用户名: 密码: 验证码:
川东北地区河坝构造工程地质特征及钻井对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河坝构造地质条件复杂,目前勘探开发主要目的层为海相嘉陵江组二段和飞仙关组三段,海相碳酸盐岩储层埋藏深,飞三段目的层垂深可超5000m,地层温度高,异常高压,膏盐岩发育,嘉二气藏含硫化氢;陆相碎屑岩地层倾角大,砂泥岩频繁互层,岩石致密,可钻性差,易井壁失稳;纵向上存在多压力系统,工程地质特征异常复杂,钻井过程中复杂事故频发,易出现漏、塌、涌、卡、堵等异常情况,机械钻速低,钻井周期长,钻完井工程面临严峻挑战,严重影响钻井工程进度,制约了研究区天然气藏勘探开发评价工作。国内外已有的研究表明,井下复杂问题的产生与地应力关系密切。本论文针对河坝构造钻完井过程中的各种复杂情况,以石油地质学、构造地质学、地球物理测井、储层地质学、岩石力学、岩体力学、钻井工程、油气储层改造、油气藏工程学等多学科理论和方法为指导,在深化工区工程地质特征认识基础上,从岩石基本物理特征分析入手,结合岩石力学参数及地应力测定实验,建立实钻地层岩石力学参数、地应力、地层孔隙压力、坍塌压力、破裂压力等工程地质特征参数测井预测模型及相应剖面,开展有针对性的井壁稳定性分析,提出与工程地质复杂情况相对应的钻井对策,为河坝构造钻完井工程工艺方案设计与实施提供科学依据。
     通过研究,取得以下认识:(1)河坝构造地层岩石整体表现为岩石致密、强度大、硬度大、可钻性差;(2)河坝构造地层孔隙压力纵向上分带明显,海相碳酸盐岩地层孔隙压力整体上为异常高压;(3)陆相碎屑岩地层最小、最大水平主应力梯度分别为2.30-2.70MPa/100m、2.7-3.1MPa/100m;海相碳酸盐岩地层最小、最大水平主应力梯度分别为2.13-2.50MPa/100m、2.65-2.90MPa/100m。最大水平主应力方向为近东西向,但海相碳酸盐岩地层由于受多期构造运动影响,最大水平地应力在70°-110°间偏转;(4)陆相碎屑岩地层坍塌压力梯度、破裂压力梯度相对较高,安全钻井液密度窗口较宽,海相碳酸盐岩地层安全钻井液密度窗口相对较窄,飞仙关组、嘉陵江组应力性坍塌压力梯度在0.3-0.48MPa/100m之间,定向井中向南、北方向钻进的井眼地层坍塌压力最低、破裂压裂最高,井壁最稳定,且在水平井钻井时井壁稳定性好;定向井及直井在钻井液密度为1.59g/cm3的情况下,能够维持河坝构造井壁力学失稳不超过90°;(5)河坝构造井漏的主要原因是地层裂缝较发育,地层孔隙压力低、钻井液由于压差作用向地层漏失;井塌卡钻的主要原因是陆相碎屑岩地层坍塌压力较高,在地层出水或钻井液滤失情况下井壁岩石吸水膨胀加剧了井塌的程度,造成卡钻;(6)通过复杂情况工程地质特征总结,提出了钻井方式、井身结构、钻井液密度等工程工艺优化建议,建议井身结构以一开封浅表水层150m,二开封上沙溪庙组底部重点水层,三开封须家河组、雷口坡组等低压易漏层,四开施工压力较高的嘉陵江组、飞仙关组目的层完钻,达到既均分各开次内地层压力减少井漏复杂,也为二开、三开尽可长的井段实施气体钻井创造条件;并提出了各开次平衡钻进的钻井液密度窗口一开1.15-2.37g/cm~3、二开1.47-2.13g/cm~3、三开1.76-2.12g/cm~3、四开2.08-2.26g/cm~3。
     论文研究成果针对性强,与现场实际钻井实践吻合程度较高,预测结果具有较高的可靠性。论文研究成果为加强研究区钻完井工程工艺技术应用研究、确保钻井工程科学、高效、安全施工以及压裂改造等措施提供强有力的技术支撑。论文研究中建立的一套从试验测试、岩石力学参数解释、地应力解释、三大压力解释、井壁稳定性综合分析到相应钻井对策提出的工程地质特征研究方法体系,对国内外同类型气藏研究具有借鉴意义。
The geological conditions of Heba structure are complex, and so far by now the main target formations in the current exploration and exploitastion are the T1j2 and T1f3 with marine facies. Due to the marine facies carbonate reservoir is deep buried, the depth of target strata in T1f3 could reach more than 5000m, the formation temperature and pressure could be high, the gypsum rocks could develop well and hydrogen sulfide could be found in T1j2. As the dip angle of terrestrial clastic rock formation is steep, the rock is tight and the sandstone and mudstone interlayered frequently, the drilling capacity is poor and the wellbore is unstable. The existing of Vertical multi-pressure system and extremely complex of engineering geology features lead the accidents occur easily while drilling such as leaking, collapsing, well kicking, jamming and well plugging. The low drilling rate and long term drilling lead the drilling and completion projects confronting server challenges and would have great influences on the schedule and consequently restrict the evaluation of gas reservoir exploration and exploitation in study area. The previously domestic and international studies show that the origins of complex problems in wells are closely related to the stress. This dissertation is focusing on varies of complex conditions confronted in drilling wells in Heba structures and is starting analysis from the basic rock physical parameter. It is guided by theories and methodologies of petroleum geology, structural geology, geophysical well logging, reservoir geology, rock mechanics, drilling engineering, oil and gas reservoir reconstruction, reservoir engineering and etc., combined with rock mechanics parameters and stress measurement experiments and based on the deliberate understanding of the study area. In the dissertation, the actual drilling mechanics parameters of rock formation, stress, pore pressure, collapse pressure, fracture pressure and other geological parameters logging prediction models and their corresponding profile have been established, the borehole stability analysis has been carried out and the drilling strategy corresponding to complex engineering geology situations has been proposed, and it provides a scientific basis for designs and implementations of drilling and completion programs in Heba structure.
