用户名: 密码: 验证码:
舰船用大功率两级串联混合行星传动系统动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代海军发展,要求提高战斗舰艇的反歼、防歼和攻歼能力,对其航速、噪声、振动提出越来越高的要求。舰船迫切需求低噪声、大扭矩和大功率的后传动装置,对后传动装置的动态特性提出了更高的要求。
     本文研究的两级大功率人字齿混合行星传动系统,是舰船后传动装置的重要组成部分。整个系统由人字齿多星轮定轴星形轮系和行星轮系组合而成,是舰船机械设备中的主要噪声源,对舰艇的攻击和隐蔽能力有很大的影响。由于现有舰船的传动系统十分庞大,国内尚不具备实验测试条件。所以,对其进行动力学特性的理论研究显得十分必要。
     两级串联人字齿混合行星齿轮传动系统的动力学特性比单级传动要复杂的多,产生振动和噪声的因素更多,迄今为止,还未见有关于两级串联混合行星传动系统动力学方面的研究。
     研究两级串联混合传动系统动力学问题,首先要解决建模难的问题,与单级行星传动系统建模不同的是,两级串联混合行星传动系统由于各级间行星架的转速不同,需要考虑第二级行星轮系中行星轮位置相角的时变特性。本文综合考虑了行星轮位置相角时变性、齿轮时变啮合刚度、啮合综合误差、系统阻尼和轮齿脱离等非线性因素,在定坐标系下建立了系统各子结构的动力学模型,并将求得的各级齿轮副啮合弹性变形条件代入子结构模型,利用集中参数法建立了整个系统的非线性动力学模型。为进行动力学分析,须确定各齿轮副啮合刚度和啮合误差激励,根据同时啮合的轮齿接触线上各点具有相同变形的条件,求得了一对人字齿轮副在整个啮合过程中的时变啮合刚度;啮合综合误差通过啮合线增量的形式来描述。
     固有振动特性(固有频率和振型),对系统的动态响应、动载荷的产生和传递以及系统振动的形式等均有重要影响。本文通过对系统固有频率和振型的计算与仿真,得到了不同于单级行星传动的三种振动模态,即星形轮系振动模态、行星轮系振动模态及耦合振动模态。基于求得的振动模态,对星轮、行星轮等间距布置和不等间距布置时系统的模态特性进行了研究,为实际系统的动态特性分析提供了理论基础。
     基于模态法建立了两级人字齿混合行星齿轮系统的参数敏感度计算模型,引入系统特有的固有振动特性,使得计算模型大大简化。通过对两级系统齿轮啮合刚度和两级间连接轴扭转刚度的固有频率敏感度研究,得到了参数变化对各个振动模态固有频率的影响规律。引入模态能量的定义,更加直观的表征出各参数固有频率变化的敏感程度。在此基础上对两级串联人字齿混合行星传动系统进行了模态跃迁现象的分析,得出了固有频率分属不同振动模态时,固有频率模态跃迁的变化规律,并通过实例进行了验证。
     为解决两级串联混合行星传动系统动力学方程求解难的问题,首次将弧长延拓技术引入增量谐波平衡法,将此改进后的方法应用到本文研究的系统动力学方程中,得出了系统各构件在工作转速附近的频响特性。将解析多尺度摄动分析法应用到两级串联混合行星传动系统的求解中,分别得到了主谐波共振、亚谐波共振和超谐波共振三种情况下的频率响应方程,并计算得到了系统的主共振幅频特性曲线。在上述两种方法的分析过程中,均将所得的系统动力学特性与数值仿真方法所得的结果进行了比较,验证了所提方法的可行性和有效性。
     采用数值仿真方法对系统无量纲动力学微分方程进行求解,首先通过位移时域响应、相图、Poincare映射和分岔图等分析手段,对系统的非线性动力学响应特性进行了研究,发现了各种稳态响应相互间的转化规律,并重点研究了系统各参数变化对动力学特性的影响。研究中包括的系统参数有啮合刚度(幅值和谐波数)、啮合综合误差(幅值和谐波数)、阻尼比、两级间扭转刚度、齿轮螺旋角和外载荷。通过对各构件幅频特性曲线的分析,得出了两级串联混合行星传动系统特有的动力学幅频特性,为此类系统的设计和实验提供了理论依据。
Along with the development of the modern naval ships fighting capacitie, the level of vibration and noise is incresing. The structure design level of the after transmission sets directly related to the characteristics of the torque and power.
