用户名: 密码: 验证码:
SnO_2基多孔纳米固体CO传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济和工业的发展,人们的生活水平得到了很大提高,但是随之而来的是各种有毒有害气体对环境的破坏和对人们健康的危害。其中,CO气体是一种易燃易爆的有毒气体,少量的CO即能给人体造成伤害。由于它无色无味,难于被发现,以致中毒及爆炸事件时有发生。近年来,金属氧化物半导体型CO传感器因为在耐热性、耐蚀性、材料成本、元件制作工艺等方面的优势,成为研究较多的一种传感器。但是,对于金属氧化物半导体型CO传感器的研究大多是实验室产物,制备条件的限制使它们很难产业化。因此,我们致力于开发新的简单易行的方法,研制具有更高性能的CO传感器,以推动其达到实用化目标。
     我们利用溶剂热压方法,以SnO2纳米颗粒为原料,制备了SnO2及SnO2-MOx (MOx=CuO、Co3O4、ZrO2、CeO2、TiO2)多孔纳米固体。在此基础上,利用传统的厚膜制备工艺制备了SnO2及SnO2-MOx多孔纳米固体厚膜CO传感器,并对它们的气敏性能进行了测试分析。为了进一步改善CO传感器的性能,我们首次直接采用SnO2多孔纳米固体作为气敏元件,制备了双功能高气敏响应的SnO2多孔纳米固体CO传感器。在此基础上,利用压差交换法制备了微量Pt担载的SnO2多孔纳米固体CO传感器。利用Pt对CO的催化氧化作用实现了对低浓度CO的室温探测,而且传感器的气敏响应和选择性都很好。
     (1)我们分别以商品化SnO2纳米粉和经过溶剂热压法制备的SnO2多孔纳米固体为原料,制备了SnO2纳米粉厚膜以及SnO2多孔纳米固体厚膜CO传感器,对比了两者的气敏性能。实验结果表明:SnO2多孔纳米固体的多孔结构有利于提高CO传感器的气敏响应。另外,我们探讨了SnO2多孔纳米固体厚膜传感器制备过程中的参数(造孔剂用量、热压温度、热压压力和烧结温度)对CO传感器气敏性能的影响。实验结果证实:通过改变造孔剂用量、热压温度、热压压力和烧结温度,可以在一定范围内调控SnO2多孔纳米固体的孔径分布、孔容和比表面积,从而找到SnO2多孔纳米固体厚膜CO传感器的最佳制备条件。其中,当造孔剂用量、热压温度、热压压力和烧结温度分别为10ml、200℃、60MPa和700℃时,传感器的气敏响应最大。
     (2)为了进一步改善SnO2多孔纳米固体厚膜传感器的气敏性能,我们对SnO2纳米粉进行了少量掺杂,制备了SnO2-MOx多孔纳米固体厚膜传感器。结果表明:掺杂少量的金属氧化物后,传感器的气敏响应在一定程度上得到了提高。当掺杂少量的p型半导体金属氧化物CuO和Co3O4时,CuO (Co3O4)与SnO2之间发生电子的相互交换,导致气敏性能发生变化;掺杂少量CeO2、ZrO2和TiO2后,多孔固体的孔径分布发生了很大变化,这可能是掺杂后传感器气敏响应提高的原因。其中,当SnO2纳米粉中掺入10wt.%TiO2时,传感器的气敏响应最大。
     (3)为了探索改善CO传感器气敏性能的新方法,我们利用SnO2多孔纳米固体制备了新型传感器,避免了厚膜传感器制备过程中工艺复杂的问题,提出了一种制备CO传感器的新方法。实验表明:SnO2多孔纳米固体传感器的气敏性能得到了很大提高,与厚膜型CO传感器相比,电阻率降低、气敏响应明显增大、工作温度降低了100℃。另外,传感器在高温下对CH4有很好的响应,可以作为CO和CH4双功能传感器使用。
     (4)在成功研制SnO2多孔纳米固体传感器的基础上,我们用压差交换法制备了微量Pt担载的SnO2多孔纳米固体CO传感器。由于Pt的催化作用,其在室温下对50ppm CO就有很好的响应,并且对CO的选择性很好。当所用氯铂酸溶液的浓度为0.003mol/L (10ml)时,Pt-SnO2多孔纳米固体CO传感器的气敏响应最大。另外,我们也探讨了烧结温度和湿度对Pt-SnO2多孔纳米固体CO传感器气敏性能的影响。结果表明:随着烧结温度的升高,Pt的催化活性降低,气敏响应减小,当烧结温度达到700℃时,传感器对CO无响应;随着湿度的增加,H2O和CO在SnO2表面竞争吸附,使传感器的气敏响应降低。
With the development of economy and industry, our living situation has been improved at the expense of environmental pollution and health deterioration. Many kinds of toxic and harmful gases exist in our circumstance. Among them, CO is a kind of inflammable, explosive and poisonous gas, which may do serious harm to human body. CO is very difficult to detect due to its colorless and odorless characteristic, so poisoning and explosion incidents often take place. In recent years, metal oxide semiconductor CO sensors attract more attentions due to their advantages in thermal stability, corrosion resistance, low cost etc. However, almost all the sensing materials are prepared in lab scale, and the harsh preparation conditions limit their applications to a large extent. Here we focused on the developing a new facile route to prepare new sensing materials with excellent sensing performances, and investigating the sensing mechanisms of these new materials.
     SnO2 and Sn02-MOx (M=CuO、Co3O4、ZrO2、CeO2、TiO2) porous nanosolids were prepared by a solvothermal hot-press (SHP) method using SnO2 nanoparticle as raw materials. Subsequently, we fabricated SnO2 and Sn02-MOx thick film CO sensors from SnO2 and Sn02-MOx porous nanosolids following a conventional process. In order to further improve the gas-sensing performances of CO sensors, we fabricated dual-functional highly responsive CO sensors by directly using SnO2 porous nanosolid as the gas-sensing elements. Furthermore, CO sensors based on Pt-loaded SnO2 porous nanosolids were prepared using a pressure-driven exchange route. Because of the catalytic effect of Pt, a CO sensor that can be used to detect low level CO at room temperature was prepared.
     (1) The gas-sensing performances of two thick film sensors fabricated from SnO2 nanoparticles and SnO2 porous nanosolid were compared, and the results show that the latter possesses lower resistance and higher sensor response due to its porous nature. In addition, all the parameters during fabricating thick film CO sensors, including the solvent volume, hot-pressing temperature, sintering temperature etc., influence the gas-sensing properties of the sensor. It is proved that by varying these parameters, all the pore diameter distribution, pore volume and specific surface area of SnO2 porous nanosolid are changed. The results demonstrate that optimum values for the solvent volume, hot-pressing temperature, pressure and sintering temperature are 10 ml,200℃,60 MPa and 700℃, respectively.
     (2) For enhancing the gas-sensing performances of CO sensors, a series of metal oxides were doped into SnO2 nanoparticles and thick film CO sensors based on SnO2-MOx (M=metal atom) porous nanosolids were fabricated. The results show that, the sensor responses of SnO2 to CO are all improved to a certain extent by doping. When p-type metal oxide semiconductors CuO and Co3O4 are doped into n-type SnO2, the electronic interactions between CuO/Co3O4 and SnO2 is the major reason for the improvement of sensing performances. However, when CeO2、ZrO2 and TiO2 are added into SnO2, the pore diameter distributions of SnO2 porous nonsolid are changed, this phenomenon may be responsible for the improvement of the sensor responses. The thick film CO sensor doping with 10wt.% TiO2 has the largest sensor response.
     (3) In order to explore new routes for improving gas-sensing performances of CO sensors, the novel CO sensors were fabricated by directly using SnO2 porous nanosolids as sensitive elements. The results reveal that the novel CO sensor based on SnO2 porous nanosolid possesses lower intrinsic resistivity and higher sensor response by comparing with that fabricated from SnO2 nanoparticles. Furthermore, the SnO2 porous nanosolid sensor also has much lower working temperature, and it can be used as a dual functional gas sensor, i.e., as CO sensor at 300℃and as CH4 sensor at 400℃, respectively.
