用户名: 密码: 验证码:
模拟酶催化分子氧对乙苯及其衍生物侧链氧化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饱和C-H键的氧化是合成有机含氧化合物的重要方法。随着石油化学工业的发展,许多烃类饱和C-H键的氧化技术已成功地应用到工业生产中,例如环己烷氧化制环已醇/环已酮(俗称KA油)、对二甲苯氧化制对苯二甲酸、甲苯氧化制苯甲酸等。此外,乙苯及其衍生物的侧链亚甲基氧化制备芳酮的反应也具有很广阔的应用前景。
     芳酮是合成染料、香料及医药等精细化学品的原料,工业上主要通过Friedel-Crafts酰基化来制备。但是,在Friedel-Crafts反应中,催化剂AlCl_3在水解过程中产生大量的酸性废水,对环境造成危害。随着催化氧化技术的发展,高转化率、高选择性的氧化饱和C-H键成为可能。乙苯及其衍生物的侧链氧化制备芳酮的方法越来越受到重视。其中最有代表性的是乙苯氧化制苯乙酮。此外,像对硝基苯乙酮、二乙酰基苯等因原料苯环上含有强吸电子基团,很难通过Friedel-Crafts酰基化得到,而通过乙苯及其衍生物侧链氧化就很容易了。
     细胞色素P-450是生物体内的一种氧化酶,在常温下能高效、高选择性的催化分子氧氧化饱和C-H键,对于开发绿色环保氧化工艺具有重要意义。对P-450活性中心的结构和功能模拟引起了人们的极大兴趣。细胞色素P-450的活性中心为卟啉铁,因此近年来许多金属卟啉配合物被用来催化氧化反应。基于此,本文模拟细胞色素P-450合成了12个过渡金属卟啉配合物,并用它们催化活化分子氧对乙苯及其衍生物侧链氧化。发现四-(五氟苯基)卟啉(TPFPP)过渡金属配合物中心金属的还原电位越高,催化活性也越好,如四-(五氟苯基)卟啉钴(14)的氧化还原电位最高,它的催化活性也最好;在14浓度为1.0×10~(-3)mol/L,氧气压力为1.5 MPa,100℃,反应24 h的最佳反应条件下,乙苯转化率为38.6%,苯乙酮的选择性为94.0%,1-苯基乙醇的选择性为6.0%,是目前文献报道的最好结果;烷基芳烃的苯环上含供电子基团或侧链增长,转化率下降,苯环上有吸电子基团,转化率升高。
     对14催化分子氧氧化乙苯侧链进行紫外-可见光谱研究发现只有出现435 nm吸收峰时反应才能发生;核磁共振谱确认该435 nm的物种是[TPFPPCo(Ⅲ)]OH。由此推出,14与P-450类似,在反应中它先与分子氧生成TPFPPCoOO·超氧配合物,随后按P-450酶催化机理和自由基两种机理进行反应。在反应中[TPFPPCo(Ⅲ)]OH分子间缩水而生成TPFPPCo(Ⅲ)O(Ⅲ)CoTPFPP从反应体系中沉淀出来,它的催化活性很低。形成μ-O-双核配合物是催化剂失活的主要原因。
     研究K_2Cr_2O_7对14催化分子氧对乙苯侧链氧化的促进作用。当K_2Cr_2O_7:乙苯(mol)=1:800,14浓度为1.0×10~(-3) mol/L,氧气压力为1.5 MPa,100℃反应24 h,乙苯转化率就达到55.2%,远高于14催化的结果。苯乙酮选择性达92.4%,1-苯基乙醇的选择性7.6%。K_2Cr_2O_7并非促进形成活性物种而是加速过氧化物分解。
     本文合成2,6-二[1-(苯基亚胺基)乙基]钴合二氯(22)、2,6-二[1-(苯基亚胺基)乙基]锰合二氯(23)和二{2,6-二[1-(苯基亚胺基)乙基]}钴合四氯化钴(24)等三个配合物并对它们做了单晶结构分析。结果表明22和23中三个氮均与金属配位,并处在同一平面上,形成扭曲的三角双锥型。24是由22在CH_2Cl_2中岐化得到的六氮配位钴配合物,具有扭曲的八面体构型。研究了这类配合物催化分子氧对乙苯及其衍生物侧链氧化的反应。发现它们的性能与四-(五氟苯基)卟啉过渡金属差不多,也是一类模拟酶氧化催化剂,钴配合物22的催化活性也是最高。在22浓度为1.5×10~(-3)mol/L,氧气压力为1.0 MPa,120℃反应20 h,乙苯转化率为37.8%,苯乙酮的选择性为82.5%,1-苯基乙醇的选择性为13.5%,锰配合物23次之。从钻配合物24的单晶结构可知,中心金属钴与六个氮原子配位,配位数达到饱和,结构比较稳定,所以其催化活性最低。
The oxidation of saturated C-H bond is an important technical method to obtain oxygenous organic compounds. With the development of petroleum chemical industry, many oxidation technologies have been applied triumphantly. For example, cyclohexane can be oxidized into a mixture of cyclohexanol and cyclohexanone, p-xylene to terephthalic acid and the toluene to benzoic acid and so on. In addition, the oxidation of the side chain on alkybenzene is a promising route to get ketone product.
     Arocmatic ketones as an important material are mainly gained from the Friedel-Crafts acylation of arene in chimecal industry. During the Friedel-Crafts acylation of arene, much acidic waste water was produced from the hydrolys of AlCl_3, which caused the harm to the environment. With the development of the oxidation technologies, saturated C-H bond can be oxidized with high conversion and excellent selectivity. More and more attention has been paid to the oxidation of the side chain on the ethylbenzene and its derivatives. A typical example is the oxidation of ethylbenzene to prepare acetophenone. Furthermore, p-nitroacetophenone and p-diacetylbenzene which can not be obtained through the Friedel-Crafts acylation reaction owing to electron-withdrawing substituent on the phenyl ring. On the contrary, they can be easily prepared by the oxidation of the corresponding alkylbenzene.