     Through the research, the following understandings have been achieved: (1) the overall performance of the rock in Heba is tight, strong, hard, and poor in drilling; (2) pore pressure vertically apparents obvious banding phenomenon in Heba structure and pore pressure in the marine facie carbonate rock is abnormally high; (3) the minimum and maximum horizontal principal stress gradients of the terrestrial clastic rock are 2.30-2.70MPa/100m and 2.7-3.1MPa/100m, the minimum and maximum horizontal principal stress gradients of marine facies carbonate rocks are 2.13-2.50MPa/100m and 2.65-2 .90MPa/100m, and the maximum horizontal principal stress direction is nearly east-west between 70°-110°due to tectonic movements of marine facies carbonate rocks; (4) the collapse pressure gradient and fracture pressure gradient of terrestrial clastic rock is relatively high and the density window of safety drilling fluid in terrestrial clastic rock is relatively wide while in the marine facies rock the density window is comparatively narrow, stress collapse pressure gradient in T1f and T1j is between 0.3-0.48MPa/100m, the collapse pressure is minimum, fracturing is maximum, the well bore is most stable when directional wells drilling towards south and north, the density with 1.59g/cm3 in directional drilling wells and vertical wells could maintain the mechanical instability less than 90°in Heba structure; (5) the leakage occurs in Heba structure is mainly due to the well developed fractures and the drilling fluid would flow to low pore pressure area as pressure differentiation, the main reason for well collapse and pipe stuck is that the continental facies rock in well would absorb water and expand and consequently exacerbated wall collapse and resulting stuck under the condition of formation water or drilling fluid filtration; (6) through summarizing the complexities of engineering geological characteristics, the drilling method, casing, drilling fluid density and other engineering process optimization has been proposed, the suggestion is that the wellbore configuration should be like this: seal shallow water layer with thickness of 150m during spud, seal the water layer at the J2s during second spud, seal the low pressure drain layer in T3x, T2l and other formations during third spud, drilling the high pressure T1j and T1f and finish drilling in target zone, This approach could not only balance pressure in each spud and reduce leakage, but also create opportunities to prolong the gas drilling procedure as long as possible in second and third spud, besides, the density window of safety drilling fluid is also suggested as 1.15-2.37g/cm3 in spud , 1.47-2.13g/cm3 in second spud, 1.76-2.12g/cm3 in third spud, 2.08-2.26g/cm3 in forth spud.
     The research findings of this dissertation are strongly targeted and highly tallied with the actual drilling practice, and the forecast results is highly reliability. The research results provide a firmly technical support to strengthen the application of drilling and completion technology, to ensure the scientific, efficient and safe drilling procedures and to implement the measures such as fracturing and alternation in the study area. A systematic research methodology of engineering geology features covering the experimental test, rock mechanics parameters explanation, the stress explanation, the three pressures explanation, comprehensive analysis of wellbore stability and the corresponding drilling strategy has been established and proposed, and it is a good reference for the same type of gas pools home and abroad.
引文
[1]周文编著.裂缝性油气储层评价方法[M].成都:四川科学出版社,1998
    [2]周文,高雅琴,单钰铭,等.川西新场气田沙二段致密砂岩储层岩石力学性质[J].天然气工业,2008,28(2):34-37
    [3]张琪主编.采油工艺原理与设计[M].北京:石油工业出版社,2003
    [4]路保平,张传进.岩石力学在油气开发中的应用前景分析[J].石油钻探技术,2000,28(1):7-9
    [5]鲍洪志,路保平,张传进,等.测井资料分析系统的开发及其在钻井工程中应用[J].石油钻探技术,1996,24(4):4-6
    [6]李志明、张金珠编著.地应力与油气勘探开发[M].北京:石油工业出版社,1997
    [7]周文,闫长辉,王世泽,等.油气藏现今地应力场评价方法及应用[M].北京:地质出版社,2007
    [8]路保平,鲍洪志.岩石力学参数求取方法进展[J].石油钻探技术,2005,33(5):44-47
    [9] Gray.G.R and Darley.H.C.H. Composition and properties of Oil Well Drilling Fluids, Gulf Publishing Co,Houston(1980):338~90
    [10] Chenevert.M.E:“Adsorptive pressure of Argillaceous Rocks.”Proc.Symposium on Rock Mechanics,Berkeley,CA(June 1969):16-19
    [11] Bradley . W . R ;“Failure of inclined boreholes .”J . Energy Resources Tech.(Dec.1979)233~39
    [12]黄荣樽,庄锦江.一种新的地层破裂压力预测方法[J].石油钻采工艺,1986,1(3):1-14.