     (4) For further increase the sensor response while decrease the operation temperature of CO sensors, CO sensors were fabricated by using Pt-loaded SnO2 porous nanosolids, which were prepared by a pressure-driven exchange method. With the help of catalytic effect of Pt, the sensors exhibit rather high sensor response to 50 ppm CO at room temperature. Besides, the sintering temperature and the humidity have influences on the sensor response. When the sintering temperature and humidity increase, the sensor response of the sensors deteriorates to some extent. After being sintered at above 700℃, the sensors have no response to CO at all.
引文
[1]任先武,徐凌,周卫宏,王元委,王振强.一种抗氢气干扰的CO传感器.传感器与微系统27(8)(2008)78-80.
    [2]谢志远,方国家,刘祖黎.一氧化碳气敏元件研究的意义和研究现状.襄樊学院学报20(5)(1999)32-35.
    [3]杨邦朝,段建华.一氧化碳传感器的应用与进展.传感器技术20(12)(2001)1-4.
    [4]P. Ivanov, E. Llobet, X. Vilanova, J. Brezmes, J. Hubalek, X. Correig. Development of high sensitivity ethanol gas sensors based on Pt-doped SnO2 surfaces. Sens. Actuators B 99 (2004) 201-206.
    [5]张立德.纳米材料[M].北京:化学工业出版社2000.
    [6]M. Tiemann. Porous Metal Oxide as Gas Sensors. Chem. Eur. J.13 (2007) 8376 8388.
    [7]J. Watson, K. Ihokura, G.S V Coles. The tin dioxide gas sensor. Meas. Sci. Technol.4(1993)711-719.
    [8]A. Gurlo. Interplay between O2 and SnO2:Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen. ChemPhysChem 7 (2006) 2041-2052.
    [9]S.C. Chan. Sensing mechanisms of thin film tin oxide. Proc. Int. Meeting on chemical sensors, Fukuoka, edited by T. Seiyama et al 1983; 19-22.
    [10]S. Strassler, Reis. A simple model for n-type metal oxide gas sensors. Sens. Actuators B 4 (1983) 465-472.
    [11]N. Barsan, M. Schweizer-Berberich, W. Gopel. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors:a status report. Fresenius J. Anal. Chem.365 (1999) 287-304.
    [12]N. Yamazoe, G. Sakai, K. Shimanoe. Oxide semiconductor gas sensors. Catalysis Surveys from Asia 7 (2003) 63-75.
    [13]G. Korotcenkov. The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng., R 61 (2008) 1-39.
    [14]S. Seal, S. Shukla. Nanocrystalline SnO2 Gas Sensors in View of Surface Reactions and Modifications. JOM · September 2002.
    [15]A. Rothschild, Y. Komem. The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys.95 (2004) 6374-6380.
    [16]A. Cabot, J. Arbiol, J.R. Morante, U. Weimar, N. Barsan, W. Gopel. Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol-gel nanocrystals for gas sensors. Sens. Actuators B 70 (2000) 87-100.
    [17]M.E. Franke, T.J. Koplin, U. Simon. Metal and Metal Oxide Nanoparticles in Chemiresistors:Does the Nanoscale Matter?, small 2 (2006) 36-50.
    [18]W. Gopel, K. D. Schierbaum. SnO2 sensors:current status and future prospects. Sens. Actuators B 26-27 (1995) 1-12.
    [19]M. Schweizer-Berberich, J.G. Zheng, U. Weimar, W. Gopel, N. Barsan, E. Pentia, A. Tomescu. The effect of Pt and Pd surface doping on the response of nanocrystalline tin dioxide gas sensors to CO. Sens. Actuators B 31 (1996) 71-75.
    [20]M. D'Arienzo, L. Armelao, A. Cacciamani, C.M. Mari, S. Polizzi, R. Ruffo, R. Scotti, A. Testino, L. Wahba, F. Morazzoni. One-Step Preparation of SnO2 and Pt-Doped SnO2 As Inverse Opal Thin Films for Gas Sensing. Chem. Mater.22 (2010)4083-4089.
    [21]J.A. i Cobos. Metal Additive Distribution in TiO2 and SnO2 Semiconductor Gas Sensor Nanostructured Materials. Doctoral dissertation of Barcelona university (2001) P39.
    [22]Z.A. Ansari, T.G. Ko, J. Oh. CO-Sensing Properties of In2O3-Doped SnO2 Thick-Fim Sensors:Effect of Doping Concentration and Grain Size. IEEE Sens. J.5(2005)817-824.
    [23]A.M. Ruiz, A. Corneta, K. Shimanoe, J.R. Morante, N. Yamazoe. Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments. Sens. Actuators B 108 (2005) 34-40.
    [24]N. Yamazoe. New approaches for improving semiconductor gas sensors. Sens. Actuators B 5 (1991) 7-19.
    [25]M. Di Giulio, G. Micocci, R. Rella, P. Siciliano, A. Tepore. Properties of reactively sputtered tin oxide films as CO gas sensors. Sens. Actuators B 23 (1995) 193-195.
    [26]Z. Jin, H. Zhou, Z. Jin, R.F. Savinell, C. Liu. Application of nano-crystalline porous tin oxide thin film for CO sensing. Sens. Actuators B 52 (1998) 188-194.
    [27]A. Rosental, A. Tarre, A. Gerst, T. Uustare, V. Sammelselg. Atomic-layer chemical vapor deposition of SnO2 for gas-sensing applications. Sens. Actuators B 77 (2001) 297-300.
    [28]C.S. Moon, H. Kim, G. Auchterlonie, J. Drennan, J. Lee. Highly Sensitive and Fast Responding CO sensor using SnO2 Nanosheets. Sens. Actuators B 131 (2008) 556-564.
    [29]S. Mosadegh Sedghi, Y. Mortazavi, A. Khodadadi. Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens. Actuators B 145 (2010) 7-12.
    [30]H. Yamaura, T. Jinkawa, J. Tamaki, K. Moriya, N. Miura, N. Yamazoe. Indium oxide-based gas sensor for selective detection of CO. Sens. Actuators B 35-36 (1996)325-332.
    [31]G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, G. Carturan. Resistive CO gas sensors based on In2O3 and InSnQx nanopowders synthesized via starch-aided sol-gel process for automotive applications. Sens. Actuators B 132 (2008) 224-233.
    [32]T. Krishnakumar, R. Jayaprakash, N. Pinna, N. Donato, A. Bonavita, G. Micali, G. Neri. CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route. Sens. Actuators B 143 (2009) 198-204.
    [33]N.O. Savage, S.A. Akbar, P.K. Dutta. Titanium dioxide based high temperature carbon monoxide selective sensor. Sens. Actuators B 72 (2001) 239-248.
    [34]P.K. Dutta, M. Frank, G.W. Hunter, M. George. Reactively sputtered titania films as high temperature carbon monoxide sensors. Sens. Actuators B 106 (2005)810-815.
    [35]Ibrahim A. Al-Homoudi, J.S. Thakur, R. Naik, G.W. Auner, G. Newaz. Anatase TiO2 films based CO gas sensor:Film thickness, substrate and temperature effects. Appl. Surf. Sci.253 (2007) 8607-8614.
    [36]R.J. Wu, J.G. Wu, T.K. Tsai, C.T. Yeh. Use of cobalt oxide CoOOH in a carbon monoxide sensor operating at low temperatures. Sens. Actuators B 120 (2006) 104-109.
    [37]Y.Z. Wang, Y.X. Zhao, C.G. Gao, D.S. Liu. Origin of the High Activity and Stability of Co3O4 in Low-temperature CO Oxidation. Catal. Lett. (2008) 125:134-138.
    [38]S.M.A. Durrani. CO-sensing properties of hafnium oxide thin films prepared by electron beam evaporation. Sens. Actuators B 120 (2007) 700-705.