     Cytochromes P-450 as an enzyme can catalyze the oxidation of saturated C-H bond with high conversion and excellent selectivity under mild condition. The active site of cytochromes P-450 is iron porphyrin. In recent years, many metalloporphyrins were synthesized to catalyze the oxidation reaction. Encouraged by these achievements, in this thesis, 12 transitional metalloporphyrins were synthesized in order to mimic the oxidation function of cytochromes P-450. The activation of molecular oxygen and oxidation of the side chain of ethylbenzene or its derivatives catalyzed by these complexes without additive was investigated. The results showed that the higher reduction potential the metalporphyrin has the better catalytic activity. In our case. (5, 10, 15, 20)-tetrakis(pentaflurophenyl)porphyrin cobalt(II) (14) with the highest reduction potential exhibited the highest catalytic activity. Under the optimal conditions (1×10~(-3) mol/L of 14, 1.5 MPa of O_2, 100℃, 24 h), the conversion of ethylbenzene was 38.6%, the selectivity of acetophenone and 1-phenylethynol was 94.0% and 6.0% respectively. It was the best result in the literature. The electron-donating groups on the phenyl ring and the longer side chain on the alkylbenzene decreased the conversion, on the contrary, the electron-withdrawing substituent on the phenyl ring enhanced the conversion.
     The side chain oxidation reaction of ethylbenzene with molecular oxygen catalyzed by 14 was investigated by UV-Vis spectra. The intermediate specie with signal at 435 nm was further confirmed by ~1H NMR to be [TPFPPCo(Ⅲ)]OH. Therefore, it can be deduced that the mechanism of the ethylbenzene oxidation with molecular oxygen catalyzed by 14 is analogous with the oxidation of alkane catalyzed by cytochromes P-450. Firstly, TPFPPCo(Ⅱ) and molecular oxygen generate TPFPPCoOO·species, then the oxidation reaction of ethylbenzene works according to two kinds of mechanisms, i.e. the metal-based mechnism and the radical chain mechanism. During the reaction, TPFPPCo(Ⅲ)O(Ⅲ)CoTPFPP precipitated from the reaction mixture by condensation of two molecular [TPFPPCo(Ⅲ)]OH. The low catalytic activity was assumed to be the catalyst deactivation by the formation ofμ-O dimer complex.
     The stimulation of K_2Cr_2O_7 for the side chain oxidation of ethylbenzene with molecular oxygen catalyzed by 14 has been investigated. Under the optimal conditions (K_2Cr_2O_7:ethylbenzene = 1:800, 1×10~(-3) mol/L of 14, 1.5 MPa of O_2, 100℃, 24 h), the conversion of ethylbenzene was 55.2%, and the selectivity for acetophenone was 92.4%, better than 14 alone. Experimental results show that the function of K_2Cr_2O_7 is not the promotion of the formation of catalytic species, but accelerating the decomposition of the peroxide.
     In order to compare their catalytic performance with metalloporphyrins, we synthesized 2,6-bis[(1-phenylimino)ethyl]pyridine dichloride cobalt(Ⅱ) (22),2,6-bis[(1-phenylimino)ethyl]pyridine dichloride manganese(Ⅱ) (23) and bis{2,6-di[(1-phenylimino)ethyl]pyridine}cobalt(Ⅱ) tetrachlorocobaltate (24). The single crystal X-ray structures of these complexes showed that the core metal atom is ligated by three N atoms from ligand in complex 22 and 23, located in a distorted trigonal bypyramidal geometry with the three N atoms and the core metal atom being coplanar. The complex 24 was formed by disproportion from 22 in CH_2Cl_2. The X-raystructure of complex 24 showed a octahedral geometry in which the Co(Ⅱ) atom is coordinated by six N atoms from two ligands. The side chain oxidation of ethylbenzene with molecular oxygen catalyzed by these complexes in the absence of any additives was also investigated, where Co complex (22) showed the highest catalytic activity. Under the optimal conditions (1.5×10~(-3) mol/L of 22, 1.0 MPa of O_2, 120℃, 20 h), the conversion of ethylbenzene was 37.8%, and the selectivity for acetophenone and 1-phenylethynol was 82.5% and 13.5% respectively. The catalytic activity of Mn complex (23) was inferior to its Cobalt counterpart 22. The complex 24 had exihibited the lowest catalytic activity because the Co atom was coordinated six N atoms.
引文
[1]郭奇珍,陈明德编著.仿生化学.北京:化学工业出版社,1990.
    