    [13]朱焕春,陶振宇.地应力研究新进展[J].武汉水利电力大学学报,1994,27(5):542-546
    [14]丁原辰,张大伦.声发射抹录不净现象在地应力测量中的应用[J].岩石力学与工程学报,1991,10(4):313-326
    [15]李志明、张金珠编著.地应力与油气勘探开发[M].北京:石油工业出版社,1997
    [16]谢润成,周文,邓虎成,等.现今地应力场特征评价一体化研究[J].石油钻采工艺,2008,30(4):32-35
    [17]谢润成,周文,杨志彬,等.非定向全直径岩心现今地应力特征试验测试一体化研究[J].石油钻探技术,2010,38(4):108-111
    [18]李天太,高德利.井壁稳定性技术研究及其在呼图壁地区的应用[J].西安石油学院学报(自然科学版),2002,17(3):23-26
    [19]田波.深水钻井安全钻井液密度窗口确定方法研究[D].中国石油大学硕士学位论文,2009
    [20]王越之.地层压力研究方法的新进展[J].中国海上油气(地质),1998,12(3):210-212
    [21]金业权,王越之,李自俊.地震资料预测地层孔隙压力应基于欠压实成因[J].石油钻探技术,2000,28(3):7-9
    [22]郭永峰,金晓剑.地层压力精确预测准则及其应用[J].钻井与完井,2004,32(2):15-17
    [23]邵新军,许的,吕中锋等.地层流体压力预测方法的讨论[J].石油勘探与开发,2000,27(3):100-102
    [24]李士斌,艾池,刘立军.测井资料与岩石力学参数相关性及其在井壁力学稳定性计算中的应用[J].石油钻采工艺,1999,21(1):43-47
    [25]邵新军,许的,吕中锋等.地层流体压力预测方法的讨论[J].石油勘探与开发,2000,27(3):100-102
    [26] Swarbrick R. E.. Pore-Pressure Prediction: Pitfalls in Using Porosity. OTC 13045, 2001
    [27]艾池,冯福平,李洪伟.地层压力预测技术现状及发展趋势[J].石油地质与工程,2007,21(6):71-76
    [28]张传进,鲍洪杰,路保平.测井资料在钻井工程中应用现状及展望[J].天然气工业,2002,22(5):55-57
    [29]樊洪海.适于检测砂泥岩地层孔隙压力的综合解释方法[J].石油勘探与开发,2002,29(1):90-92
    [30] Dutta N. C., Ray A.. Image of Geopressure Rocks Using Velocity and Acoustic Impendance Inversion of Seismic Data. Geophysics, 54(1):82-89
    [31] Dutta N. C.. Deepwater Geohazard Prediction Using Prestack Inversion of Large Offset P-wave Data and Rock Model. Leading Edge Geophysics,21(2):193-198
    [32] Bowers G. L.. Pore Pressure Estimation from Velocity Data : Accounting for Overpressure Mechanisms Besides Undercompaction[J]. SPE Drilling and Completion,June, 1995
    [33] Wilhelm R., Fraceware L. B., Guzman C. E.. Seismic Pressure Prediction Method Solve Problem Common in Deepwater Gulf of Mexico. Oil & Gas Journal, Sept. 14, 1998
    [34]樊洪海,张传进.复杂地层地层孔隙压力求取新技术[J].石油钻探技术,2005,33(5):40-43
    [35] Maury Vincent, GuenotAlain, Practical Advantages of Mud Cooling Systems for Drilling.SPE 25732, 1995
    [36] Tang L, Luo P. The Effects of Thermal Stress on Wellbore Stability. SPE39505, 1998
    [37] Lee S.,Reilly J. Lowe R. et al. Accurate Pore Pressure and Fracture Pressure Predictions Using Seismic Velocities-An Aid to Deep Water Exploration and Drilling Design.World Oil,Deep Water Special Supplement,1998:68-70
    [38] B. S. Aadnoy. Geomechanical Analysis for Deep-Water Drilling. IADC/SPE 39339,1998
    [39] L. A. Rocha.. Frature Pressure Gradient in Deepwater. IADC/SPE 88011, 2004
    [40] E. Kaarstad, B. S. Aadnoy. Fracture Model for General Offshore Applications. SPE101178,2006
    [41] Westergaard, H. M., Plastic State of Stress Around a Deep Well.J. Boston Soc. of Civ. Engrs., 1940,21(1):1-5.
    [42] Hubbert, M.K. and Willis, D.G., Mechanics Of Hydraulic Fracturing, JPT, June 1957.