    [39]Z.Y. Can, H. Narita, J. Mizusaki, H. Tagawa. Detection of carbon monoxide by using zirconia oxygen sensor. Solid State Ionics 79 (1995) 344-348.
    [40]K. Zakrzewska. Mixed oxides as gas sensors. Thin Solid Films 391 (2001) 229-238.
    [41]P. Song, H. Qin, L. Zhang, X. Liu, S. Huang, J. Hu, M. Jiang. Electrical and CO gas-sensing properties of perovskite-type La0.8Pb0.2Fe0.8Co0.2O3 semiconductive materials. Physica B 368 (2005) 204-208.
    [42]P. Song, H. Qin, S. Huang, X. Liu, R. Zhang, J. Hu, M. Jiang. Characteristics and sensing properties of La0.8Pb0.2Fe1-xNixO3 system for CO gas sensors. Mater. Sci. Eng., B 138 (2007) 193-197.
    [43]L. Malavasia, C. Tealdi, G. Flor, G. Chiodelli, V. Cervetto, A. Montenero, M. Borella. NdCoO3 perovskite as possible candidate for CO-sensors:thin films synthesis and sensing properties. Sens. Actuators B 105 (2005) 407-411.
    [44]M. Ghasdi, H. Alamdari. CO sensitive nanocrystalline LaCoO3 perovskite sensor prepared by high energy ball milling. Sens. Actuators B 148 (2010) 478-485.
    [45]R. Zhang, J. Hu, M. Zhao, Z. Han, J. Wei, Z. Wu, H. Qin, K. Wang. Electrical and CO-sensing properties of SmFe0.7Co0.3O3 perovskite oxide. Mater. Sci. Eng., B 171(2010)139-143.
    [46]Z. Szklarski, K. Zakrzewska, M. Rekas. Thin oxide films as gas sensors. Thin Solid Film 174 (1989) 269-275.
    [47]J.H. Yu, G.M. Choi. Current-voltage characteristics and selective CO detection of Zn2SnO4 and ZnO/Zn2SnO4, SnO2/Zn2SnO4 layered-type sensors. Sens. Actuators B 72 (2001) 141-148.
    [48]J.L. Solis, V. Lantto. Gas-sensing properties of SnxWO3-x mixed oxide thick films. Sens. Actuators B 48 (1998) 322-327.
    [49]J.L. Solis, V. Lantto. A study of gas-sensing properties of sputtered a-SnWO4 thin films. Sens. Actuators B 2425 (1995) 591-595.
    [50]J.H. Yu, G.M. Choi. Electrical and CO gas-sensing properties of ZnO/SnO2 hetero-contact. Sens. Actuators B 61 (1999) 59-67.
    [51]U.-S. Choi, G. Sakai, K. Shimanoe, N. Yamazoe. Sensing properties of SnO2-Co3O4 composites to CO and H2. Sens. Actuators B 98 (2004) 166-173.
    [52]I.J. Kim, S.D. Han, I. Singh, H.D. Lee, J.S. Wang. Sensitivity enhancement for CO gas detection using a SnO2-CeO2-PdOx system. Sens. Actuators B 107 (2005)825-830.
    [53]J.T. McCue, J.Y. Ying. SnO2-In2O3 Nanocomposites as Semiconductor Gas Sensors for CO and NOx Detection. Chem. Mater.19 (2007) 1009-1015.
    [54]S. Habibzadeh, A.A. Khodadadi, Y. Mortazavi. CO and ethanol dual selective sensor of Sm2O3-doped SnO2 nanoparticles synthesized by microwave-induced combustion. Sens. Actuators B 144 (2010) 131-138.
    [55]S. Wang, Y. Zhao, J. Huang, Y. Wang, H. Ren, S. Wu, S. Zhang, W. Huang. Low-temperature CO gas sensors based on Au/SnO2 thick film. Appl. Surf. Sci. 253(2007)3057-3061.
    [56]L. H. Qian et al. CO sensor based on Au-decorated SnO2 nanobelt. Mater. Chem. Phys.100(2006)82-84.
    [57]N.S. Ramgir, Y.K. Hwang, S.H. Jhung, H.K. Kim, J.S. Hwang, I.S. Mulla, J.S. Chang. CO sensor derived from mesostructured Au-doped SnO2 thin film. Appl. Surf. Sci.252 (2006) 4298-4305.
    [58]N.S. Ramgir, Y.K. Hwang, S.H. Jhung, I.S. Mulla, J.S. Chang. Effect of Pt concentration on the physicochemical properties and CO sensing activity of mesostructured SnO2. Sens. Actuators B 114 (2006) 275-282.
    [59]M. Yuasaa, T. Masaki, T. Kida, K. Shimanoe, N. Yamazoe. Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor. Sens. Actuators B 136 (2009) 99-104.
    [60]I. Kocemba, J. Rynkowski. The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen. Sens. Actuators B 155 (2011)659-666.
    [61]R. Wang, D. Zhang, W. Sun, Z. Han, C. Liu. A novel aluminum-doped carbon nanotubes sensor for carbon monoxide. J. Mol. Struct.:THEOCHEM 806 (2007) 93-97.
    [62]R. Mota, Solange B. Fagan, A. Fazzio. First principles study of titanium-coated carbon nanotubes as sensors for carbon monoxide molecules. Surf. Sci.601 (2007)4102-4104.
    [63]J.C. Obirai, G. Hunterb, P.K. Dutta. Multi-walled carbon nanotubes as high temperature carbon monoxide sensors. Sens. Actuators B 134 (2008) 640-646.
    [64]R.J. Wu, J.G. Wu, M.R. Yu, T.K. Tsai, C.T. Yeh. Promotive effect of CNT on Co3O4-SnO2 in a semiconductor-type CO sensor working at room temperature. Sens. Actuators B 131 (2008) 306-312.
    [65]R.J. Wu, W.C. Chang, K.M. Tsai, J.G. Wu. The Novel CO sensing material COOOH-WO3 with Au and SWCNT performance enhancement. Sens. Actuators B 138 (2009) 35-41.
    [66]F. Hernandez-Ramirez, A. Tarancon, O. Casals, J. Arbiol, A. Romano-Rodri guez, J.R. Morante. High response and stability in CO and humidity measures using a single SnO2 nanowire. Sens. Actuators B 121 (2007) 3-17.
    [67]Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, Y. Li. O2 and CO sensing of Ga2O3 multiple nanowire gas sensors. Sens. Actuators B 129 (2008) 666-670.
    [68]L. Chen, Z. Liu, S. Bai, K. Zhang., D. Li, A. Chen, C.C. Liu. Synthesis of 1-dimensional ZnO and its sensing property for CO. Sens. Actuators B 143 (2010) 620-628.
    [69]D. Patil, P. Patil, V. Subramanian, P.A. Joy, H.S. Potdar. Highly sensitive and fast responding CO sensor based on Co3O4 nanorods. Talanta 81 (2010) 37-43.
    [70]J.H. Kim, S.H. Kim, S. Shiratori. Fabrication of nanoporous and hetero structure thin film via a layer-by-layer self assembly method for a gas sensor. Sens. Actuators B 102 (2004) 241-247.
    [71]Y. Shimizu, A. Jono, T. Hyodo, M. Egashira. Preparation of large mesoporous SnO2 powder for gas sensor application. Sens. Actuators B 108 (2005) 56-61.
    [72]C.J. Martinez, B. Hockey, C.B. Montgomery, S. Semancik. Porous Tin Oxide Nanostructured Microspheres for Sensor Applications. Langmuir 21 (2005) 7937-7944.
    [73]K. Chien, T.W. Coyle. Rapid and Continuous Deposition of Porous Nanocrystalline SnO2 Coating with Interpenetrating Pores for Gas Sensor Applications. J. Therm. Spray Technol.16 (2007) 886-892.
    [74]D. Wang, P. Hu, J. Xu, X. Dong, Q. Pan. Fast response chlorine gas sensor based on mesoporous SnO2. Sens. Actuators B 140 (2009) 383-389.