     The two stage compound planetary gear train is one of the most important equipment in after transmission. The entire system is composed of a star gear system with fixed carrier and a planetary gear system. Changes of the dynamic characteristics can easily produce vibration and noise problems which are also the main noise source of machine equipment. The fighting abilities are greatly affected by the vibration and noise.
     As the existing ship transmission system is very large, the experimental test can not be carried out in our country. Therefore, the dynamic properties of theory study is very necessary.
     The dynamic characteristics of the two stage compound planetary gear transmission system are more complicated than a single-stage transmission. The dynamic research on the two stage connection compound planetary gear is notably lacking in the literature. The dissertation mainly studies the dynamics of the two stage compound planetary gear. Some key issues such as nonlinear dynamic modeling, natural vibration properties, eigensensitivity, frequency veering, solution methods and dynamic behaviors of the system are concerned.
     In the present case, there are potentially several different carriers, each rotating at different speeds. It is possibility is to describe all components in a single fixed basis and then allow the planet position angles to change with time. The nonlinear dynamic model of two stage compound planetary gear train with time-varying planet position angle, time-varying mesh stiffness, error excitation, damping, gear compression and tooth separation is constructed by using lumped parameter model under the fixed coordinate system. For the purpose of dynamic analysis, the meshing stiffness and error are determined. Under the condition of all the points on simultaneous engagement contact line have the same deformation, the meshing stiffness of a pair of herringbone is obtained. The composite meshing error is described by the form of contact line increments.
     Natural vibration characteristics are composed of natural frequencies and vibration mode which have significant impacts on dynamic response, dynamic load generation and transmission, as well as the vibration forms. Through the analysis and calculation of natural frequency and vibration mode, all vibration modes for system are classified into three types which are called star system vibration mode, planetary system vibration mode and coupling vibration mode. The properties of the modes, which have been drawn from numerical results, are studied with equal and unequal planet spacing.
     Based on the mode method, the eigensensitivity calculation model of the two stage compound planetary gear system is established. The model is greatly simplified by the introduction of the unique natural vibration characteristics. The system through two meshing stiffness and torsional stiffness of connected shaft between the two natural frequencies of the sensitivity study, obtained the parameters change on the natural frequency of each vibration mode were investigated. Modal Energy to introduce the definition of a more intuitive characterization of a natural frequency of the various parameters of sensitivity to change. On this basis, the word on the two series planetary gear hybrid powertrain carried out an analysis of the phenomenon of modal transition obtained belong to different natural frequencies of vibration modes, the natural frequency changes of mode transitions, and verified by examples the correctness of the conclusions.
     To solve the two series hybrid drive system dynamic equation of planetary difficult problem to solve, using incremental harmonic balance method and the arc-length continuation techniques, and its application to this paper, the system dynamic equations to arrive at the system The working speed components in the vicinity of the frequency response characteristics. The multi-scale perturbation analysis method applied to two series hybrid drive system to solve the planet, respectively, were the main harmonic resonance, subharmonic resonance and ultra-harmonic resonance frequency response of three cases equation, and calculated the The main system of amplitude-frequency characteristic curve. In the above two methods of analysis process, are obtained for the system dynamics and numerical method results were compared to verify the feasibility and effectiveness of the proposed method.
