun. Study of Silicon Carbide (SiC) polytype Heterojunctions. Departmant of Electrical Engineering of Howard University, 2001, pp.59-109
    [4.15] Rongjun Wang. SiC epitaxial growth for power device applications. Department of Electrical Engineering of Rensselaer Polytechnic Institute, Troy. New York. 2002 : pp.70-146
    [4.16] Rafal R. Ciechonski. Growth and characterization of SiC and GaN. Department of Physics, Chemistry and Biology Link?pigs universitet, SE-581 83 Link?pig. Sweden, 2007:pp. 33-43
    [4.17] Kyle Swanson. Epitaxial growth of silicon carbide on on-axis silicon carbide substrates using methyltrichlorosilane chemical vapor deposition. Department of Chemical Engineering College of Enigineering, Kansas State University, Manhattan, Kansas. 2008: pp. 20-39
    [4.18] Chien Hung Wu. Growth and Characterization of silicon carbide for MEMS pressure sensor. Department of Materials Science and Engineering, Case Western Reserve University. 2001:pp. 51-177
    [4.19] Pietro Mandracci. Growth and characterization OF SiC thin films by a plasma assisted technique for electronic applications. Dip. Elettronica Politecnico di Torino. 2001: pp. 53-100
    [4.20] Scott Alan Ustin. NON-Equilibrium Growth of Wide Band Gap Semiconductors. Graduate School of Cornell University,2000:pp.103-213
    [4.21] Gilberto Vitor Zaia. Epitaxial Growth of Si and 3C-SiC by Chemical Vapor Deposition. Walter Schottky Institute Technisch Universit?t M?nchen, 2002: pp.29-82
    [4.22] Punam Pant. Characterization of the Nucleation Layer in GaN/Sapphire Heterostructures. Department of Materials Science and Engineering, NorthCarolina State University. 2005:pp.35-90.
    [4.23] J.-H. Boo, K.-S. Yu, and Y. Kim. Growth of Cubic SiC Films Using 1,3-Disiabutane. Chemical Materials. 1995, 7 : pp.694-698
    [4.24] F. Maury, J.M. Agullo. Chemical vapor co-deposition of C and SiC at moderate temperature for the synthesis of compositionally modulated SixC1-x ceramic layers. Surface and Coating Technology, 1995 76-77:pp119-125
    [4.25] K.-W. Lee, K.-S. Yu, Y. Kim. Heteroepitaxial growth of 3C-SiC on Si(001) without carbonization. Joyrnal of Crystal Growth, 1997, 179, pp.153-160
    [4.26] Q. Wahab, L. Hultman, I.P. Ivanov, et,al. Growth and characteriation of 3C-SiC films on Si substrates by reactive magnetron sputtering: effects of CH4 partial pressure on the crystalline quality, structure and stoichiometry. Thim Solid Films 1995,26:pp.317-321
    [4.27] Gwiy-Sang Chung and Kang-San Kim. Heteroepitaxial Growth of Single 3C-SiC Thin Films on Si(100) Substrates Using a Single-Source Precursor of Hexamethyldisilane by APCVD. Bull. Korean Chem. Soc., 1007,28(4): pp.533-537
    [4.28] M.T. Clavaguera-Mora, J. Rodriguez-Viejo, Z. El Felk, et,al. Growth of films obtationed by LPCVD.Diamod and Related Materials, 1997, 6:pp.13061310
    [4.29] H.K. Woo, C.S. Lee, I.Bello, et,al. Growth of epitaxialβ-SiC films on silicon using solid graphite and silicon sources. Diamond and Related Materials,1999,8: pp.1737-1740
    [4.30]林沝,吴平平,周文敏,王俊德等编著,实用傅立叶变换红外光谱学,中国环境科学出版社,1991
    [4.31]吴瑾光主编,近代傅立叶变换红外光谱技术及应用,科学技术文献出版社,1994
    [4.32]孙以材编著,半导体测试技术,冶金工业出版社,1984
    [4.34] R. T. Holm, P. H. Klein, and P.E.R.Nordquist, Jr. Infrared reflectance evaluation of chemical vapor depositedβ-SiC films grown on Si substrates. Journal Applied Physics, 1986, 60,pp.1479-1485