    [2] Holm R H, Kennepohl P, Solomon E I. Structural and functional aspects of metal sitein biology. Chem. Rev. 1996, 96(7): 2239-2314.
    
    [3] MansuyD, Battioni P. In: Reedijk J, Bouwman E, et al. Bioinorganic catalysis, New York:Marcel Dekker Inc. 1999: 323-354.
    
    [4] Sono M, Roach MP, Coulter E D et al. Heme containing oxygenase. Chem. Rev. 1996, 96(7):2841-2887.
    
    [5] Maenesh M D, Anders M W. Characterization of the heme of cytochrome P-450 using gaschromatography-masspectrometry. Arch. Biochem. Biophys. 1973, 159(1): 201-205.
    
    [6] Poulos T L, Finzel B C, Gunsalus I C et al. The 2. 6A crystal structure of Pseudomonasputida cytochrome P450, J. Boil. Chem. 1985, 260: 16122-16130.
    
    [7]冷欣夫,丘星辉编著.细胞色素P-450酶系的结构、功能与应用前景。北京:科学出版社,2001.
    
    [8]何仁、陶晓春、张兆国编著.金属有机化学.上海:华东理工大学出版社,2007.
    
    [9]方允中,李文杰著.自由基和酶.北京:科学出版社,1989.
    
    [10]吴越.温和条件下氧分子的活化和活性氧种的反应.应用化学.1983,1:1-14.
    
    [11]Meunier B. Metalloporphyrins as versatile catalysts for oxidation reaction andoxidative DNA cleavage. Chem. Rev. 1992, 92: 1411-1456.
    
    [12] Karl M K, Francis D S, Anne V. Effect of porphyrin ring distortion on redoxpotentials of beta-brominated-pyrrole iron (Ⅲ) tetrapheylporphyrins. Inorg. Chem. 1994,33: 5169-5170.
    
    [13] Francis D S, Anne V, Caemelbeche E V, et al. Electrochemical andSpectroelectrochemical Behavi- or of Cobalt (111), Cobalt(Ⅱ), and Cobalt (Ⅰ) Complexesof meso-Tetraphenyl- porphyrinate Bearing Bromides on the &Pyrrole Positions. Inorg.Chem. .1993, 32: 4042-4048.
    
    [14] Tagliatesta P, Li J, Autret M, et al. Electrochemistry and SpectralCharacterization of Oxidized and Reduced (TPPBrx)FeCl Where TPPBrx Is the Dianion of(?)-Brominated-Pyrrole Tetraphenyl-porphyrin and x Variesfrom 0 to 8. Inorg. Chem. 1996, 35:5570-5576.
    
    [15] Karl M K, Li J, Caemelbeche E V, et al. Electrooxidation of Cobalt(Ⅱ)i-Brominated-Pyrrole Tetraph- enylporphyrins in CH_2Cl_2 under an N_2 or a CO Atmosphere. Inorg.Chem. 1997, 36: 6292-6298.
    
    [16] Ou Zhou, Kadish K M, Wenbo E et al. Substituent effects on the site of ElectronTransfer during the First Reduction for Gold(Ⅲ) Porphyrins. Inorg. Chem. 2004, 43:2078-2086.
    
    [17] Francis DS, MelvinE. Z, Pietro T. et al. Electronic, spectral, and electrochemical properties of (TPPBrx)Zn where TPPBrx Is the dianion of (?)-brominated-pyrrole tetraphenylporphyrin and x varies from 0 to 8. Inorg. Chem. 1998, 37: 4567-4572.
    
    [18] Lyons J E, Ellis P E, Myers H K. Halogenated metalloporphyrin complexes as catalyst for selective reactions of acyclic alkanes with molecular oxygen. J. Catal. 1995, 155: 59-73.
    
    [19]沈永嘉主编.肽菁的合成与应用.北京:化学工业出版社,2000
    
    [20]Korop H, Horfmann H. Autoxidation von cumol in gegenwart won substituiertenkupfer-phthalocyaninen und verwandten kwpfer-komplexen. Tetrahedron Lett. 1967, 8:659-663.
    