     Numerical method on the system non-dimensional kinetic equation is solved, first through the displacement of the time domain response, phase diagram, Poincare map and bifurcation diagram of various analytical techniques, the system response characteristics of nonlinear dynamics have been studied and found steady-state response to a variety of inter-conversion laws. Next, focus on the system parameters change on the dynamic characteristics. Studies included in the system parameters are meshing stiffness (amplitude and harmonic number), mating an integrated error (amplitude and harmonic number), damping ratio of 2 between the torsional stiffness, gear helix angle and the external load. The various components through the analysis of amplitude-frequency characteristic curve obtained two series hybrid planetary transmission amplitude-frequency characteristics of the unique dynamics for such systems provide a basis for the design and experiments
引文
1. Vijaya Kumar Ambarisha, Robert G. Parker. Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models[J]. Journal of Sound and Vibration, 2007, 302: 577-595
    2.朱齐荣.核动力机械[M].长沙:国防科技大学出版社, 2003
    3.马亮.大型船用齿轮传动系统动力学研究[D].哈尔滨:哈尔滨工业大学, 2001: 2-3
    4. A. Kahraman. Natural Modes of Planetary Gear Trains[J]. Journal of Sound and Vibration, 1994, 173(1):125-130
    5. Bahk C J, Parker R G. Nonlinear Dynamics of Planetary Gears With Equal Planet Spacing[C]. IDETC/CIE 2007, Las Vegas, 2007
    6. Jian Lin, Parker R G. Planetary Gear Parametric Instability Caused by Mesh Stiffness Variation[J]. Journal of Sound and Vibration, 2002, 249(1):129-145
    7.鲍和云.两级星型齿轮传动系统分流特性及动力学研究[D].南京:南京航空航天大学, 2006
    8. August R, Kasuba R. Torsional Vibrations and Dynamic Loads in Basic Planetary Gear Systems[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1986,108:348-353
    9.孙涛,沈允文等.行星齿轮传动非线性动力学模型与方程[J].机械工程学报, 2002,38(3):6-9
    10.孙涛,沈允文等.行星齿轮传动非线性动力学方程求解与动态特性分析[J].机械工程学报, 2002, 38 (3):10-15
    11.宋轶民,许伟东,张策,王世宇. 2K-H行星传动的修正扭转模型建立与固有特性分析[J].机械工程学报, 2006,42(5):16-21
    12. Kahraman A. Load Sharing Characteristics of Planetary Transmission[J]. Mechanism and Machine Theory, 1994, 29(8):1151-1165
    13. Jian Lin, Parker R G. Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration[J]. Journal of Vibration and Acoustics, Transaction of the ASME, 1999,116:316-322
    14. Parker R G. Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model[J]. Journal of Mechanical Design, Transaction of the ASME, 2000,122:304-310
    15. Lin J, R G Parker. Structured Vibration Characteristics of Planetary GearsWith Unequally Spaced Planets[J]. Journal of Sound and Vibration, 2000, 233: 921-928
    16. J Lin, R G Parker. Sensitivity of Planetary Gear Natural Frequencies and Vibration Modes to Model Parameters[J]. Journal of Sound and Vibration, 1999,228(1):109-128
    17. A. Kahraman. Free Torsional Vibration Characteristics of Compound Planetary Gear Sets[J]. Mechanism and Machine Theory, 2001, 36:953-971