    [75]C. Lu, Z. Chen. High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide. Sens. Actuators B 140 (2009) 109-115.
    [76]T. Wagner, T. Sauerwald, C.-D. Kohl, T. Waitz, C. Weidmann, M. Tiemann. Gas sensor based on ordered mesoporous In2O3. Thin Solid Films 517 (2009) 6170-6175.
    [77]H. Li, F. Meng, Y. Sun, J. Liu, Y. Wan, B. Sun, J. Liu. Mesoporous SnO2 sensor prepared by carbon nanotubes as template and its sensing properties to indoor air pollutants. Procedia Engineering 7 (2010) 172-178.
    [78]P. Sun, W. Zhao, Y. Cao, Y. Guan, Y. Sun, G. Lu. Porous SnO2 hierarchical nanosheets:hydrothermal preparation, growth mechanism, and gas sensing properties. CrystEngComm 13 (2011) 3718-3724.
    [79]T. Hyodo, N. Nishida, Y. Shimizu, M. Egashira. Preparation and gas-sensing properties of thermally stable mesoporous SnO2. Sens. Actuators B 83 (2002) 209-215.
    [80]T. Wagner, T. Waitz, J. Roggenbuck, M. Froba, C.-D. Kohl, M. Tiemann. Ordered mesoporous ZnO for gas sensing. Thin Solid Films 515 (2007) 8360-8363.
    [81]L.L. Li, W.M. Zhang, Q. Yuan, Z.X. Li, C.J. Fang, L.D. Sun, L.J. Wan, C.H. Yan. Room Temperature Ionic Liquids Assisted Green Synthesis of Nanocrystalline Porous SnO2 and Their Gas Sensor Behaviors. Crys. Growth Des.8(2008)4166-4172.
    [82]C.Y. Liu, C.F. Chen, J.P. Leu. Fabrication and CO Sensing Properties of Mesostructured ZnO Gas Sensors. J. Electrochem. Soc.156 (2009) 116-119.
    [83]F. Gyger, M. Hubner, C. Feldmann, N. Barsan, U. Weimar. Nanoscale SnO2 Hollow Spheres and Their Application as a Gas-Sensing Material. Chem. Mater. 22(2010)4821-4827.
    [84]C.R. Michel. CO and CO2 gas sensing properties of mesoporous CoAl2O4. Sens. Actuators B 147 (2010) 635-641.
    [85]K.I. Choi, H.R. Kim, J.H. Lee. Enhanced CO sensing characteristics of hierarchical and hollow In2O3 Microspheres. Sens. Actuators B 138 (2009) 497-503.
    [86]H.G. Moon, Y.S. Shim, H.W. Jang, J.S. Kim, K.J. Choi, C.Y. Kang, J.W. Choi, H.H. Park, S.J. Yoon. Highly sensitive CO sensors based on cross-linked TiO2 hollow hemispheres. Sens. Actuators B 149 (2010) 116-121.
    [87]马戎,周王民,陈明.气体传感器的研究及发展方向.航空计测技术24(2004)1-4.
    [88]王彩虹.金属(复合)氧化物气敏材料的制备及气敏性能研究.博士论文P12-14.
    [89]D.E. Williams. Semiconducting oxides as gas-sensitive resistors. Sens. Actuators B 57 (1999) 1-16.
    [90]IUPAC, manual of symbols and terminology. Pure Appl. Chem.31 (1972) 578-638.
    [91]C. Hu, Z. Gao, X. Yang. A facile hydrothermal route to synthesis of nonporous and porous hierarchical copper dendrites. J. Cryst. Growth 306 (2007) 390-394.
    [92]S.C. Yeow, W.L. Onga, A.S.W. Wong, G.W. Ho. Template-free synthesis and gas sensing properties of well-controlled porous tin oxide nanospheres. Sens. Actuators B 143 (2009) 295-301.
    [93]C. Gu, J. Huang, Y. Wu, M. Zhai, Y. Sun, J. Liu. Preparation of porous flower-like ZnO nanostructures and their gas-sensing property. J. Alloys Compd. 509(2011)4499-4504.
    [94]J. Klein, C. Lettmann, W.F. Maier. Thermally stable, silica-based amorphous porous mixed oxides prepared by sol-gel procedures. J. Non-Cryst. Solids 282 (2001)203-220.
    [95]M. Verdenelli, S. Parola, F. Chassagneux, J.M. Letoffe, H. Vincent, J.P. Scharff, J. Bouix. Sol-gel preparation and thermo-mechanical properties of porous xAl203-ySi02 coatings on SiC Hi-Nicalon fibres. J. Eur. Ceram. Soc.23 (2003) 1207-1213.
    [96]J. Macan, A. Gajovic, H. Ivankovic. Porous zirconium titanate ceramics synthesized by sol-gel process. J. Eur. Ceram. Soc.29 (2009) 691-696.
    [97]C. X. Shan, Z. Liu, Z. Z. Zhang, D. Z. Shen, S. K. Hark. A Simple Route to Porous ZnO and ZnCdO Nanowires. J. Phys. Chem. B 110 (2006) 11176-11179.
    [98]H. Yu, D. Wang, M.Y. Han. Top-Down Solid-Phase Fabrication of Nanoporous Cadmium Oxide Architectures. J. Am. Chem. Soc.129 (2007) 2333-2337.
    [99]A. Hadi, I.I. Yaacob. Novel synthesis of nanocrystalline CeO2 by mechanochemical and water-in-oil microemulsion methods. Mater. Let.61 (2007) 93-96.
    [100]R. Xu, J. Wang, Q. Li, G. Sun, E. Wang, S. Li, J. Gu, M. Ju. Porous cobaltoxide (Co3O4) nanorods:Facile syntheses, optical property and application inlithium-ion batteries. J. Solid State Chem.182 (2009) 3177-3182.
    [101]Z. Liu, T. Fan, W. Zhang, D. Zhang. The synthesis of hierarchical porous iron oxide with wood templates. Microporous Mesoporous Mater.85 (2005) 82-88.
    [102]Y. Fu, Z. Jin, Z. Liu, W. Li. Preparation of ordered porous SnO2 films by dip-drawing method with PS colloid crystal templates. J. Eur. Ceram. Soc.27 (2007)2223-2228.
    [103]A.E. Kadib, K. Molvinger, T. Cacciaguerra, M. Bousmina, D. Brunel. Chitosan templated synthesis of porous metal oxide microspheres with filamentary nanostructures. Microporous Mesoporous Mater.142 (2011) 301-307.
    [104]J. Wang, J. Zhou, Z. Li, Y. He, S. Lin, Q. Liu, M. Zhang, Z. Jiang. Mesoporous mixed metal oxides derived from P123-templated Mg-Al layered double hydroxides. J. Solid State Chem.183 (2010) 2511-2515.
    [105]A.B. Fuertes. A general and low-cost synthetic route to high-surface area metal oxides through a silica xerogel template. J. Phys. Chem. Solids 66 (2005) 741-747.
    [106]刘友文,曹元媛,沈毅.多孔金属氧化物的制备方法简述.陶瓷学报32(2011)135-138.
    [107]刘秀琳,徐红燕,孟宪平,李梅,崔得良,宋云京,白见强,李木森.利用溶剂热压方法制备羟基磷灰石多孔纳米固体.物理化学学报20(2004)608-611.
    [108]刘秀琳,徐红燕,李梅,孟宪平,王琪珑,蒋民华,崔得良.二氧化锆多孔纳米固体的制备与性质表征.功能材料增刊35(2004).
    [109]H. Xu, X. Liu, M. Li, Z. Chen, D. Cui, M. Jiang, X. Meng, L. Yu, C. Wang. Preparation and characterization of TiO2 bulk porous nanosolids. Mater. Lett.59 (2005) 1962-1966.
    [110]W. Wu, G.H. Nancollas. A New Understanding of the Relationship Between Solubility and Particle Size. J. Solution Chem.27 (1998) 521-531.