    [21]Buck T, Bohlen H, Wohrle D. et al. Influence of substituents and ligands of variouscobalt(Ⅱ) porphyrin derivatives coordinately bonded to silica on the oxidation ofmercaptan. J Mol. Catal. 1993, 80: 253.
    
    [22]宋玉林,董贞俭著.稀有金属化学.沈阳:辽宁大学出版社,1991.
    
    [23]宋玉林, 稀散元素化学研究进展.化学通报,1995,8:17-22.
    
    [24]Jone D R, Sumerville D A, Basolo F. Synthetic oxygen carriers related to biologicalsystems. Chem. Rev. 1979, 79(2): 139.
    
    [25]Chen D, Motekaitics R J, Murase I, et al. The synthesis of binucleating polyazamacrocyclic and macrobicyclic ligands and the dioxygen aff intties of their cobalt complexes.Tetrahedron 1995, 51(1): 77-88.
    
    [26]Park S, Mathur V K, Planalp P. Syntheses, solubilities and oxygen absorption propertiesof new cobalt(Ⅱ) Schiff-base complexes. Polyhedron 1998, 17(2-3): 325-330.
    
    [27]Hashimoto S, Nakumura Y. nuclease activity of a hydroxamic acid derivative in thepresence of various metal ions. J Chem. Soc., chem.. commun. 1995, 1413-1414.
    
    [28]Budka J, Hampl F, Tonellato U. Micellar nickel(Ⅱ)-2-pyridineketoxime complexes aspowerful catalysts of the cleavage of carboxylic acid esters in weakly acidic conditions.J. Mol. Catal. A: Chem. 1996, 104: 201.
    
    [29]Hendry P, Sargeson A M. Metal ion promoted phosphate ester hydrolysis intramolecularattack of coordinated hydroxide ion. J. Am. Chem. Soc. 1989, 111: 2521.
    
    [30]Kimura E, Hashimoto H, Koike T. Hydrolysis of lipophilic ester catalyzed by zinc(Ⅱ)complex of a long alkyl-pendant macrocylic tetraamine in micellar solution. J. Am. Chem.Soc. 1996, 118: 10963.
    
    [31]Yang H, Qin S Y, Lu X X. Dioxygen affinities and catalytic epoxidation performance oftransition-metal hydroxamates. Chin. Lett. 1999, 10: 845-848..
    
    [32]周先礼,杜瑛,秦圣英等.N-苯基异类过渡金属配合物仿生催化生氧载体研究.四川大学学报(自然科学版)2002,39:96-99.
    
    [33]Etelka F, Peter B, Eva A E, et al. Factors affecting the metal ion-hydroxamate interactions: effect of the position of the peptide function in the connecting chain on the Fe(III), Mo(VI) and V(V) complexation of some new deferrioxamine B(DFB) model dihydroxamic acids. Inorg. Chim. Acta 2002, 215-213.
    
    [34]Iquel C, Mehn M P, Jensen M P, et al. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem. Rev. 2004, 104: 939-996.
    
    [35]Que L, Ho R Y N. Dioxygen activation by enzymes with mononuclear non-heme iron active sites. Chem. Rev. 1996, 96: 2607-2624.
    
    [36]Solomon E, Brundd T C, Davis M I, et al. Geometric and electronic structure/function correlation in non-heme iron enzymes. Chem. Rev. 2000, 100: 235-349.
    
    [37]Guajardo R J, Hudson S E, Brown S J et al. [Fe(PMA)]n+ (n = 1,2): good models of iron-bleomycins and examples of mononuclear non-heme iron complexes with significant oxygen-activation capabilities. J. Am. Chem. Soc., 1993, 115: 7971-7977.
    
    [38]Roelfes G, Lubben M, Chen K et al. Iron Chemistry of a Pentadentate Ligand That Generates a Metastable Fe~(III)-00H Intermediate. Inorg. Chem., 1999, 38: 1929-1936.
    
    [39]Wada A, Ogo S, Wantanabe Y et al. Synthesis and Characterization of Novel Alkylperoxo Mononuclear Iron (III) Complexes with a Tripodal Pyridylamine Ligand: A Model for Peroxo Intermediates in Reactions Catalyzed by Non-Heme Iron Enzymes. Inorg. Chem., 1999, 38: 3592-3593.
    
    [40]IngoldK U, MacFaul P A. In:MeunierB. ed. Biomimetic Oxidations Catalyzed by Transition Metal Complexes. London: World Scientific Publishing and Imperial College Pr. 2000.
    [41]Russell G A. Deuterium-isotope Effects in the Autoxidation of Aralkyl Hydrocarbons. Mechanism of the Interaction of Peroxy Radicals. J. Am. Soc. Chem., 1957, 79: 3871-3877.
    [42]Ellis P. E., Lyons J. E. Selective air oxidation of light alkanes catalyzed by activated metalloporphyrins-the search for a suprabiotic system. Coord. Chem. Rev. 1990, 105: 181-193.
    