    18. Kiracofe D R, Parker R G. Structured Vibration Modes of General Compound Planetary Gear Systems[J]. Journal of Vibration and Acoustics, 2007, 129(2):1-16
    19.孙智民,沈允文,李素有.封闭行星齿轮传动系统的扭振特性研究[J].航空动力学报, 2001,16(2):163-166
    20.孙智民,沈允文,李素有.封闭行星齿轮传动系统的动态特性研究[J].机械工程学报, 2002,38(2):44-48
    21. A. Kahraman. Planetary Gear Train Dynamics[J]. Journal of Mechanical Design, 1994,116: 713-720
    22.杨通强.斜齿行星传动动力学研究[D].天津:天津大学, 2003
    23. Botman. Epicyclic Gear Vibration[J]. Journal of Engineering for Industry, 1976, 96:811-815
    24. Wu X H, Parker R G. Vibration of Rings on a General Elastic Foundation[J]. Journal of Sound and Vibration, 2006, 295:194-213
    25.王世宇,宋轶民等.行星传动系统的固有特性及模态跃迁研究[J].振动工程学报, 2005, 18(4):412-416
    26.王世宇,张策,宋轶民等.行星传动固有特性分析[J].中国机械工程, 2006, 16(16):1461-1465
    27.王世宇,张策,宋轶民等.行星齿轮传动固有频率的统计特性分析[J].机械科学与技术, 2005, 6(24):615-622
    28.杨通强,宋轶民,张策等.斜齿行星齿轮系统自由振动特性分析[J].机械工程学报, 2005, 41(7):50-55
    29. Saada A, Velex P. An Extended Model for the Analysis of the Dynamic Behavior of Planetary Trains[J]. Journal of Mechanical Design, Transaction of the ASME, 1995, 117:241-247
    30.王世宇.基于相位调谐的直齿行星齿轮传动动力学理论与实验研究[D].天津:天津大学, 2005
    31.杨建明,张策.行星齿轮传动的固有频率对设计参数的敏感度分析[J].机械设计, 2001, 4(1):40-43
    32.王春光,常山,李应生.行星齿轮啮合刚度对其振动特性的影响[J].热能动力工程, 2005, 4(20):414-420
    33. Ma P, Botman M. Load Sharing in a Planetary Gear Stage in the Presence of Gear Errors and Misalignment[J]. Journal of Mechanisms, Transmissions and Automation in Design, 1984,104:1-7
    34. Yuksel C, Kahraman A. Dynamic Tooth Loads of Planetary Ggear Sets having Tooth Profile Wear[J]. Mechanism and Machine Theory, 2004,39(2):695-715
    35. Tao S, Hu H. Nonlinear Dynamics of a Planetary Gear Systems With Multiple Clearances[J]. Mechanism and Machine Theory, 2003, 38:1371-1390
    36.孙涛.行星齿轮系统非线性动力学研究[D].西安:西北工业大学, 2000
    37.孙涛,胡海岩.基于离散傅立叶变换与谐波平衡法的行星齿轮系统非线性动力学分析[J].机械工程学报, 2002,38(11):58-60
    38.孙智民,沈允文,王三民,李华.星型齿轮传动系统的非线性动力学分析[J].西北工业大学学报, 2002,20(2):222-226
    39.孙智民,沈允文,王三民等.星型齿轮传动系统分岔与混沌的研究[J].机械工程学报, 2001,37(12):222-226
    40.孙智民.功率分流齿轮传动系统非线性动力学研究[D].西安:西北工业大学, 2001
    41.鲍和云,朱如鹏.两级星型齿轮传动动态均载特性分析[J].航空动力学报, 2005,20(6):937-943
    42. Parker R G. A Physical Explanation for the Effectiveness of Planet Phasing to Suppress Planetary Gear Vibration[J]. Journal of Sound and Vibration, 2000, 236(4):561-573
    43. Lin liu, Darryll, J. Pines. The Effect of Ring Gear Flexibility on Planetary Gear Train Dynamics[C]. Proceedings of the International Conference on Mechanical Transmissions, 2001
    44. Hidaka, Teruaki, Terauchi, Yoshio. Dynamic Behavior of Planetary Gear em Dash 1. Load Distributions in Planetary Gear, Bulletin of the JSME, 1976, 19(132):690-698
    45. Hayashi Y., Li X., Hayashi L, Endou K., Watanabe W. Measurement and Some Discussions on the Dynamic Load Sharing in Planetary Gears. Bulletin of the JSME, 1986,29:2290-2297
    46.杨绍普,申永军等.基于增量谐波平衡法的齿轮系统非线性动力学[J].振动与冲击, 2005,24(3):40-43
    47.张锁怀,沈允文等.用AOM研究强非线性齿轮系统动力学问题[J].机械工程学报, 2004, 40(12):20-24
    48. Hidaka Teruaki, Terauchi Yoshio, Nagamura Kazuteru. Dynamic Behavior of Planetary Gear em Dash 5. Dynamic Increment of Torque, Bulletin of the JSME, 1979, 22(169):1017-1025