    [43] B. A. Eaton. Fracture Gradient Prediction Techniques and Their Application in Drilling, Stimulation, and Secondary Recovery Operations, SPE, 2136
    [44]李克向著.实用完井工程[M].北京:石油工业出版社,2002
    [45] M.R.McLean and M.A.Addis (1990),We1lBore Stability Analysis:A Review of Current Methods of Analysis and Their Field Application IADCISPE 19941
    [46]邓金根,张洪生编著.钻井工程中井壁失稳的力学机理[M].北京:石油工业出版社,1998
    [47]廖扬强,余庆.大斜度井水平井井壁力学稳定性技术现状[J].钻采工艺,2003,26(3):7-10
    [48] Aadony, B.S. and Chenevert, M.E., Stability of Highly Inclined Bore-holes,SPE/IADC Drilling Conf.,New Orleans, La, 1987,Mar.,25-41 .SPE/IADC 16052
    [49] S.K.Choi and M.B.Wold, Simulation of Fluid in Coal Using a Discrete Fracture Network Model, SPE 28781.
    [50] A.Milard, Discrete andContinuam Approaches to Simulate Thermo-Hydro-Mechanical Coupling in a Large, Fractured Rock Mass, Int.J, the Rock Mech.Min.Sci. and Geomech. Abstract,vol 32,No.5, 1995.
    [51]赵忠举.井壁稳定理论和方法的新进展[J].石油情报,1995,(5):16-20
    [52] Dhruba J., Ahmed, Dedi Juandi. SPE-122478-MS-PIn Situ Stress Pattern and Its Impact in Drilling High- Angle Wells in Gulf of Suez, Egypt.SPE122478,2009.
    [53] Warlick,L.M., Khan,M.R., Tahini,A,M., valuation of Wellbore Stability during Drilling and Production of Open Hole Horizontal Wells in a Carbonate Field,SPE-126157-MSE,2009.
    [54] K.Furui, g.-F.Fuh, N.Abdelmalek, etc. A Comprehensive Modeling Analysis of Borehole Stability and Casing Deformation for Inclined-Horizontal Wells Completed in a Highly Compacting Chalk Formation,SPE-123651-MS-P,2009
    [55]黄荣樽.地层破裂压力模式的探讨[J].华东石油学院学报,1984,5(1):335-347
    [56]赵良孝.椭圆形井眼垮塌的原因和应用[J].测井技术,1985,9(3):28-34
    [57]黄荣樽,庄锦江.一种新的地层破裂压力预测方法[J].石油钻采工艺,1986,1(3):1-14
    [58]谭廷栋.从测井信息中提取地层破裂压力[J].地球物理测井,1990,14(6):371-377
    [59]程远方,黄荣樽.钻井工程中泥页岩井壁稳定的力学分析[J].石油大学学报(自然科学版),1993,17(4):35-39
    [60]楼一珊,刘刚.大斜度井泥页岩井壁稳定的力学分析[J].江汉石油学院学报,1997,19(1):61-64
    [61]刘向君.井壁力学稳定性原理及影响因素分析[J].西南石油学院学报,1995,17(4):51-57
    [62]邓金根,张洪生.钻井工程中井壁失稳的力学机理[M].北京:石油工业出版社,1998
    [63]刘向君,罗平亚著.石油测井与井壁稳定性[M].北京:石油工业出版社,1999
    [64]刘向君,罗平亚.测井在井壁稳定性研究中的应用及发展[J].天然气工业,1999,19(6):33-35
    [65]金衍,陈勉.大位移井的井壁稳定力学分析[J].地质力学学报,1999,5(1):4-11
    [66]李士斌,艾池.测井资料与岩石力学参数相关性及其在井壁力学稳定性计算中的应用[J].石油钻采工艺,1999,21(1):43-47
    [67]张克勤.井壁稳定技术译文集(上、下册),中国石油天然气总公司情报研究所,1991
    [68]金衍,陈勉.工程井壁稳定分析的一种实用方法[J].石油钻采工艺,2000,22(1):31-33
    [69]丰全会,程远方,张建国.井壁稳定的弹塑性模型及其应用[J].石油钻探技术,2000,28(4):9-11
    [70]丰全会,祖峰,邓金根.井壁稳定性研究及其在盐城地区的应用[J].钻采工艺,2000,23(4):22-26
    [71]王桂华,徐同台.井壁稳定地质力学分析[J].钻采工艺,2005,28(2):7-10
    [72]赵小龙.井壁稳定性传统方法与有限元数值模拟对比研究[J].重庆科技学院学报(自然科学版),2008,10(4):35-38
    [73]刘向君,陈一健,肖勇.岩石软弱面产状对井壁稳定性的影响[J].西南石油学院学报,2001,23(6):12-13、20.
    [74]蔚宝华,卢晓峰,王炳印,等.高温井地层温度变化对井壁稳定性影响规律研究[J].钻井液与完井液,2004,21(6):15-18.
    [75]梁利喜,刘向君,许强.发育有切割井眼结构面的井壁稳定性评价研究[J].石油钻探技术,2007,35(3):27-29.
    [76]练章华,刘昕,房皓,等.钻进过程中井壁稳定性动态分析[J].西南石油大学学报(自然科学版),2008,30(3):163-166.
    [77]李士斌,高铭泽.水平层状裂缝性岩体的井壁稳定性分析[J].石油钻探技术,2009,37(2):35-37.