    [43]Lyons J E, Ellis P E. Halogen Substituent Effects on the Catalytic Activity of Iron Porphyrin Complexes for the Decomposition of tert-Butyl Hydroperoxide. J. Cat. 1993, 141: 311-315.
    
    [44]Lyons J E, Ellis P E. Azide activation of metallophthalocyanine complexes for the catalytic oxidation of alkanes in the liquid phase. Applied Catalysis A:general 1992, 84:1-6.
    
    [45]Lyons J E, Ellis P E, Shaikh S N. Azide promotion of alkane oxidations catalyzed by metal complexes in solution. Inorg. Chim. Acta 1998, 270: 162-168.
    
    [46]Barton D H R, Gastiger M J. Motherwell W. B. et al. A new procedure for the oxidation of saturated hydrocarbon. J. Chem. Soc. Chem. Commun. 1983, 42-43.
    
    [47]Barton D H R. Gif chemistry: the present situation. Tetrahedron, 1998, 54, 5805-5817
    
    [48]Muraahushi S I, NaotaT, KomiyaN. Metalloporphyrin-catalyzed oxidation of alkanes with
    ??molecular oxygen in the presence of acetaldehyde. Tetrahedron Lett. 1995, 36: 8059-8062
    
    [49]Muraahushi S I, Xiaoge Zh, Naruyoshi K. Chlorinated phthalocyanine iron(Ⅱ) complexcatalyzed oxidation of alkanes and alkenes with molecular oxygen in the presence ofacetaldehyde. Synlett. 2002, 3: 321-324.
    
    [50]Guo C C, Chu M F, Liu Q, et al. Effective catalysis of simple metallophyrins forcyclohexane oxidation with air in the absence of additives and solvents. Appl. Catal. A:Gen. 2003, 246: 303-309.
    
    [51]Guo C C. Synthesis of μ-oxo-bisiron(Ⅱ)porphyrin compounds and their catalysis forcyclohexane hydroxylation. J. Catal. 1998, 178: 182-187.
    
    [52]Haber J, Matachowski L, Pamin K, Poltowicz J. Manganese porphyrins as catalysts foroxidation of cyclooctane in lyons system. J. Mol. Catal. 2000, 162: 105-109.
    
    [53]Poltowicz J, Tabor E, Pamin K, et al. Effect of substituents in the manganese μ -oxoporphyrins catalyzed oxidation of cyclooctane with molecular oxygen. Inorg. Chem. Commun.2005, 8: 1125-1127.
    
    [54]Haber J, Matachowski L, Pamin K, et al. The effect of peripheral substituents inmetalloporphyrins on their catalytic activity in lyons system. J. Mol. Catal. 2003, 198:215-221.
    
    [55]Haber J, Matachowski L, Pamin K. Supported polyhalogenated metalloporphyrins ascatalysts for the oxidation of cycloalkanes with molecular oxygen in Lyons system. CatalysisToday 2004, 91-92: 195-198.
    
    [56]Poltowicz J, Haber J. The oxyfunctionalization of cycloalkanes with dioxygen catalyzedby soluble and supported metalloporphyrins. J. Mol. Catal. 2004, 220: 43-51.
    
    [57]Ying Y, Hongbing J, Yixia Chen, et al. Oxidation of cylohexane to adipic acidFe-porphyrin as a biomimetic catalyst. Org. Process. Res. Dev. 2004, 8: 418-420.
    
    [58]Kurusu Y. Functionalization of silica gel and montmorillonite by silane couping reagent,IV. Application as immobilized catalyst in dioxygen oxidation of organic compounds.Reactive Polymers 1995, 25: 63-68.
    
    [59]Huang G, Guo C C, Tang S S. Catalysis of cyclohexane oxidation with air using variouschitosan-supported metallotetraphenylporphyrin complexes. J. Mol. Catal. 2007, 261:125-130.
    
    [60]Raja R, Ratnasamy P. Oxidation of cylohexane over copper phthalocyanines encapsulatedin zeolites. Catal. Lett. 1997, 48: 1-10.
    
    [61]韩金玉,董洋,方健等.对苯二甲酸合成方法研究进展.石油工业与工程.2007,24:81-85.
    
    [62]朱培玉,顾道斌.对二甲苯液相氧化技术进展.2001,30:947-951.
    
    [63]Nair K, Sawant D P, Shanbhag G V, et al. Aerial oxidation of substituted aromatic hydrocarbons catalyzed by Co/Mn/Br~- in water-dioxane medium. Catal. Commn. 2004, 5: 9-13.
    