    [111]孟宪平.微孔型无机粉末的水热热压固化及固化体性能研究.吉林大学博 士论文,P10.
    [112]刘秀琳,余丽丽,徐红燕,李梅,王成建,蒋民华,崔得良.Ti02多孔纳米固体对罗丹明B的热催化降解作用.化学学报62(2004)2398-2402.
    [113]刘秀琳,徐红燕,余丽丽,李梅,王成建,崔得良,蒋民华.ZnO纳米颗粒的自组装及多孔纳米固体的研制.科学通报49(2004)2410-2415.
    [114]李梅,刘秀琳,徐红燕,崔得良,任燕,孙海燕,陶绪堂,蒋民华.水和辛胺对ZnO多孔纳米块体孔道结构的影响.化学学报63(2005)1510-1514.
    [115]X.L. Liu, D.L. Cui. Photoluminescence enhancement of ZrO2/Rhodamine B nanocomposites. J. Mater. Sci.40 (2005) 1111-1114.
    [116]H. Xu, X. Liu, D. Cui, M. Li, M. Jiang. A novel method for improving the performance of ZnO gas sensors. Sens. Actuators B 114 (2006) 301-307.
    [117]Q. Yu, K. Wang, C. Luan, Y. Geng, G. Lian, D. Cui. A dual-functional highly responsive gas sensor fabricated from SnO2 porous nanosolid. Sens. Actuators B 159(2011)271-276.
    [1]Y.H. Choi, S.H. Hong. H2 sensing properties in highly oriented SnO2 thin films. Sens. Actuators B 125 (2007) 504-509.
    [2]B.K. Min, S.D. Choi. Undoped and 0.1wt.% Ca-doped Pt-catalyzed SnO2 sensors for CH4 detection. Sens. Actuators B 108 (2005) 119-124.
    [3]D. Haridas, K. Sreenivas, V. Gupta. Improved response characteristics of thin film loaded with nanoscale catalysts for LPG detection. Sens. Actuators B 133(2008)270-275.
    [4]郭键,王汝琳,李明.火灾探测技术的现状及发展方向.辽宁工程技术大学学报23(2004)208-210.
    [5]T.K.H. Starke, G.S.V. Coles. Laser-ablated nanocrystalline SnO2 material for low-level CO detection. Sens. Actuators B 88 (2003) 227-233.
    [6]S.M.A. Durrani, E.E. Khawaja, M.F. Al-Kuhaili. CO-sensing properties of undoped and doped tin oxide thin film prepared by electron beam evaporation. Talanta65 (2005) 1162-1167.
    [7]X. Du, S.M. George. Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition. Sens. Actuators B 135 (2008)152-160.
    [8]O. Wurzinger, G Reinhardt. CO-sensing properties of doped SnO2 sensors in H2-rich gases. Sens. Actuators B 103 (2004) 104-110.
    [9]S.H. Hahn, N. Barsan, U. Weimar, S.G. Ejakov, J.H. Visser, R.E. Soltis. CO sensing with SnO2 thick film sensors:role of oxygen and water vapor. Thin Solid Films 436 (2003) 17-24.
    [10]U.-S. Choi, G. Sakai, K. Shimanoe, N. Yamazoe. Sensing properties of SnO2-Co3O4 composites to CO and H2. Sens. Actuators B 98 (2004) 166-173.
    [11]A. Khodadadi, S.S. Mohajerzadeh, Y. Mortazavi, A.M. Miri. Cerium oxide/SnO2-based semiconductor gas sensors with improved sensor response to CO. Sens. Actuators B 80 (2001) 267-271.
    [12]A. Srivastava, Rashmi, K. Jain. Study on ZnO-doped tin oxide thick film gas sensors. Mater. Chem. Phys.105 (2007) 385-390.
    [13]S. Wang, Y. Zhao, J. Huang, Y. Wang, S. Wu, S. Zhang, W. Huang. Low-temperature carbon monoxide gas sensors based gold/tin dioxide. Solid-State Electron.50 (2006) 1728-1731.
    [14]B. Esfandyarpour, S. Mohajerzadeh, S. Famini, A. Khodadadi, E. Asl Soleimani. High sensor response Pt-doped SnO2 gas sensors fabricated using sol-gel solution on micromachined (100) Si substrates. Sens. Actuators B 100 (2004) 190-194.
    [15]C.T. Wang, M.T. Chen. Vanadium-promoted tin oxide semiconductor carbon monoxide gas sensors. Sens. Actuators B 150 (2010) 360-366.
    [16]S. Habibzadeh, A.A. Khodadadi, Y. Mortazavi. CO and ethanol dual selective sensor of Sm2O3-doped SnO2 nanoparticles synthesized by microwave-induced combustion. Sens. Actuators B 144 (2010) 131-138.
    [17]Z. Jin, H.J. Zhou, Z.L. Jin, R.F. Savinell, C.C. Liu. Application of nano-crystalline porous tin oxide thin film for CO sensing. Sens. Actuators B 52(1998)188-194.
    [18]Y. Wang, X. Wu, Y. Li, Z. Zhou. Mesostructured SnO2 as sensing material for gas sensors. Solid-State Electron.48 (2004) 627-632.
    [19]T. Hyodo, K. Sasahara, Y. Shimizu, M. Egashira. Preparation of macroporous SnO2 films using PMMA microspheres and their sensing properties to NOx and H2. Sens. Actuators B 106 (2005) 580-590.
    [20]Y. Zong, Y. Cao, D. Jia, P. Hu. The enhanced gas sensing behavior of porous nanocrystalline SnO2 prepared by solid-state chemical reaction. Sens. Actuators B 145 (2010) 84-88.
    [21]K.I. Choi, H.R. Kim, J.H. Lee. Enhanced CO sensing characteristics of hierarchical and hollow In2O3 microspheres. Sens. Actuators B 138 (2009) 497 503.
    [22]F. Meng, J. Yin, Y.Q. Duan, Z.H. Yuan, L.J. Bie. Co-precipitation synthesis and gas-sensing properties of ZnO hollow sphere with porous shell. Sens. Actuators B 156 (2011) 703-708.
    [23]A.A. Firooz, T. Hyodo, A.R. Mahjoub, A.A. Khodadadi, Y. Shimizu. Synthesis and gas-sensing properties of nano-and meso-porous MoO3-doped SnO2. Sens. Actuators B 147 (2010) 554-560.
    [24]G. Korotcenkov. Gas response control through structural and chemical modification of metal oxide films:state of the art and approaches. Sens. Actuators B 107 (2005) 209-232.
    [25]H.Y. Xu, X.L. Liu, D.L. Cui, M. Li, M.H. Jiang. A novel method for improving the performance of ZnO gas sensor. Sens. Actuators B 114 (2006) 301-307.
    [26]M.F. Al-Kuhaili, S.M.A. Durrani, I.A. Bakhtiari. Carbon monoxide gas-sensing properties of CeO2-ZnO thin films. Appl. Surf. Sci.255 (2008) 3033-3039.
    [27]J.F. Chang, H.H. Kuo, I.C. Leu, M.H. Hon. The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor. Sens. Actuators. B 84 (2002)258-264.
    [28]S. Abe, U.-S. Choi, K. Shimanoe, N. Yamazoe. Influences of ball-milling time on gas-sensing properties of Co3O4-SnO2 composites. Sens. Actuators B 107 (2005)516-522.
    [29]C. Kittel. Introduction to Solid State Physics. John Wiley and Sons, Inc.,1986, pp.515-618.
    [30]S. Saukko, U. Lassi, V. Lantto, M. Kroneld, S. Novikov, P. Kuivalainen, T.T. Rantala, J. Mizsei. Experimental studies of O2-SnO2 surface interaction using powder, thick films and monocrystalline thin films. Thin Solid Film 490 (2005) 48-53.