    [78]谢润成.川西坳陷须家河组探井地应力解释与井壁稳定性评价[D].成都理工大学博士学位论文,2009.
    [79] C.H.Yew, Wellbore Stress Distribution Produced By Moisture Adsorption, SPE 19536.
    [80] Chenevert.M.E. Adsoption Pore pressure of Argillaceous Rocks, Proceeding, 11th Symposium on Rock Mechanics, Berkeley, California, June, 1969,16-19
    [81] Chenevert, M.E..Shale Control With Balanced Activity Oil-continuous Muds, JPT, Oct.1970.
    [82] Mody,F.K,Hale,A.H. A Borehole Stability Model To Couple the Mechanics And Chemistry of Drilling Fluid Shale Interaction, SPE 25728,1992
    [83]黄荣樽,陈勉,邓金根,等.泥页岩井壁稳定力学与化学的耦合研究[J].钻井也与完井液,1995,12(3):15-21、25
    [84]孟英峰.泥页岩水化反应系统的仿真模型研究[A].高德利.地下钻掘采工程不稳定理论与控制技术[C].北京:中国科学技术出版社,1999:50-60
    [85]刘向君,罗平亚.水敏性泥页岩地层与钻井液接触时水化能力的实验研究[J].西南石油学院学报,1996,18(3):31-37
    [86]孙玉学,刘平德,宋文明,等.斜井中泥页岩井眼稳定的力学化学耦合模型[J].石油钻探技术,1998,26(4):51-53
    [87]林永学.预测井眼稳定性的力学化学耦合方法[J].石油钻探技术,1998,26(3):19-21
    [88]马丽,倪文学,丁丰虎.胜北构造泥页岩水敏性与井眼稳定性关系[J].西安石油学院学报,1999,14(3):1-5
    [89]罗健生,鄢捷年.页岩水化对其力学性质和井壁稳定性的影响[J].石油钻采工艺,1999,21(2):7-13
    [90]刘平德,张梅,孙明鑫,等.泥页岩井眼稳定的力学及化学耦合方法研究[J].钻采工艺,2000,23(6):10-12
    [91]刘向君,叶仲斌.滤饼质量对井壁周围应力和井壁稳定性的影响[J].石油钻采工艺,2002,24(3):11-13
    [92]邓虎,孟英峰.泥页岩稳定性的化学与力学耦合研究综述[J].石油勘探与开发,2003,30(1):109-111
    [93]邓金根,郭东旭,周建良,等.泥页岩井壁应力的力学-化学耦合计算模式及数值求解方法[J].岩石力学与工程学报,2003,22(增1):2250-2253
    [94]邓虎,孟英峰.泥页岩稳定性的化学与力学耦合研究[J].石油钻探技术,2003,31(1):33-36
    [95]邓虎.裂缝性泥页岩的水化稳定性研究及其应用[D].西南石油学院博士论文,2004
    [96]刘厚彬.泥页岩井壁稳定性研究[D].西南石油大学硕士论文,2006
    [97]王兴隆,程远方,赵益忠.钻井作业中泥页岩地层井壁稳定受温度影响的规律研究[J].石油钻探技术,2007,35(2):42-45
    [98]王京印.泥页岩井壁稳定性力学化学耦合模型研究[D].中国石油大学博士论文,2007
    [99]薛世峰,马国顺,葛洪魁,等.液-固-水化耦合形式的井眼稳定性模型研究[J].石油钻探技术,2007,35(1):41-44
    [100]孙文化,楼一珊,李忠慧,等.水化应力和滤饼质量对地层坍塌压力的影响分析[J].石油钻探技术,2008,36(1):28-29
    [101]刘玉石.用损伤力学方法研究硬脆性泥页岩井壁稳定[A].石油勘探开发研究院钻井所专题报告,1994
    [102]郑贵.井壁稳定问题的断裂损伤力学机理的研究[D].哈尔滨工程大学博士论文,2005
    [103] Bernt S. Aadnoy, J. Sebastian Bel Classification of Drilling-induced Fractures and Their Relationship to In-situ Stress Direction. The Log Analyst. November-Dec ember, 1998
    [104] Weidler,J.B.and Paslay,P.R. Analytical description of behavior of granlar media.J.Eng. Mech.Div. Proc. ASCE, 1969:378-395.
    [105] Johnson J N and Green D J. The mechanics reponse porous Media subject loads, The Effcet of Voilds on Material Deformation.S.C Cowim(eds.)ASME. 1976:93-123.
    [106] Kojie, M, and Cheatham,J. B. Theory of Plasticity of porous media with fluid flow, Soc. Pet.Eng. J. AIME. 1974, 25:263-270.
    [107] Lemaitre,J.Chaboche,J.L. Aspect phenomenologique de la rupture par endommagemeat, J.Meca,Appl.1978.2(3):317-365
    [108] Cheboche, J.L.and Rousselter, G. On the plastic and viscoplastiec constitutive equation-Part I:Rules developed with internal variable concept;Part II:Application of internal variableconcepts to the 316 stainless steel, Journal of Pressure Vessel Technology,1983.105: 153-164.