    [64]章思规,辛忠,黄德音主编.精细有机化工制备手册.北京:科学技术文献出版社,1994.
    
    [65]张伟德,叶兴凯,詹瑞云等.金属离子在液相氧化中的催化作用Ⅵ金属酞菁(MPc,M=Co、Fe).分子催化,1993,7(3):203-211.
    
    [66]李仲辉,秦圣英,李建章等.冠醚化对双Schiff碱钴(Ⅱ)配合物催化氧化性能的影响.应用化学1998,10:43-46.
    
    [67]程坦,李翔,张曼征.负载金属卟啉催化氧化异丙苯的研究.工业催化1993,2:37-41.
    
    [68]吕志风,李鸿波,战风涛等.异羟肟酸过渡金属配合物的合成和催化氧化性能研究.四川大学学报(自然科学版).2000,37(3):426-431.
    
    [69]Wang R M, Hao C J, Wang Y P, et al. Amino acid Schiff base complex catalyst for effective oxidation of olefins with molecular oxygen. J. Mol. Catal. A: chem. 1999, 147: 173-178.
    
    [70]Hata E, Takai T, Yamada T, et al. Direct oxygenation of benzene and its analogues into phenol catalyzed by oxovanadium(Ⅱ) complex with combined used of molecular oxygen and aldehyde. Chem. Lett. 1994, 1849-1852.
    
    [71]徐克勋主编.精细有机化工原料及中间体手册.北京:化学工业出版社,1998.
    
    [72]Punniyamuthy T, Velusamy S, Iqbal J. Recent advances in transition metal catalyzedoxidation of organic substrates with molecular oxygen. Chem. Rev. 2005, 105: 2329-2363.
    
    [73]Barton D. H. R., Hlley F., Ozbalik N. et al. Benzylic oxidation by the Gif system.Tetrahedron Lett. 1989, 30: 6615-6618.
    
    [74]Murahashi S I, Oda Y, Naota T. Iron- and Ruthenium-catalyzed oxidation of alkanes withmolecular oxygen in the presence of aldehydes and acids. J. Am. Chem. Soc. 1992, 114:7913-7914.
    
    [75]Muraahushi S.I., Naota T. Komiya N. Metalloporphyrin-catalyzed oxidation of alkaneswith molecular oxygen in the presence of acetaldehyde. Tetrahedron Lett. 1995, 36:8059-8062.
    
    [76]King E. P., Swann S., Keyes D. B. Studies in liquid partial oxidation. End. Eng. Chem.1929, 21:1227-1231.
    
    [77]Gao J, Tong X L, Li X Q, et al. The efficient liguid-phase oxidation of aromatichydrocarbons by molecular oxygen in the presence of MnCO_3. J. Chem. Techol. Biotechnol.2007, 82: 620-625.
    
    [78]Li P., Alper H. Mild cobalt chloride-catalyzed benzylic oxidationunder neutralcondition. J. Mol. Catal. A 1990, 61: 51-54.
    
    [79]彭清静,段友构,欧阳玉祝等.μ-氧代双锰卟啉催化下空气高选择性氧化乙苯物理化学学报.2001,17:292-294.
    
    [80]傅伟昌,彭清静,欧阳玉祝等.TPPMnCl催化空气直接氧化乙苯的研究.化学研究与应用2002,14:237-238.
    
    [81]Guo C C, Peng Q J, Liu Q. et al. Selective oxidation of ethylbenzene with air catalyzed by simple μ-oxo dimeric metalloporphyrins under mild conditions in the absence of additives. J. Mol. Catal. 2003, 192: 295-302.
    
    [82]Chisem I C, Rafelt J, Shieh M T, et al. Catalytic oxidation of alkyl aromatics using a movel silica supported schiffbase complex. J. Chem.. Soc. Chem. Commun. 1998, 1949-1950.
    
    [83]Wang R M, Duan Z F, He Y F, et al. Heterogenous catalytic aerobic oxidation behavior of Co-Na heterodinuclear polymeric complex of salen-crown ether. J. Mol. Catal. 2006, 280-287.
    
    [84]韩晓祥,姜恒,宫红等.金属酞菁与高价金属盐或氧化物在乙苯液相催花氧化反应中的协同效应.高等学校化学学报.1999,20:1295-1297.
    
    [85]Alcantara R, Canoira L, Joao P G, et al. Ethylbenzene oxidation with air catalyzed by bis(acetylacetoate)nickel (Ⅱ) and tetra-n-butylammonium tetrafluoroborate. Appl. Catal. A: Gen. 2000, 203: 259-268.
    
    [86]Klopstra M, Hage R, Kellogg R M, et al. Non-heme iron catalysts for the benzylic oxidation: a parallel ligand screening approach. Tetrahedron Lett. 2003, 44: 4581-4584.
    