    [31]F. Gaillard, M. Abdat, J.P. Joly, A. Perrard. An intermittent temperature-programmed desorption method for studying kinetics of desorption from heterogeneous surfaces. Appl. Surf. Sci.238 (2004) 91-96.
    [1]S.D. Choi, B.K. Min. Co3O4-based isobutane sensor operating at low temperatures. Sens. Actuators B 77 (2001) 330-334.
    [2]J. Jansson, A.E.C. Palmqvist, E. Fridell, M. Skoglundh, L. osterlund, P. Thormahlen, V. Langer. On the Catalytic Activity of CO3O4 in Low-Temperature CO Oxidation. J. Catal.211 (2002) 387-397.
    [3]Y. Yu, T. Takei, H. Ohashi, H. He, X. Zhang, M. Haruta. Pretreatments of CO3O4 at moderate temperature for CO oxidation at -80℃. J. Catal.267 (2009) 121-128.
    [4]J. Jansson. Low-Temperature CO Oxidation over Co3O4/Al2O3. J. Catal.194 (2000) 55-60.
    [5]H. Yamaura, K. Moriya, N. Miura, N. Yamazoe. Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide. Sens. Actuators B 65(2000)39-41.
    [6]H.J. Lee, J.H. Song, Y.S. Yoon, T.S. Kim, K.J. Kim, W.K. Choi. Enhancement of CO sensitivity of indium oxide-based semiconductor gas sensor through ultra-thin cobalt adsorption. Sens. Actuators B 79 (2001) 200-205.
    [7]R.J. Wu, C.H. Hu, C.T. Yeh, P.G. Su. Nanogold on powdered cobalt oxide for carbon monoxide sensor. Sens. Actuators B 96 (2003) 596-601.
    [8]S. Abe, U.-S. Choi, K. Shimanoe, N. Yamazoe. Influences of ball-milling time on gas-sensing properties of Co3O4-SnO2 composites. Sens. Actuators B 107(2005)516-522.
    [9]R.J. Wu, J.G. Wu, M.R. Yu, T.K. Tsai, C.T. Yeh. Promotive effect of CNT on Co3O4-SnO2 in a semiconductor-type CO sensor working at room temperature. Sens. Actuators B 131 (2008) 306-312.
    [10]U.-S. Choi, G. Sakai, K. Shimanoe, N. Yamazoe. Sensing properties of Au-loaded SnO2-Co3O4 composites to CO and H2. Sens. Actuators B 107 (2005) 397-401.
    [11]D. Patil, P. Patil, V. Subramanian, P.A. Joy, H.S. Potdar. Highly sensitive and fast responding CO sensor based on Co3O4 nanorods. Talanta 81 (2010) 37-43.
    [12]N. Yamazoe. New approaches for improving semiconductor gas sensors. Sens. Actuators B 5 (1991) 7-19.
    [13]N. Yamazoe, Y. Kurokawa, T. Seiyama. Effect of additives on semiconductor gas sensors. Sens. Actuators B 4 (1983) 283-289.
    [14]T. Maekawa, J. Tamaki, N. Miwra. N. Yamazoe. Sensing behavior of CuO-loaded SnO2 element for H2S detection. Chem. Lett.1991 (1991) 575-578.
    [15]U.-S. Choi, G. Sakai, K. Shimanoe, N. Yamazoe. Sensing properties of SnO2-Co3O4 composites to CO and H2. Sens. Actuators B 98 (2004) 166-173.
    [16]G. Sakai, N. Matswnaga, K. Shimanoe. N. Yamazoe. Theory of gas-diffusion controlled sensitivity for thin film semicongductor gas sensor. Sens. Actuators B 80 (2001) 125-131.
    [17]U.-S. Choi, G. Sakai, K. Shimanoe, N. Yamazoe. Ultrasensitive gas sensor using Co3O4-modified SnO2, in:The American Ceramic Engineering and Science Proceedings 24 (2003) 101-106.
    [18]N.D. Hoa, N.V. Quy, H. Jung, D. Kim, H. Kim, S.K. Hong. Synthesis of porous CuO nanowires and its application to hydrogen detection. Sens. Actuators B 146 (2010)266-272.
    [19]Y. Liu, L. Liao, J. Li, C. Pan. From Copper Nanocrystalline to CuO Nanoneedle Array:Synthesis, Growth Mechanism, and Properties. J. Phys. Chem. C 111 (2007) 5050-5056.
    [20]S.W. Choi, J.Y. Park, S. S. Kim. Growth behavior and sensing properties of nanograins in CuO nanofibers. Chem. Eng. J.172 (2011) 550-556.
    [21]Y. Li, J. Liang, Z. Tao, J. Chen. CuO particles and plates:Synthesis and gas-sensor application. Mater. Res. Bull.43 (2008) 2380-2385.
    [22]M. Yang, J. He, X. Hu, C. Yan, Z. Cheng. CuO Nanostructures As Quartz Crystal Microbalance Sensing Layers for Detection of Trace Hydrogen Cyanide Gas. Environ. Sci. Technol.45 (2011) 6088-6094.
    [23]P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong, S. Choopun. Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction. Ceram. Int.35 (2009) 649-652.
    [24]A. Aslani, V. Oroojpour. CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route. Physica B 406 (2011) 144-149.
    [25]M. Hiibner, C.E. Simion, A. Tomescu-Stanoiu, S. Pokhrel, N. Barsan, U. Weimar. Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens. Actuators B 153 (2011) 347-352.
    [26]H. Yamaura, Y. Iwasaki, S. Hirao, H. Yahiro. CuO/SnO2-In2O3 sensor for monitoring CO concentration in a reducing atmosphere. Sens. Actuators B 153 (2011)465-467.
    [27]H. Wei, H. Sun, S. Wang, G. Chen, Y. Hou, H. Guo, X. Ma. Low temperature H2S sensor based on copper oxide/tin dioxide thick film. J. Nat. Gas Chem.19 (2010)393-396.
    [28]S. Aygun, D. Cann. Hydrogen sensitivity of doped CuO/ZnO heterocontact sensors. Sens. Actuators B 106 (2005) 837-842.
    [29]H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu. Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens. Actuators B 115 (2006) 247-251.
    [30]L.A. Patil, D.R. Patil. Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature. Sens. Actuators B 120 (2006)316-323.
    [31]X. Zhou, Q. Cao, H. Huang, P. Yang, Y. Hu. Study on sensing mechanism of CuO-SnO2 gas sensors. Mater. Sci. Eng., B 99 (2003) 44-47.
    [32]Y. Hu, X. Zhou, Q. Han, Q. Cao, Y. Huang. Sensing properties of CuO-ZnO heterojunction gas sensors. Mate. Sci. Eng., B 99 (2003) 41-43
    [33]胡英,周晓华,魏红军,CuO-ZnO异质结半导体陶瓷气敏机理的研究.功能材料与器件学报6(4)(2000)408-412.
    [34]S.R. Dhage, Violet Samuel, Renu Pasricha, V. Ravi. Studies on SnO2-ZrO2 solid solution. Ceram. Int.32 (2006) 939-941.
    [35]Z. Luo, J. Xiao, F. Xia. Preparation and analysis of zirconia oxygen sensors. Trans. Nonferrous Met. Soc. China 16 (2006) 82-87.
    [36]V.V. Plashnitsa, P. Elumalai, T. Kawaguchi, Y. Fujio, N. Miura. Highly Sensitive and Selective Zirconia-Based Propene Sensor using Nanostructured Gold Sensing Electrodes Fabricated from Colloidal Solutions. J. Phys. Chem. C 113(2009)7857-7862.
    [37]G. Lu, N. Miura, N. Yamazoe. High-temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode. Sens. Actuators B 35-36 (1996) 130-135.
    [38]N. Miura, T. Raisen, G. Lu, N. Yamazoe. Highly selective CO sensor using stabilized zirconia and a couple of oxide electrodes. Sens. Actuators B 47 (1998) 84-91.
    [39]J. Wang, M.Y. Su, J.Q. Qi, L.Q. Chang. Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors. Sens. Actuators B 139 (2009) 418-424.