    [109] Krajcinovic, D.Continuum damage mechanics.J.Appl. Mech. Reviews,1984. 37(1):1-6
    [110] Gardner G H F , Gardner L W, Gregory A R. Formation velocity and density -The diagnostic basics for stratigraphic traps[J]. Geophysics. 1974 , 39 (6):770-780
    [111] Castagna J P , Batzle M L, Eastwood R L. Relationships between compressional wave and shear wave velocities in clastic silicate rocks[J]. Geophysics . 1985, 50(5):571-581
    [112] Han D H , Nur A , Morgan D. Effects of porosity and clay content on Wave velocities in sandstones[J]. Geophysics. 1986, 51(11):2093-2107
    [113]李庆忠.岩石的纵、横波速度规律[J].石油地球物理勘探,1992,27(1):1-12
    [114]林耀民,刘卫东.测井中四个纵横波转换经验公式分析[J].钻采工艺,1996,19(1):15-16
    [115]黄凯,徐群洲,杨晓海,等.纵、横波在岩石中的传播速度比及弹性模量与岩石所含流体的关系[J].新疆石油地质,1998,19(5):369-371
    [116]楼一珊.影响岩石纵横波速度的因素及其规律[J].西部探矿工程,1998,10(3):34-35
    [117]刘之的,夏宏泉,陈平.岩石泊松比的测井计算方法研究[J].测井技术,2004,28(5):508-510
    [118]刘之的,夏宏泉,陈平.利用测井资料计算碳酸盐岩三个地层压力[J].钻采工艺,2005,28(1):18-21
    [119]马中高,解吉高.岩石的纵横波速度与密度的规律研究[J].地球物理学进展,2005,20(4):905-910
    [120]葛洪魁,陈颙,林英松.岩石动态与静态弹性参数差别的微观机理[[J].石油大学学报,2001,25(4):34-36
    [121]葛洪魁,黄荣樽.三轴应力下饱和水砂岩动静态弹性参数的试验研究[[J].石油大学学报,1994,18(3):41-47
    [122] JIZBA,D. and NUR,A. Static and dynamic moduli of tight gas sandstones and their relation to formation properties[R]. SPWLA 31st Annual Logging symposium,1990
    [123]林英松,葛洪魁,王顺昌.岩石动静力学参数的试验研究[[J].岩石力学与工程学报,1998,17(2):216-222
    [124]胡国忠,王宏图,贾剑青.岩石的动静弹性模量的关系[[J].重庆大学学报,2005,28(3):102-105
    [125]张景和.地应力、裂缝测试技术在石油勘探开发中的应用[M].北京:石油工业出版社,2001
    [126] Emma.J. Nelson, Simon.T. Chipperfield, Richard R. Hillis, et al. The relationship between closure pressures from fluid injection tests and the minimum principal stress in strong rocks[J]. International Journal of Rock Mechanics and Mining Sciences. 2007,44(5):787-801
    [127] M. Cai, H. Morioka, P. K. Kaiser, et al. Back-analysis of rock mass strength parameters using AE monitoring data[J]. International Journal of Rock Mechanics and Mining Sciences. 2007, 44(4):538-549
    [128]李斌,杨春雷,刘勇.根据岩屑硬度和塑性系数确定地层岩石的力学性质[J].地下空间与工程学报,2005,1(6):915-917、939
    [129]王桂华,程远方,梁何生.岩屑显微硬度法确定地层力学参数[J].石油钻探技术,2003,31(3):7-9
    [130]葛洪魁,宋丽莉,林英松,等.岩屑波速及微硬度测试的初步研究[J].石油钻探技术,2002,30(2):1-3
    [131]赵秀菊,李春成,李祖奎,等.利用声波速度预测地层岩石硬度的试验研究[J].西南石油学院学报,1999,21(3):25-27、36
    [132]李军,李立昌,徐建功,等.岩石硬度与塑性的计算机解释[J].石油钻采工艺,1999,21(4):55-56
    [133] Cstalders S,Raynal J.Measurement of some mechanical proper-ties of rock & their relationship to rock drillability[J]. JPT,1966,26(8):994-995
    [134] Somerton W H,Esfandiari F,Singhal A.Further studies of the relation of physical properties to rock drillability [R].SPE2390,1969.
    [135] Li Shibin,Yan Tie. Calculating the drill ability value of bottomhole rock[C].∥Lin yunmei.The Proceedings of the International Conference on Rock Mechanics and Engineering, Shengyang,Nov. 22,2002. Florida:Raton press, 2002:137-143.