    [4.35] Mitsunori Saito, Shinji Nakamura, Mitsunobu Miyagi. Measurement of the refractive index and thickness for infrared optical films deposited on rough substrates. Applied Optics, 1992,31,pp.6139-6144
    [4.36] M. F. Macmillan, A. Henry and Janzén. Thickness determination of low doped SiC epi-films on highly doped SiC substraetes. Jouranl of Electronic Materials, 1998, 27,pp.300~303
    [4.37]方容川编著,固体光谱学,中国科学技术大学出版社,2001
    [4.38]张光寅,蓝国祥编著,晶格振动光谱学,高等教育出版社,1991
    [4.39] Young-June Kim, See-Hyung Lee,J. D. Hwang, and T. W. Noh. Far-infrared Investigation of Generallized Lyddane-Sachs-Teller Relation Using Lithium Borate Glasses. Journal of the Korean Physical Society, 1994, 27(4):pp.430-435
    [4.40] S.S. NG, Z.Hassan and H. ABU Hassan. Kramers-Kronig analysis of infrared reflectance spectra with a single resonance. Jurnal Teknologi, 2006,44:pp.67-76
    [4.41] L.L.Kiang. Study on the Optical Properties of Semiconductor byKramers-Kronig Transformation. Chinese Journal of Physics, 14(2), 1976:pp.93-100
    [4.42] Krzysztof Jezierski and Jan Misiewicz. Surface roughness as a Physical cause of the dip in the results of a Kramers-Kronig analysis of Zn3P3. Journal of Optics Society America B, 1984(6):pp.850-852
    [4.43] S.A.FitzGerald, T. W. Noh, and A. J. Sievers. Far--infrared investigation of the generallized Lyddane-Sachs-Teller relation using ZnS-diamond composites. Physical Review B, 1990, 42(9): pp.5469-5475
    [4.44] A.H. Kachare , W. G. Spitzer, F. K. Euler and A.Kahan. Infrared reflection of ion-implanted GaAs. Journal of Applied Physics, 1974,45(7):pp.2938-2946
    [4.45] M. Kazan. Oxygen behavior in aluminum nitride. Journal of Applied Physics, 2005, 98(103529):pp.1-4
    [4.46] M. Kazan, B. Rufflé, Ch. Zgheib, P. Masri. Phonon dynamics in AlN lattice contaminated by oxygen. Diamond & Related Materials,2006, 15: pp.1525-1534
    [4.47] Thomas E. Tiwald, John A. Woollam, Stefan Zoller, et, al. Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. http://digitalcommons.unl.edu/electricalengineeringfacpub/27,1999
    [4.48] Y. T. Hou, Z.C. Feng, J. Chen, et,al. Correlation between the infrared reflectance and microstructure of thin gallium nitride films grown on silicon substrates. Solid state Communications ,2000,115,pp.45-49
    [4.49] M.Kazan Crystal orientation by unpolarized infrared reflectivity application to aluminum nitride. Journal of Applied Physics,2007,102,pp.073532-1-073532-6
    [4.50] G.Scamarcio, L. Tapfer, W. K?nig, K.Ploog, et,al. Dependence of “reststrahlen”Bands in far-infrared reflectivity on configuration of GaAs/AlAs Multiple Quantum well heterostructures. Applied Physics A, 1990,51 pp.252-254
    [4.47] M.Kazan, L.Ottaviani, E.Moussaed, et,al. Effect of introducing gettering sites and subsequent Au diffusion on the thermal conductivity and the free carrier concentration in n-type 4H-SiC. Journal of Applied Physics. 2008,103(053707):pp.1-6.
    [4.51] E.F. Venger, S.M. Davidenko, A.V. Melnichuk, et,al. Effect of the plasmon-phonon coupling anisotropy on the reflection coefficient of polar semiconductor ZnO and 6H-SiC. 2000, IEEE, ASDAM, The Thiird International EumConference on Adevanced Semiconductor Devices and Microsystem, Smolenice Castle, Slovakia, 16-18:pp.343-346
    [4.52] Y.T. Hou, Z.C. Feng and S.J.Chua. Influence of Si doping on the infrared reflectance characteristics of GaN grown on sapphire. Applied Physics Letters, 1999,75, 20,pp.3117-3119.