    [40]K. Mochizuki, R. Sorita, H. Takashima, K. Nakamura, G. Lu. Sensing characteristics of a zirconia-based CO sensor made by thick-film lamination. Sens. Actuators B 77 (2001) 190-195.
    [41]王焕新,胡平,王晓华,徐甲强,李超.氧化铈掺杂对氧化铟气敏特性的影响.Chinese Rare Earths 28 (2) (2007) 1-6.
    [42]孔祥晋,潘湛昌,肖楚民,张环华.纳米氧化铈催化作用研究探讨.化学与生物工程2(2005)1-3.
    [43]N. Izu, W. Shin, N. Murayama. Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder. Sens. Actuators B 93 (2003) 449-453.
    [44]A. Trinchi, Y.X. Li, W. Wlodarski, S. Kaciulis, L. Pandolfi, S. Viticoli, E. Comini, G. Sberveglieri. Investigation of sol-gel prepared CeO2-TiO2 thin films for oxygen gas sensing. Sens. Actuators B 95 (2003) 145-150.
    [45]R. Bene, I.V. Perczel, F. Reti, F.A. Meyer, M. Fleisher, H. Meixner. Chemical reactions in the detection of acetone and NO by a CeO2 thin film. Sens. Actuators B 71 (2000) 36-41.
    [46]G. Fang, Z. Liu, C. Liu, K. Yao. Room temperature H2S sensing properties and mechanism of CeO2-SnO2 sol-gel thin films. Sens. Actuators B 66 (2000) 46-48.
    [47]G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, S. Capone, P. Siciliano. Methanol gas-sensing properties of CeO2-Fe2O3 thin films. Sens. Actuators B 114 (2006) 687-695.
    [48]M.F. Al-Kuhaili, S.M.A. Durrani, I.A. Bakhtiari. Carbon monoxide gas-sensing properties of CeO2-ZnO thin films. Appl. Surf. Sci.255 (2008) 3033-3039.
    [49]F. Pourfayaz, Y. Mortazavi, A. Khodadadi, S. Ajami. Ceria-doped SnO2 sensor highly selective to ethanol in humid air. Sens. Actuators B 130 (2008) 625-629.
    [50]E. S. Putna, R. J. Gorte, J. M. Vohs, G. W. Graham. Evidence for enhanced dissociation of CO on Rh/Ceria. J. Catal.178 (1998) 598-603.
    [51]N. Izu, S. Nishizaki, T. Itoh, M. Nishibori, W. Shin, I. Matsubara. Gas response, response time and selectivity of a resistive CO sensor based on two connected CeO2 thick films with various particle sizes. Sens. Actuators B 136 (2009) 364-370.
    [52]S.M.A. Durrani, M.F. Al-Kuhaili, I.A. Bakhtiari. Carbon monoxide gas-sensing properties of electron-beam deposited cerium oxide thin films. Sens. Actuators B 134(2008)934-939.
    [53]A. Khodadadi, S.S. Mohajerzadeh, Y. Mortazavi, A.M. Miri. Cerium oxide/SnO2-based semiconductor gas sensors with improved sensitivity to CO. Sens. Actuators B 80 (2001) 267-271.
    [54]M. Ferroni, V. Guidi, G. Martinelli, P. Nelli, M. Sacerdoti, G. Sberveglieri. Characterization of a molybdenum oxide sputtered thin film as a gas sensor. Thin Solid Films 307 (1997) 148-151.
    [55]S.M.A. Durrani, M.F. Al-Kuhaili, I.A. Bakhtiari. Carbon monoxide gas-sensing properties of electron-beam deposited cerium oxide thin films. Sens. Actuators B 134 (2008)934-939.
    [56]M.J. Madou, S.R. Morrison. Chemical Sensing with Solid State Devices. Academic Press, Inc, New York,1989.
    [57]Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani. Influence of annealing on microstructure and NO2-sensing properties of sputtered WO3 thin films. Sens. Actuators B 128 (2007) 173-178.
    [58]D. Koziej, K. Thomas, N. Barsan, F. Thibault-Starzyk, U. Weimar. Influence of annealing temperature on the CO sensing mechanism for tin dioxide based sensors-Operando studies. Catal. Today 126 (2007) 211-218.
    [59]D. Barreca, A. Gasparotto, C. Maccato, C. Maragno. Columnar CeO2 nanostructures for sensor application. Nanotechnology 18 (2007) 125502.
    [60]Y.K. Jun, H.S. Kim, J.H. Lee, S.H. Hong. High H2 sensing behavior of TiO2 films formed by thermal oxidation. Sens. Actuators B 107 (2005) 264-270.
    [61]M.H. Seo, M. Yuasa, T. Kida, S.S. Huh, N. Yamazoe, K. Shimanoe. Microstructure control of TiO2 nanotubular films for improved VOC sensing. Sens. Actuators B 154 (2011) 251-256.
    [62]N.O. Savage, S.A. Akbar, P.K. Dutta. Titanium dioxide based high temperature carbon monoxide selective sensor. Sens. Actuators B 72 (2001) 239-248.
    [63]C.M. Carney, S. Yoo, S.A. Akbar. TiO2-SnO2 nanostructures and their H2 sensing behavior. Sens. Actuators B 108 (2005) 29-33.
    [64]W.P. Tai, J.H. Oh. Fabrication ang humidity sening properties of nanostructured TiO2-SnO2 thin films. Sens. Actuators B 85 (2002) 154-157.
    [65]J.S. Chen, H.L. Li, J.L. Huang. Structural and CO sensing characteristics of Ti-added SnO2 thin films. Appl. Surf. Sci.187 (2002) 305-312.
    [1]Salehi. A highly sensitive self heated SnO2 carbon monoxide sensor. Sens. Actuators B 96 (2003) 88-93.
    [2]A. Wisitsoraat, A. Tuantranont, V. Patthanasettakul, T. Lomas, P. Chindaudom. Ion-assisted e-beam evaporated gas sensor for environmental monitoring. Sci. Technol. Adv. Mater.6 (2005) 261-265.
    [3]Y.C. Lee, H. Huang, O.K. Tan, M.S. Tse. Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films. Sens. Actuators B 132 (2008) 239-242.
    [4]S.M. Sedghi, Y. Mortazavi, A. Khodadadi. Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens. Actuators B 145 (2010) 7-12.
    [5]A.K. Mukhopadhyay, P. Mitra, A.P. Chatterjee, H.S. Maiti. Tin dioxide thin film gas sensor. Ceram. Int.26 (2000) 123-132.
    [6]D.S. Vlachos, P.D. Skafidas, J.N. Avaritsiotis. The effect of humidity on tin-oxide thick-film gas sensors in the presence of reducing and combustible gases. Sens. Actuators B 24-25 (1995) 491-494.
    [7]V.S. Vaishnav, P.D. Patel, N.G. Patel. Indium Tin Oxide thin film gas sensors for detection of ethanol vapours. Thin Solid Films 490 (2005) 94-100.
    [8]K. Arshak, I. Gaidan. Development of a novel gas sensor based on oxide thick films. Mater. Sci. Eng., B 118 (2005) 44-49.
    [9]G. Martinelli, M.C. Carotta. Thick-film gas sensors. Sens. Actuators B 23 (1995) 157-161.
    [10]H.M. Martinez, N.E. Rincon, J. Torres, J.E. Alfonso. Porous silicon thin film as CO sensor. Microelectron. J.39 (2008) 1354-1355.
    [11]S. Lee, G.G. Lee, J. Kim, S.J.L. Kang. A novel process for fabrication of SnO2-based thick film gas sensors. Sens. Actuators B 123 (2007) 331-335.
    [12]G. Korotcenkov, B.K. Cho. Thin film SnO2-based gas sensors:Film thickness influence. Sens. Actuators B 142 (2009) 321-330.
    [13]A. Sharma, M. Tomar, V. Gupta. SnO2 thin film sensor with enhanced response for NO2 gas at lower temperatures. Sens. Actuators B 156 (2011) 743-752.