    49. Hidaka Teruaki, Terauchi Yoshio, Nagamura Kazuteru. Dynamic Behavior of Planetary Gear em Dash 6. Influence of Meshing-phase, Bulletin of the JSME, 1979, 22(169): 1026-1033
    50. Hidaka Teruaki, Terauchi Yoshio, Nagamura Kazuteru. Dynamic Behavior of Planetary Gear em Dash 7th report, Influence of the Thickness of the Ring Gear, Bulletin of the JSME, 1979, 22(170): 1142-1149
    51. Hidaka Teruaki, Terauchi Yoshio, Nohara Minoru, Oshita Jun-ichi. Dynamic Behavior of Planetary Gear em Dash 3. Displacement of Ring Gear Indirection of Line of Action, Bulletin of the JSME, 1977, 20(150):1663-1672
    52. Choy, Fred K., Townsend, Dennis P., Oswald, Fred B. Experimental and Analytical Evaluation of Dynamic Load Vibration of a 2240-kW(3000-hp) Rotorcraft Transmission[J]. Journal of the Franklin Institute, 1989, 326(5): 721-735
    53. H. Ligata, A. Kahraman, A. Singh. An Experimental Study of the Influence of Manufacturing Errors on the Planetary Gear Stresses and Planet Load Sharing[J]. Journal of Mechanical Design, 2008,130(4):1-9
    54.孙景惠,张久成,李渤仲.行星轮机构及其轴系的扭转振动实验研究[J].机械工程学报, 1991,27(1):8-13
    55.孙景惠,张久成,李渤仲.行星轮系回转振动实验研究[J].水利电力机械, 1990,29-33
    56.孙景惠,张久成,李渤仲.带有行星齿轮装置动力轴系扭转振动的试验研究[J].水利电力机械, 1995,5:19-23
    57.沈允文,邵长健.利用行星架附加阻尼的行星齿轮系统减振研究[J].机械传动, 1999,23(4):29-31
    58.孙涛,沈允文,邵长健.附加粘弹性阻尼齿轮结构的阻尼计算[J].航空动力学报, 1998,3(13):301-349
    59.李润方,王建军.齿轮系统动力学—振动、冲击、噪声[M].北京:科学出版社, 1997
    60.常山.高速重载宽斜齿渐开线齿轮瞬时刚度和综合修形的研究[D].哈尔滨:哈尔滨工业大学, 1997
    61. P. Velex, M. Maatar. A Mathematical Model for Analyzing the Influence of Shape Deviations and Mounting Errors on Gear Dynamic Behavior[J]. Journal of Sound and Vibration, 1996, (191):629-660
    62. Parker R G, Lin J. Mesh Phasing Relationships in Planetary and Epicyclic Gears[J]. Journal of Mechanical Design, 2004,126:365-370
    63. Ambarisha V, Parker R G. Suppression of Planet Mode Response in Planetary Gear Dynamics through Mesh Phasing[J]. ASME Journal of Vibration and Acoustics, 2006, 128(4): 133-142
    64. Velex P, Flamand L. Dynamic Response of Planetary Trains to Mesh Parametric Excitations[J]. Journal of Mechanical Design, 1996,118: 7-14
    65. Lin J, Parker R G. Natural Frequency Veering in Planetary Gears[J]. Mech. Struct. and Mach., 2001, 29(4): 411-429
    66. Lin J. Analytical Investigation of Planetary Gear Dynamics[D]. Columbus: The Ohio State University, 2000:47-62
    67. Pierre C. Mode localization and eigenvalue loci veering phenomena in disordered structures[J].Journal of Sound and Vibration, 1988, 126(3): 485-502
    68. Chen P, Ginsberg J H. On the relationship between veering of eigenvalue loci and parameter sensitivity of eigenfunctions[J]. Journal of Vibration Acoustics, 1992, 114(2): 141-148
    69. Perkins N C, Mote C D. Comments on curve veering in eigenvalue problems[J]. Journal of Sound and Vibration, 1986, 106(3): 451-463
    70.高阳,王三民,刘晓宁.一种改进的增量谐波平衡法及其在非线性振动中的应用[J].机械科学与技术, 2005, 24(6):663-665