    [4.53] C. Bundesmann, N.Ashkenov, M. Schubert, et,al. Infrared dielectric functions and crystal orientation ofα-plane ZnO thin films on r-plane sapphire by generalized ellipsometry. Thin Solid Films, 2004,455-456,pp.161-166
    [4.54] N. Ashkenov, B. N. Mbenkum, C.Bundesmann, et,al. Infrared dielectricfunctions and phonon modes of high-quality ZnO films. Journal of Applied Physics, 2003,93, pp.126-133
    [4.55] S. Zangooie, Mathias Schubert, T. E. Tiwald, J. A. Woollam. Infrared optical properties of aged porous GaAs. 2001, http://digitalcommons.unl.edu/electricalengineeringfacpub/42,
    [4.56] R.T. Holm, J.W, Gibson, and E.D. palik. Infrared reflectance studies of bulk and epitaxial-film n-type GaAs. Journal of Applied Physics, 1977,48,pp.212-223
    [4.57] M. F. MacMillan, R. P. Devaty, W.J. Choyke.Infrared reflectance of thin aluminum nitride films on various substrates. Journal of Applied Physics Letter, 62(7),1993, pp.750-752
    [4.58] R.T.Holm, J. W. Gibson, and E.D. Palik. Infrared reflectance studies of bulk and epitaxial-film n-type GaAs. Journal of Applied Physics. 1997, 48(1) pp.212-223
    [4.59] Z. C. Feng, Y. T.Hou, S. J. Chua and M. F. Li. Infrared reflectance studies of GaN epitaxial films on sapphire substrate. Surface and Interface Analysis. 1999, 28:pp.166-169
    [4.60] W. Y. Chang, Z. C. Feng, S. J. Chua and M. F. Li. Infrared reflectance study of chemical vapor deposition 3C-silicon carbide on silicon substrate. In Optoelectronic Materials and DeviceⅡ, Yan-Kuin Su, Pallab Bhattacharya, Editors, Proceedings of SPIE, 2000, 4078:pp.203-210
    [4.61] W. Chang, Z. C. Feng, J. Lin, et,al. Infrared reflection investigation of ion-implanted and post-implantation-annealed epitaxially grown 6H-SiC. Surface and Interface Analysis, 2002,33:pp. 500-505
    [4.62] V.Hopfe, W. Gr?hlert, K. Brennfleck, et,al.Infrared reflection studies of ceramics: characterization of SiC layers on graohite substrates. Fresenius J. Anal. Chem. 1993,346,pp.99-103
    [4.63] S.Zangooie, Mathias Schubert, T. E. Tiwald, J. A. Woollam. Infrared response of multiple-component free-carrier plasma in heavily doped p-type GaAs. Applied Physics Letters. 2001, 78(7): pp. 937-939
    [4.64] B.Ole? and H. G. Von Schnering.. Infrared studies of phonons and free carriers in CaAs3, SrAs3, BaAs3, andα-EuP3. Journal of Physics. C:Solid State Physics. 1981, 14: pp.5559-5565
    [4.65] E. F. Venger, A. I. Evtushenko, L. Yu. Melnichuk, O. V. Melnichuk. Investigation of ZnO single crystals subjected to a high uniform magnetic field in the IR spectral range. Semiconductor Physics, Quantum Electronics & Optoelectronics,2008,11(1)pp.6-10
    [4.66] H.Yaguchi, K.Narita, Y. Hijikata, et, al. Spatial Mapping of Carrier Concentration and Mobility in SiC Wafers by Micro Fourier-Transform Infrared Spectroscopy. Materials Science Forum, 2002, 389-393:pp.621-624
    [4.67] S. Nakashima. Spectroscopic analysis of electrical properties in polar semiconductors with over-damped plasmons. Journal of Applied Physics. 2004,95(7):pp.3541-3546
    [4.68] Swapna Sunkari, M. S. Mazzola, J. P. Mazzola, et,al. Investigation ofLongitudinal-Optical Phonon-Plasmon Coupled Modes in SiC Epitaxial Film Using Fourier Transform Infrared Reflection. Journal of Electronic Materials. 2005, 34(4): pp.320-323
    [4.69] S.Zangooie and P. O. A. Persson. Microstructural and infrared optical properties of electrochemically etched highly doped 4H-SiC. Journal of Applied Physics, 2000, 78(12): Pp.8497-8503
    [4.70] M. Schlaf, D. Sands, P. H. Key. Optical characterisation of pulsed laser deposited SiC films. Applied Surface Science, 2000, 154-155:83-88