    [14]G. Neri, A. Bonavita, S. Galvagno, P. Siciliano, S. Capone. CO and NO2 sensing properties of doped-Fe2O3 thin films prepared by LPD. Sens. Actuators B 82 (2002) 40-47.
    [15]S.H. Hahn, N. Barsana, U. Weimar, S.G. Ejakov, J.H. Visser, R.E. Soltis. CO sensing with SnO2 thick film sensors:role of oxygen and water vapour. Thin Solid Films 436 (2003) 17-24.
    [16]S. Wang, Yi. Zhao, J. Huang, Y. Wang, H. Ren, S. Wu, S. Zhang, W. Huang. Low-temperature CO gas sensors based on Au/SnO2 thick film. Appl. Surf. Sci. 253(2007)3057-3061.
    [17]A. Tricoli, A. Teleki, M. Righettoni. Semiconductor gas sensors:dry synthesis and application. Angew. Chem. Int. Ed.49 (2010) 7632-7659.
    [18]H. Xu, X. Liu, D. Cui, M. Li, M. Jiang. A novel method for improving the performance of ZnO gas sensors. Sen. Actuators B 114 (2006) 301-307.
    [19]L. Sun, F. Qiu, B. Quan. Investigation of a new catalytic combustion-type CHU gas sensor with low power consumption. Sens. Actuators B 66 (2000) 289-292.
    [20]S.K. Song, J.S. Cho, W.K. Choi, H.J. Jung, D. Choi, J.Y. Lee, H.K. Baik, S.K. Koh. Structure and gas-sensing characteristics of undoped tin oxide thin films fabricated by ion-assisted deposition. Sens. Actuators B 46 (1998) 42-49.
    [21]Y.L. Chai, D.T. Ray, H.S. Liu, C.F. Dai, Y.H. Chang. Characteristics of La0.8Sr0.2Co1-xCuxO3-δ film and its sensing properties for CO gas. Mater. Sci. Eng., A 293 (2000) 39-45.
    [22]C.M. Chiu, Y.H. Chang. Characteristics and sensing properties of dipped La0.8Sr0.2Co1-xNixO3-δ film for CO gas sensors. Thin Solid Films 342 (1999) 15-19.
    [23]P. Song, H. Qin, L. Zhang, X. Liu, S. Huang, J. Hu, M. Jiang. Electrical and CO gas-sensing properties of perovskite-type La0.8Pb0.2Fe0.8Co0.2O3 semiconductive materials. Physica B 368 (2005) 204-208.
    [24]Y.C. Chen, Y.H. Chang, G.J. Chen, Y.L. Chai, D.T. Ray. The sensing properties of heterojunction SnO2/La0.8Sr0.2Co0.5Ni0.5O3 thin-film CO sensor. Sens. Actuators B 96 (2003) 82-87.
    [25]H. Ogawa, M. Nishikawa, A. Abe. Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J. Appl. Phys.53 (1982) 4448-4455.
    [26]P. Song, H. Qin, S. Huang, X. Liu, R. Zhang, J. Hu, M. Jiang. Characteristics and sensing properties of La0.8Pb0.2Fe1-xNixO3 system for CO gas sensors. Mater. Sci. Eng., B 138 (2007) 193-197.
    [27]S.W. Lee, P.P. Tsai, H. Chen. Comparison study of SnO2 thin-and thick-film gas sensors. Sens. Actuators B 67 (2000) 122-127.
    [1]G. Korotcenkov. Gas response control through structural and chemical modification of metal oxide film:state of the art and approaches. Sens. Actuators B 107 (2005) 209-232.
    [2]Y.J. Mergler, A. van Aalst, J. van Delft, B.E. Nieuwenhuys. CO oxidation over promoted Pt catalysts. Appl. Catal., B 10 (1996) 245-261.
    [3]N. Yamaguchi, N. Kamiuchi, H. Muroyama, T. Matsui, K. Eguchi. Effect of reduction treatment on CO oxidation over Pt/SnO2 catalyst. Catal. Today 164 (2011) 169-175.
    [4]M. Schweizer-Berberich, J.G. Zheng, U. Weimar, W. Gopel, N. Basan, E. Pentia, A. Tomescu. The effect of Pt and Pd surface doping on the response of nanocrystalline tin dioxide gas sensors to CO. Sens. Actuators B 31 (1996) 71-75.
    [5]A.V. Tadeev, G. Delabouglise, M. Labeau. Sensor properties of Pt doped SnO2 thin flms for detecting CO. Thin Solid Films 337 (1999) 163-165.
    [6]A. Cabot, J. Arbiol, J.R. Morante, U. Weimar, N. Barsan, W. Gopel. Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO sol—gel nanocrystals for gas sensors. Sens. Actuators B 70 (2000) 87-100.
    [7]B. Esfandyarpour, S. Mohajerzadeh, S. Famini, A. Khodadadi, E. Asl Soleimani. High sensitivity Pt-doped SnO2 gas sensors fabricated using sol-gel solution on micromachined (100) Si substrates. Sens. Actuators B 100 (2004) 190-194.
    [8]N.S. Ramgir, Y.K. Hwang, S.H. Jhung, I.S. Mulla, J.S. Chang. Effect of Pt concentration on the physicochemical properties and CO sensing activity of mesostructured SnO2. Sens. Actuators B 114 (2006) 275-282.
    [9]D.H. Kim, S.H. Lee, K.H. Kim. Comparison of CO-gas sensing characteristics between mono-and multi-layer Pt/SnO2 thin films. Sens. Actuators B 77 (2001) 427-431.
    [10]M. D'Arienzo, L. Armelao, A. Cacciamani, C.M. Mari, S. Polizzi, R. Ruffo, R. Scotti, A. Testino, L. Wahba, F. Morazzoni. One-Step Preparation of SnO2 and Pt-Doped SnO2 As Inverse Opal Thin Films for Gas Sensing. Chem. Mater.22 (2010)4089-4083.
    [11]I. Kocemba, J. Rynkowski. The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen. Sens. Actuators B 155(2011)659-666.
    [12]M. Morimitsu, Y. Ozaki, S. Suzuki, M. Matsunaga. Effects of surface modification with platinum and ruthenium on temperature and humidity dependence of SnO2-based CO gas sensors. Sens. Actuators B 67 (2000) 184-188.
    [13]G. Korotcenkov, I. Blinov, V. Brinzari, J.R. Stetter. Effect of air humidity on gas response of SnO2 thin film ozone sensors. Sens. Actuators B 122 (2007) 519-526.
    [14]A.Z. Adamyan, Z.N. Adamyan, V.M. Aroutiounian, A.H. Arakelyan, K.J. Touryan, J.A. Turner. Sol-gel derived thin-film semiconductor hydrogen gas sensor. Int. J. of Hydrogen Energy 32 (2007) 4101-4108.
    [15]J.F. Boyle and KA. Jones. The effects of CO, water vapor and surface temperature on the conductivity of SnO2 gas sensor. J. Electron. Mater.6 (1977) 717-733.
    [16]D. Kohl. Surface processes in the detection of reducing gases with SnO2-based devices. Sen. Actuators B 18 (1989) 71-113.
    [17]N. Barsan and R. Ionescu. The mechanism of the interaction between CO and SnO2 surface:the role of water vapor. Sens. Actuators B 12 (1993) 71-75.
    [18]D.S. Vlachos, P.D. Skafidas, J.N. Avaritsiotis. Transient effects of tin oxide CO sensors in the presence of water vapor. Appl. Phys. Lett.63 (1993) 1760-1761.
    [19]D.S. Vlachos, P.D. Skafidas, J.N. Avaritsiotis. The effect of humidity on tin-oxide thick-film gas sensors in the presence of reducing and combustible gases. Sens. Actuators B 24-25 (1995) 491-494.
    [20]I. Kocemba, J. Rynkowski. The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen. Sens. Actuators B 155(2011)659-666.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700