    [87]戚建英,胡家元,李贤均.N-羟基N-苯基-2-吡啶甲酰胺钴配合物的合成及均相催化乙苯的氧化反应.催化学报.1999,20:463-466.
    
    [88]Qi J Y, Ma H X, Li X J, et al. Synthesis and characterization of cobalt (Ⅲ) complexes containing 2-pyridinecarboxamide ligads and application in catalytic oxidation of ethylbenzene with dioxygen. J. Chem. Soc. Chem. Commun. 2003, 1294-1295.
    
    [89]孔德轮高保娇章艳.硅胶固载聚4-L烯吡啶-Cu(Ⅱ)配合物催化分子氧氧化乙苯性能研究.分子催化.2007,20:579-583.
    
    [90]Ishii Y, Iwahama T, Sakaguchi S, et al. Alkane oxidation with molecular oxyfen using a new dfficient catalytic system: N-hydroxyphthalimide (NHPI)combined with Co(acac)_n(n = 2 or 3). J. Org. Chem. 1996, 4520-4526.
    
    [91]Einhorn C, Einhorn J, Marcadal C, et al. Oxidation of organic substrates by molecular oxygen mediated by N-hydroxyphthalimide (NHPI) and acetaldehyde. Chem. Commun. 1997, 447-448.
    
    [92]Wentzel BB, Donners MPJ, Alsters PL, et al. N-hydroxyphthalimide/Cobalt(Ⅱ) catalyzed low temperature benzylic oxidation using molecular oxygen. Tetrahedron 2000, 56: 7797-7803.
    
    [93]Ma H, Xu J, Zhang QH, et al. Selective oxidation of ethylbenzene by a biomimetic combination: Hemin and N-hydroxyphtha1imide(NHPI). Catal. Commun. 2006, 8: 27-30.
    
    [94]Yang GY, Ma YF, Xu J. Biomimetic catalytic system driven by electron transfer for selective oxygenation of hydrocarbon. J. Am. Chem. Soc. 2004, 126: 10542-10543.
    
    [95]Yang GY, Lin XS, Zhao JF, et al. Organocatalytic aerobic oxidation of ethylbenzene using 3,4,5,6-tetrachloro-N-hydroxyphthalimide and 1,4-diamino-2, 3-dichliro-anthraquinone. 2007, 97-98.
    
    [96]曹国英,奚祖威.Co-Br催化剂组成对烃类氧化的影响.催化学报.1983,4:218-224.
    
    [97]苏一兵,陈育煜,奚祖威.钴-溴催化体系中饱和烃的氧化燃料化学学报.1984,11:50-56.
    
    [98]奚祖威,杜文.烃类液相氧化中Co-Br催化剂的引发作用.催化学报,1983,4:163-166.
    [99]Danoezy E, Vasvari G, Gal D. Sequence studies in liquid-phase hydrocarbon oxidation. I. The alcohol-ketone transition in the oxidation of ethylbenzene. J. Phys. Chem. 1972, 76: 2785-2793.
    
    [100] VidoczyT, Danoczy E, Gal D. Sequence studies in liquid phase hydrocarbon oxidation. II. On the mechanism of the alcohol- ketone transition in the oxidation of ethylbenzene. J. Phys. Chem. 1974, 78: 828-833.
    
    [101] Ohkatsu Y, Tsuruta T. Autoxidation reactions of hydrocarbons catalyzed by Co(II)tetra(p-rtolyl)porphyrin. Bull. Chem. Soc. Jpn. 1978, 51(1): 188-191.
    
    [102] Grinstaff M. W., Hill M. G., Labinger J. A. Mechanism of catalytic oxygen of alkanes by halogenated iron porphyrins. Science 1994, 264: 1311-1313.
    
    [103] Moore K T, Horvath I T, Therien M J. Mechanistic studies of (porphinato)iron-catalyzed isobutene oxidation, comparative studies of three classes of electron-deficient porphyrin catalyst. Inorg. Chem. 2000, 39(15): 3125-3139.
    
    [104] Ilme S, Joel B, Kelvin C et al. The Catalytic Pathway of Cytochrome P450cam at Atomic Resolution. Science, 2000, 287: 1615-1622.
    
    [105] Haber J, Matachowski L, Pamin J, et al. Manganese porphyrins as catalysts for oxidation of cyclooctane in Lyons system. J. Mol. Catal. A 2000, 162: 105-109.
    
    [106] Traylor T G, Kim C, Fann W P, et al. Reaction of hydroperocides with iron (III) prophyrins: heterolytic cleavage follwed by hydroperoxide oxidation. Tetrahedron 1998, 54: 7977-7986.
    
    [107] Goldstein A S, Drago R S. Oxidaiton of alkanes by cobalt(II) salts of weakly coordinating anions. Inorg. Chem. 1991, 30: 4506-4510.
    