    [4.71] D. J. Lockwood, Guolin Yu, N. L. Rowell. Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique invidence infrared spectroscopy. Solid State Communications, 2005, 136: pp. 404-409
    [4.72] Wantana Songprakob. Optical studies of highly-doped GaAs:C. Virginia Polytechnic Institute and State University in Blacksburg, Virginia. 2001
    [[4.73] S. Nakashima. Raman characterization of local electrical properties and growth process in modulation -doped 6H-SiC crystals. Journal of Applied Physics, 2004, 95(7): pp.3547-3552
    [4.74] J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, et,al. Spatial characterization of doped SiC wafers by Raman spectroscopy. Journal of Applied Physics. 1998, 84(11): pp.6268-6273
    [4.75] M. F. Macmillan, A. Henry, E. Janzen. Thickness determination of low doped SiC epi-films on highly Doped SiC Sunstrates. Journal of Electronic Materials, 1998, 27(4):301-303
    [4.76] J.L.Servoin and F. Gervais. Analysis of infrared reflectivity in the presence of asymmetrical phonon lines. Applied Optics. 1977, 16(11):pp. 2952-2956
    [4.77 Katsutoshi Narita, Yasuto Huikata, Hiroyuki Yaguchi, Sadafumi Yoshida and Shinichi Nakashima. Charterization of carrier concentration and mobility in n-type SiC wafers using infrared reflectance spectroscopy. Japanese Journal of Applied Physics, 2004,43, pp.5151-5156
    [4.78] K.Narita, Y.Hijikata, H. Yaguchi, et,al. Characterization of electrical properties in high-dose implanted and post-implantion-annealed 4H-SiC wafers using infrared reflectance spectroscopy. Materials Science Forum.2004, 457-460, pp.905-908
    [4.79] Shingo Oishi, Yasuto Huikata, Hiroyuki Yaguchi, et,al. Simultaneous determination of carrier concentration,mobility, and thickness of SiC homoepilayers by infrared reflectance Spectroscopy. Japanese Journal od Applied Physics, 2006,45,pp.L1226-L1229
    [4.80] J. Camassel, J. Pernot, H. Y. Wang and h. Peyre. Molding the infrared reflectance of n-/n+ SiC layers on top of n+ SiC subatrates for epitaxy cintrol application. Phys. Stat. Sol. (a), 195 (1) pp.38-43
    [4.81] M. F. MacMillan, R. P. Devaty, W.J. Choyke. Infrared reflectance of thick p-type porous SiC layers. Journal of Applied Physics,1996,80,pp.2412-2419
    [4.82] M.V. Nikolió, K.Satoh, T.Ivetió, et,al. Infrared reflection spectroscopy of Zn2SnO4 thin films deposited on silica substrate by radio frequency magnetron sputtering. Thin solid flims,2008,516,pp.6293-6299
    [4.83] Jonathan E. Spanier and Irving P. Herman. Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films. Physical Review B. 2000, 61(15): pp.10437-10450
    [4.84] Jun-Rong Chen, Tien-Chang Lu, Gen-Sheng Huang, et,al. Infrared reflectance of optical phonon modes in AlGaN epitaxial layers grown on sapphire substrates. Gallium Nitride Materials and DevicesⅢ. Edited by Hadis Morkoc, Cole W. Litton, Jen-Inn Chyi, Yasuski Nanishi, Euijoon Yoon, Proc. Of SPIE, 2008.6894 (68941U): pp.1-9
    [4.85] K. Fukui, Y.Kugumiya, N.Nakagawa,et,al. Infrared reflectance measurement for InN thin film characterization. Phys. Stat. sil. (c) ,2006,3,pp.1874-1878
    [4.86] T. Miyakawa, Y. Okamoto, T. Kawahara, et,al. IR-reflection study of sintered SiC/Al thermoelectric semiconductors. IEEE 16th International conference on Thermoelectrics, 1997, pp.496-499
    [4.87] Y. Okamoto, S. V. Ordin, T. Kawahara, et,al. Infrared-reflection characterization of sintered SiC thermoelectric semiconductors with the use of four–component effective medium model. Journal od Applied Physics, 1999.85,pp.6728-6737.