    [136]梁启明,邹德永,张华卫,等.利用测井资料综合预测岩石可钻性的试验研究[J].石油钻探技术,2006,31(1):17-19
    [137]范翔宇,夏宏泉,郑雷清,等.利用地震层速度预测地层可钻性和钻速的新方法[J].钻采工艺,2007,30(1):4-6
    [138]马海,王延江,魏茂安,等.地层可钻性级值预测新方法[J].石油学报,2008,29(5):761-765
    [139]闫铁,苏鹏,李玮,等.一种岩石可钻性评价新模型[J].长江大学学报(自然科学版),2009,6(3):170-172
    [140]朱澄清,杨迎新,廖忠会,等.川西须家河深层岩石力学性质及可钻性研究[J].钻采工艺,2010,33(5):29-31、38
    [141]鲍挺,郑明明,张思渊.岩石可钻性研究方法与发展前景[J].安徽建筑,2010,73-74
    [142]马海,王延江,胡睿,等.基于相关向量机的地层可钻性级值预测[J].中国石油大学学报(自然科学版),2010,34(2):67-70
    [143] Terzaghi.K.Van. Die berechnyg der durchfassigkeitssiffer des tones aus dem verlauf der hydrody-namischen spannungserscheinungen, Sitz.Akad. ien, Math, Naturwiss, KI, Abt. 2A, 132, 1923
    [144]. Handin J. et al, Experimental Deformation of Sedimentary Rocks under Confining Pressure: Pore Pressure Tests, AAPG May 1963,717-755
    [145]李传亮.多孔介质应力关系方程[J].应用基础与工程科学学报, 1998, 6(2):145-148
    [146]李传亮.多孔介质的应力关系方程[J].新疆石油地质,2002,23(2):163-164
    [147]李传亮,杜文博.油气藏岩石的应力和应变状态研究[J].新疆石油地质,2003,24(4):351-352
    [148]周大晨.对上覆岩层压力计算公式的思考[J].石油勘探与开发,1999,26(3):99-103
    [149]周大晨.对李传亮上覆岩层压力公式的质疑[J].新疆石油地质,2001,22(2):150-154
    [150]李培超,孔祥言,李传亮,等.地下各种压力之间关系式的修正[J].岩石力学与工程学报,2002,21(10):1551-1553
    [151] Eaton,B.A.The equation for geopressure prediction from well logs[A]. SPE 5544,1975
    [152]周思孟编.复杂岩体若干岩石力学问题[M].北京:中国水利水电出版社,1998
    [153]陈景涛.岩石变形特征和声发射特征的三轴试验研究[J].武汉理工大学学报,2008,30(2):94-96、118
    [154] Kaiser,J. Untersuchungen uber das aufterten gerauschen beim zugversuch, Arkiv fur das Eisenhuttenwesen, Vol 24,1953
    [155] Hardy, H. R. Jr,1981. Applications of acoustic emission techniques to rock and rock structures: A state-of-the-art review, in ASTM STP 750
    [156] Goodman. R. E. Subaudible noise during compression of rock, Geological Society of America, Bulletin, Vol 74,1963
    [157] Kanagawa, T. et al, Estimation of spatial geostress components in rock amples unsing the Kaiser effect of acousic emission, Proc. 3rd Acoustic Emission Symposium, Tokyo,1976
    [158] Yoshikawa, g. and Mogi, K. Kaiser effect of acoustic emission in rock, Proc. 4th Acoustic Emission Symposium, Tokyo,1978
    [159] Boyce, G. M. A study of the acoustic emission response of various rock types,M.S. thesis, Drexel University,1981
    [160]张大伦.确定岩石中先存应力状态的声发射法[J].地震地质,1984,6(1):31-40
    [161]丁原辰.声发射法古应力测量问题讨论[J].地质力学学报,2000,6(2):45-52
    [162]丁原辰.矿区地应力状态的声发射粗估法及其应用[J].矿业安全与环保,1992,第4期:50-56
    [163]刘峥,巫虹.岩石Kaiser效应测地应力原理中的若干问题研究[J].上海地质,2004,总91期(3):38-41、56
    [164] K. Mogi, Earthquakes as fracture in the earth, in“Advanees in Rock Mechanics“, Proe. 3rd.Conf. Int. Soc. Rock Mechanics,IA,509-568,1974
    [165] C.H.Scholz, Experimental study of the fracturing process in brittle rocks, J. Geophys. Res., 73,1447-1454,1968
    [166] C. F. Bacon, Acoustic emission along the San Andreas fault in southern central California, Materials evaluation,34,5,1976
    [167] J.D.Byerlee, A review of rock mechanics studies in the United States pertinent to earthquake prediction. PAGEOPH.116(4/5),586-602,1978
    [168]陈颙.不同应力途径三轴压缩下岩石的声发射[J].地震学报,1981,3(1):41-48
    [169] Haimson B. C. and Voight, B. Stress measurements in Iceland PAGEOPH Vol. 115 No1/2,1977
    [170] Hubbert, M. K. and Willis, D. G.Mechanics of hydraulic fracturing. Trans. AIME210,1957
    [171] Scheidegger,A.E. Stresses in the earth's crust as determined from hydraulic fracturing data. Geologie and Bauwesen 7,1962
    [172] Kchle, R. O, The determination of tectonic stresses through analysis of hydraulic well fracturing, J.G.R.69,1969
    [173] Fairhurst, C. Measurement of in situ rock stresses, with particular reference to hydraulic fracturing. Rock Meth. and engineering Geol.2,1964
    [174] Gretener,P.E.,. Can the state of stress be determined from hydraulic fracturing data?. J. G.R. 70,1965
    [175] Haimson, B. C. Hydraulic fracturing in porous and nonporous rock and potential for determining in situ stresses at great depth, Ph D Thesis. University of Minnesota,1968
    [176] Haimson, B. C. and Fairhust. C.. In situ stress determination at great depth by means of hydraulic fracturing, in rock mech-Theory and Practice, proc. of 11th symposium on rock mechanics,1970
    [177] Solberg. P, Lockner. D. and Byerlee.J. Shear and tension hydraulic fractures in low permeability rock, PAGEOPH,Vo1.115 No1/2,1977
    [178]陈家庚,曹新玲,李自强.水力压裂法测定华北地下深部应力[J].地震学报,1982,4(4):350-361
    [179]王鸿勋编著.水力压裂原理[M].北京:石油工业出版社,1988
    [180]李稼祥,张文泉.井下水力压裂应力测量[J].中州煤炭,1993,No.1:24-26
    [181]任希飞,王连捷.深部地应力测量方法-水力压裂法[J].水文地质工程地质,1980/02:42-45
    [182]葛洪魁,林英松,王顺昌.水力压裂地应力测量有关技术问题的讨论[J].石油钻采工艺,1998,20(6):53-56、62
    [183] Nolte,K.G. Fracture design considerations based on pressure analysis. Paper SPE10911, presented at the SPE Cotton Valley Symposium, Tyler, Texas, USA, 1982, May 20th.