    71. A. Raghothama, S. Narayanan. Bifurcation and Chaos in Escape Equation Model by Incremental Harmonic Balancing[J]. Chaos Solitons and Fractals, 2000, (11): 1349-1363
    72. A. Raghothama, S. Narayanan. Bifurcation and Chaos in Geared Rotor Bearing System by Incremental Harmonic Balance Method[J]. Journal of Sound and Vibration, 1999, 226(3): 469-492
    73. L. Xu, M. W. Lu, Q. Cao. Bifurcation and Chaos of a Harmonically Excited Oscillator With Both Stiffness and Viscous Damping Piecewise Linearities by Incremental Harmonic Balance Method[J]. Journal of Sound and Vibration, 2003, (264): 873-882
    74. A. Raghothama, S. Narayanan. Bifurcation and Chaos of an Articulated Loading Platform With Piecewise Non-linear Stiffness using the Incremental Harmonic Balance Method[J]. Ocean Engineering, 2000, (27): 1087-1107
    75. J. X. Zhou, L. Zhang. Incremental Harmonic Balance Method for Predicting Amplitudes of a Multi-d.o.f. Non-linear Wheel Shimmy System With Combined Coulomb and Quadratic Damping[J]. Journal of Sound and Vibration, 2005, (279): 403-416
    76. Mikhail Guskov, Jean-jacques Sinou, Fabrice Thouverez. Multi-dimensional Harmonic Balance Applied to Rotor Dynamics[J]. Mechanics Research Communications, 2008, (35):537-545
    77. L. Xu, M. W. Lu, Q. Cao. Nonlinear Vibrations of Dynamical Systems With a General Form of Piecewise-linear Viscous Damping by Incremental Harmonic Balance Method[J]. Physics Letters A, 2002, (301): 65-73
    78. A. Y. T. Leung, S. K. Chui. Non-linear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonic Balance Method[J]. Journal of Sound and Vibration, 1995, 181(4): 619-633
    79. P. Ribeiro. Non-linear Free Periodic Vibrations of Open Cylindrical Shallow Shells[J]. Journal of Sound and Vibration, 2008,(313): 224-245
    80. A. Raghothama, S. Narayanan. Non-linear Dynamics of a Two-dimensional Airfoil by Incremental Harmonic Balance Method[J]. Journal of Sound and Vibration, 1999, 226(3): 493-517
    81. Yongjun Shen, Shaopu Yang, Xiandong Liu. Nonlinear Dynamics of a Spur Gear Pair With Time-varying Stiffness and Backlash Based on Incremental Harmonic Balance Method[J]. Mechanical Sciences, 2006, (48): 1256-1263
    82. T. C. Kim, T. E. Rook, R. Singh. Super- and Sub-harmonic Response Calculations for a Torsional System With Clearance Nonlinearity using the Harmonic Balance Method[J]. Journal of Sound and Vibration, 2005, 281: 965-993
    83.闻邦椿,李以农,韩清凯.非线性振动理论中的解析方法及工程应用[M].沈阳:东北大学出版社, 2001
    84.陈树辉.强非线性振动系统的定量分析方法[M].北京:科学出版社, 2006
    85. Liu G. Nonlinear Dynamics of Multi-mesh Gear Systems. Columbus: The Ohio State University, 2007:65-99
    86. Jose M. del Castillo. The Analytical Expression of The Effciency ofPlanetary Gear Trains[J]. Mechanism and Machine Theory, 2002,(37):197-214
    87. Romil P. Tanna, Teik C. Lim. Modal Frequency Deviations in Estimating Ring Gear Modes Using Smooth Ring Solutions[J]. Journal of Sound and Vibration, 2004,(269):1099-1110
    88. Fakher Chaari, Tahar Fakhfakh. Influence of Manufacturing Errors on the Dynamic Behavior of Planetary Gears[J]. Int J Adv Manuf Technol., 2006,(27):738-746