    [4.88] Jonathan Spanier Irving P. Herman. Infrared reflection spectroscopy and effective medium modeling of as-anodized and oxidized porous silicon carbide. Journal of porous material, 2000, 7, pp.139-142
    [4.89] Y. M. Lei, Y. H. Yu, and L. L. Cheng. Investigation and modeling of the infrared optical properties of direct current sputtered SiC films on silicon. Journal of Applied Physics, 2000, 88, pp. 3053-3058
    [4.90] H. Hobert, H.H. Dunken, G. Peiter,et,al. Vibrational spectroscopy of SiC thin films deposited by excimer laser ablation. Applied Physics A,1999,69,pp.69-76
    [4.91] Y. M. Lei, Y. H. Yu, L.L.Cheng, et, al.IR studies of reactive DC magnetron sputtered SiC films on silicon using effective medium theory. Materials Letters, 2000,43, pp.215-219
    [4.92] Mathias Schubert, B. Rheinlander, E. Franke, et,al. Infrared optical properties of mixed-phase thin films studied by spectroscopic ellipsometry using boron nitride as an example. 1997, http://digitalcommons.unl.edu/electricalengineeringfacpub/43,
    [4.93] A. M. Rossi, F. Giorgis, V. Ballarini and Borini. 2005, phys. Stst. Sol. (a),202(8):pp. 1548-1551
    [4.94] Y.T. Hou, Z.C. Feng and S.J.Chua. Influence of Si doping on the infrared reflectance characteristics of GaN grown on sapphire. Applied Physics Letters, 1999,75, 20,pp.3117-3119.
    [4.95]金石琦编著,晶体光学。科学出版社,1995.
    [4.96] H.Mutschke, A.C. Andersen, D.Clement, et,al. Infrared properities of SiC particles. Astronomy and Astrophysics, 1999,12,pp.1-17
    [4.97] N.S. Savkina, V. V. Ratnikov, A.Yu.Rogachev, et, al. Semiconductor, 2002, 36(7):pp. 758-762
    [4.98] J.M.Bluet,K.Chourou, M. Anikin, R. Madar. Weak phonon modes observationusing infrared reflectivity for 4H, 6H AND 15R polytypes. Materials Science and Engineering B61-62, 1999: pp.212-216
    [4.99] D. Coquillat, M. Le Vassor d'Yerville, et,al.Studies of the photonic and optical-frequency phonon properties of arrays of selectively grown GaN micropyramids. Journal of Applied Physics, 2008,103 (044910):pp.1-7
    [4.100] T.Werninghaus, M, Friedrich, V. Cimalla, et,al. Optical characterization of MBE grown cubic and hexagonal SiC films on Si(111). Diamond and Related Materials,1998, 7:pp.1385-1389
    [4.101] D. J. Hayton, T. E. Jenkins, P. Bailey, et,al. Optical and ion-scattering study of SiO2 layers thermally grown on 4H-SiC. Semiconductor Science and Technology, 2002,17:pp.L29-L32
    [4.102] N.N Syrbu,R. V. Cretu, V. P. Mushinsku, V. Z. Cebotari. Oblique phonons inraman scattering and IRreflection of TeO2 crystal. Crystal Research Technology, 1996,31(7):pp.939-950
    [4.103] M. W. Dashiell, G. Xuan, E. Ansorge, et, al. Pseudomorphic SiC alloys formed by Ge ion implantation. Applied Physics Letters. 2004, 85(12) :pp.2253-2255
    [4.104] C.Wetzel and E. E. Haller. Infrared reflection of GaN and AlGaN thin film heterostructures with AlN buffer layers. Applied Physics Letter 1996,68, pp.2547-2549
    [4.105] M.F. MacMillan, R. P. Devaty, W.J. Choyke.Infrared reflectance of thin aluminum nitride films on various substrates. Applied Physics, Letter 1993, 62(7),pp.750-752
    [4.106] P. H. Key, D.Sands, M. Schlaf, et,al. Infra-red reflectivity of ion-implanted and pulsed excimer laser irradiated 4H-SiC. Thin Solid Films. 2000. 364: pp.200-203
    [4.107] A. M. Rossi, F. Giorgis, V. Ballarini and S. Borini Infrared analysis of porous silicon carbide. Phys. Stat. Sol. 2005, 202(8):pp.1548-1551
    [4.108] E.F. Venger, A. V. Goncharenko, and S. N. Zavadskiǐ. Dielectric response of a crystal with a damaged surface layer in the longitudinal-transverse splitting region. Physics of the Solid State, 2001, 43(6): pp. 1178-1181.
    [4.109] H. Yaguchi, K. Narita, Y. Hijikata, et,al. Spatial Mapping of the Carrier Concentratiob and Mobility in SiC Wafers by Micro Fourier-Transform Infrared Spectroscopy. Materials Science Forum, 2002, 389-393:pp.621-624
    [4.110] K.Karch and F. Bechstedt. Pressure dependence of dynamical and dielectric properties of 3C and 4H silicon carbide. Europhysics Letters, 1996,35(3):pp.195-200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700