    [184] F.Guo, N.R.Morgenstren, J.D.Scott. Interpretation of hydraulic fracturing breakout pressure. Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.1993,30(6):617-626
    [185]魏周亮.分层地应力分析评价技术用于油气田开发[J].油气田地面工程,2005,24(4):8-9
    [186] Matthews,W.R. and Kelly,J. How to predict formation pressure and fracture gradient. Oil & Gas J.65(8):92-106
    [187] Anderson,R.A., Ingram,D.S. and Zanier,A.M. Determing fracture pressure gradient from well logs. JPT,Nov,1973:1259-1268
    [188]葛洪魁,林英松,王顺昌.地应力测试及其在勘探开发中的应用[J].石油大学学报(自然科学版),1998,22(1):94-99
    [189]马建海,孙建孟.用测井资料计算地层应力[J].测井技术,2002,26(4):347-351
    [190]张保平,申卫兵,单文文.岩石弹性模量与毕奥特(Biot)系数在压裂设计中的应用[J].石油钻采工艺,1996,18(3):60-65、78
    [191] Kilmentos.T, Harouaka.A, Mtawaa.B, et a.l Experimental determination of the biot elastic constant: applications in formation evaluation ( sonic porosity, rock strength, earth stress and standing predictions)[R]. SPE 30593,1995
    [192]李生杰.岩性、孔隙及其流体变化对岩石弹性性质的影响[J].石油与天然气地质,2005,26(6):760-764
    [193]葛洪魁,韩德华,陈颙.砂岩孔隙弹性特征的试验研究[J].岩石力学与工程学报,2001,20(3):332-337
    [194]李智武,刘树根,罗玉宏.川东北地区致密碎屑岩动静弹参数实验研究[J].石油实验地质,2006,28(3):286-291、295
    [195]马丽娟,郑和荣.准噶尔盆地侏罗系储层含油气性相关岩石物理参数[J].石油与天然气地质,2006,27(5):614-619
    [196] Geertsma.J, Smit.D.C. Some aspects of elastic wave propagation in fluid saturated porous solids[J]. Geophysics,1961,26:169-181
    [197] Kreif.M, Garat.J, Stellingwerff.J, et a.l. A petrophysical interpretation using the velocities of P and S waves( full wave form sonic)[J].The Log Analyst,1990,31:355-369
    [198] Nur.A. Critical porosity and the seismic velocity in rocks[J].EOS Trans Am Geophys Union, 1992,73(1):43-66
    [199] Nur.A, Mavko.G, Dvorkin J, et al. Critical porosity: a key to relating physical properties to porosity in rock[J].The Leading Edge,1998,17(2):357-362
    [200] Murphy.W, Reische.A, Hsu.K. Modules decomposition of compressional and shear velocity in sand bodies[ J]. Geophysics,1993,58(2):227-239
    [201] Pickett.G.. Acoustic character logs and their applications in formation evaluation[J]. JPetrol Technol,1968,15:650-667
    [202]马中高.Biot系数和岩石弹性模量的实验研究[J].石油与天然气地质,2008,29(1):135-140
    [203] M.R.Mclean , M.A.Addis. WellBore Stability: The Effect of strength Criteria on Mud Weight Recommendations, SPE 20405.
    [204]赵小龙.石油钻井任意井眼的井壁稳定性研究[D].重庆大学硕士学位论文,2008
    [205] McLean M R,Addis M A. WellBore Stability Analysia: A Review of Current Methods of Analysis and Their Field Application[R]. IADC/SPE,1994
    [206] B.S.Aadnoy, M.E.Chenevert. Stability of Highly Inclined Boreholes.,1987, SPE16052
    [207]朱玉林,申辉林.利用测井资料确定安全钻井液密度窗口[J].国外测井技术,2006,21(5):17-19、25
    [208]罗庆,范翔宇,夏宏泉,等.普光地区安全钻井液密度窗口的测井方法研究[J].钻井液与完井液,2008,25(6):58-61
    [209]土林,付建红,饶富培,等.大位移井井壁稳定机理及安全密度窗口分析[J].石油矿场机械,2008,37(9):46-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700