    [108] Groves J T, Nemo T E, Myers R S. Hydroxylation and epoxidation catalyzed by iron-porphine complexes-oxygen-transfer from idosylbenzene. J. Am. Chem. Soc. 1979, 101: 1032-1033.
    
    [109] Meunier B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage, Chem. Rev. 1992, 92: 1411-1456.
    
    [110] Quici S, Banfi S, Pozzi G. Simple synthetic models of cytochrome P-450: efficient catalysts in hydrocarbon oxidation. Grazz. Chim. Ital. 1993, 123: 597-612.
    
    [111] Adler A D. A simplified synthesis for meso-tetraphenylporphyrin. J. Org. chem. 1967, 32: 476.
    
    [112] Lindsay J S, Hsu H C, Schreiman I C. Synthesis of tetraphenylporphyrins under very mild conditions. Tetrahedron Lett. 1986, 27: 4969
    
    [113] Adler A D, Longo F R, Kampas F, et al. On the preparation of metalloporphyrins. J. Inorg. Nucl. Chem. 1970, 32: 2443.
    
    [114] Liston D J, Kennedy B J, Murray K S, et al. Oxochromium compounds. 1. synthesis and properties of μ-oxo-chromium-iron porphyrin and phthalocyanime compounds. Inorg. Chem.
    ??1985, 24: 1561-1567.
    
    [115] Kadish K M, Araullo-mcadams C, Han B C, et al. Syntheses and spectroscopiccharacterization of (T(p-Me_2N)F_4PP)H_2 and (T(p-Me_2N)F_4PP)M where (T(p-Me_2N)F_4PP)H_2 is thedianion of meso-Tetrakis(o, o, m, m-tetrafluoro-p-(dimethylamino)phenyl)-porphyrin and M =Co(Ⅱ), Cu(Ⅱ), or Ni(Ⅱ). Structures of (T(p-Me_2N)F_4PP)Co and (meso-Tetrakis(o, o, n, m-tetrafluoro-p-(dimethylamino)phenyl)-porphinato)Cobalt(Ⅱ), (TF_5PP)Co. J. Am. Chem. Soc.1990, 112: 8364-8368.
    
    [116] Rothenberg G, Wiener H, Sasson Y. Pyridines as bifunctional co-catalysts in theCrO_3-catalyzed oxygenation of olefins by t-butyl hydroperoxide. J. Mol. Catal. A 1998, 136:253-262.
    
    [117] Brooke L, Brookhart M. Iron-based catalysts with exceptionally high activities andselectivities for oligomerization of ethylene to linear a-olefins. J. Am. Chem. Soc. 1998,120: 7143-7144.
    
    [118] Brooke L, Brookhart M, Bennett A M A. highly active iron and cobalt catalysts forpolymerization of ethylene. J. Am. Chem. Soc. 1998, 120: 4049-4050.
    
    [119] Britovsek G J P, Gibson V C, Kimberley B S, et al. Novel olefin polymerizationcatalysts based on iron and cobalt. Chem. Commun. 1998, 849.
    
    [120] Britovsek G J P, Bruce M, Gibson V C, et al. Iron and cobalt ethylene polymerizationcatalysts bearing 2, 6-bis(imino)pyridyl ligands: structure, and polymerization studies.J. Am. Chem. Soc. 1999, 121: 8728-8740.
    
    [121] Esteruelas M A, Lopez A M, Mendez L, et al. Preparation, structure, and ethylenepolymerization behavior of bis(imimo)pyridyl chromium complexes. Organametallics 2003, 22:395-406.
    
    [122] 范瑞清,朱东升,母瀛等.吡啶二亚胺Ni(Ⅱ)配合物的合成、晶体结构及其催化乙烯聚合 的研究.高等学校化学学报,2005,26:1215-1219.
    
    [123] MillwerKJ, Kitagwa T T, Abu-OmarMM. Kinetics and mechanism of methyl vinyl ketonehydroalkoxylation catalyzed by palladium(II) complexes. Organametallics 2001, 20:4403-4412.
    
    [124] Su B Y, Zhao J Sh, Cui Y, et al. Controlled synthesis of2-acetyl-6-carbethoxypyridine and 2, 6-diacetylpyridine from 2. 6-dimethylpyridine. Syn.Commun. 2005, 35: 2317-2342.
    
    [125] BabiksST, Fink G. Propylene bulk phase oligomerization with bisiminepyridine ironcomplexes in a calorimeter: mechanistic investigation of 1, 2 versus 2, lpropylene insertion.J Organomet. Chem. 2003, 683: 209-219.
    
    [126] Uerpmann C, Henner B J L, Guerin C, et al. Imino- and bis- imino-pyridines withN-ter-butyl-N-aminoxyl groups: synthesis, oxidation and used as ligand towards M~(2+)(Mn, Ni,Zn) and Gd~(2+). J Organomet. Chem. 2005, 690: 197-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700