    89. Sripathi Vangipuram Canchi, Robert G. Parker. Parametric Instability of a Rotating Circular Ring With Moving, Time-Varying Springs[J]. Journal of Vibration and Acoustics, 2006,128:231-243
    90. Ahmet Kahraman, Sandeep Vijayakar. Effect of Internal Gear Flexibility on the Quasi-Static Behavior of a Planetary Gear Set[J]. Journal of Mechanical Design, 2001,123:408-415
    91. F. L. Litvin, D. Vecchiato, A. Demenego. Design of One Stage Planetary Gear Train With Improved Conditions of Load Distribution and Reduced Transmission Errors[J]. Journal of Mechanical Design, 2002,124:745-752
    92. B. Irwanto, H.–J. Hardtke, D. Pawandenat. An Efficient Technique for The Computation of Eigenvalue and Eigenvector Derivatives of Cyclic Structures[J]. Computers and Structures, 2003,(81):2395-2400
    93. Yang Ping, Din JianNin, Yang JiChang. A Fuzzy Evaluating Approach for Load Sharing Characteristics of EGT Based On Manufacturing and Assembly Error Characteristics[J]. Int J Adv Manuf Technol., 2005,(26):1115-1120
    94. V. Abousleiman, P. Velex. A Hybrid 3D Finite Element/Lumped Parameter Model for Quasi-Static and Dynamic Analyses of Planetary/Epicyclic Gear Sets[J]. Mechanism and Machine Theory, 2006,(41):725-748
    95. F. Chaari, T. Fakhfakh, M. Haddar. Dynamic Analysis of a Planetary Gear Failure Caused by Tooth Pitting and Cracking[J]. Journal of Failure Analysis and Prevention, 2006,6(2):73-78
    96. S. V. Canchi, R. G. Parker. Effect of Ring-Planet Mesh Phasing and Contact Ratio on the Parametric Instabilities of a Planetary Gear Ring[J]. Journal of Mechanical Design, 2008,130:0145011-0145016
    97. A. Bodas, A. Kahraman. Influence of Carrier and Gear Manufacturing Errors on the Static Load Sharing Behavior of Planetary Gear Sets[J]. JSME International Journal, 2004,47(3):908-915
    98. Chien-Hsing Li, Hong-Shun Chiou, Chinghua Hung. Integration of FiniteElement Analysis and Optimum Design on Gear Systems[J]. Finite Elements In Analysis and Design, 2002,(38):179-192
    99. A. Bajer, L. Demkowicz. Dynamic Contact/Impact Problems, Energy Conservation, and Planetary Gear Trains[J]. Computer Methods In Applied Mechanics and Engineering, 2002,(191):4159-4191
    100. A. Kahraman, A. A. Kharazi, M. Umrani. A Deformable Body Dynamic Analysis of Planetary Gears With Thin Rims[J]. Journal of Sound and Vibration, 2003,(262):752-768
    101. Daniele Vecchiato. Tooth Contact Analysis of a Misaligned Isostatic Planetary Gear Train[J]. Mechanism and Machine Theory, 2006,(41):617-631
    102. Gerald Recktenwald.数值方法和MATLAB实现与应用[M].伍卫国,万群,张辉等.北京:机械工业出版社, 2004
    103.张策.机械动力学[M].北京:高等教育出版社, 2008
    104.刘延柱,陈立群.非线性振动[M].北京:高等教育出版社, 2003
    105.刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社, 2005
    106.高普云.非线性动力学—分叉、混沌与孤立子[M].长沙:国防科技大学出版社, 2005
    107.李惠彬.振动理论与工程应用[M].北京:北京理工大学出版社, 2006
    108.胡海岩.应用非线性动力学[M].北京:航空工业出版社, 2000
    109.孔德文.大型齿轮传动装置动力学及故障诊断技术研究[D].长春:吉林大学, 2008
    110.杨富春.复式行星排动力特性及其止推垫圈磨损特性研究[D].杭州:浙江大学, 2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700