用户名: 密码: 验证码:
聚硅氧烷聚醚两亲性嵌段共聚物的合成及其溶液自组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自组装作为一种极具发展前景的制备具有纳米/微米尺寸规则结构的功能材料的方法,有着重要的研究价值。尤其是由两亲性嵌段共聚物自组装形成的囊泡结构,由于独特的形态结构,在诸如药物缓释、分离等领域存在着应用及潜在应用,近十年来,吸引了广泛的研究兴趣。
     两亲性嵌段共聚物,不同于常规表面活性剂,在溶液中表现出更为复杂的自组装方式。嵌段共聚物的嵌段组成、嵌段比例以及各嵌段的键接方式对嵌段共聚物自组装结构都存在着影响。通过各影响因素的考察以及调控,可以实现具有特定形态的自组装结构的制备;同时,嵌段共聚物的组成嵌段亦可以根据具体应用领域的需求进行相应选择。因此,两亲性嵌段共聚物的自组装研究自1995年Eisenberg等人的报道以来,受到越来越多的关注。
     本文从六甲基环三硅氧烷(D_3),三甲基(3,3,3)-三氟丙基环三硅氧烷(F_3)以及八甲基环四硅氧烷(D_4)出发,分别通过酸白土催化D4开环阳离子聚合以及丁基锂催化D_3/F_3开环阴离子聚合,制备得到了窄分子量分布、结构规整的双硅氢封端聚硅氧烷以及单硅氢封端聚硅氧烷。进一步通过硅氢封端聚硅氧烷与烯丙基封端聚醚的硅氢加成合成一系列窄分布,结构规整可控的二、三嵌段共聚物,分别为PDMS-b-PEO,PDMS-b-PEO-b-PDMS,PEO-b-PDMS-b-PEO,PMTFPS-b-PEO以及PMTFPS-b-PEO-b-PMTFPS。在此基础上,通过表面张力仪、质子核磁共振以及透射电镜手段对嵌段共聚物的表面活性及水溶液胶束化能力,以及水溶液自组装行为展开相应研究.概括而言,本文的主要工作可以分为两大部分,即:1、两亲性嵌段共聚物的合成;2、两亲性嵌段共聚物表面活性、溶液胶束化能力以及自组装行为的考察:
     两亲性嵌段共聚物的合成工作总结如下:
     1.利用酸白土催化D_4开环聚合,替代了常规液体酸催化,详细研究了酸白土非均相催化开环的反应规律及机理。认为,由于催化活性位共价键接于酸白土颗粒,酸白土催化体系不存在液体酸体系中游离存在的反离子,其链增长反应较液体酸简单,同时,酸白土颗粒的大空间位阻影响了活性链的增长方式,聚合产物表现出更窄的分子量分布。在上述研究的基础上,通过工艺条件的优化,实现了一系列具有较窄分子量分布(1.2-1.4)的双硅氢封端聚硅氧烷的绿色、可控合成。
     2.为达到阴离子聚合所需的“无杂”聚合环境,建立了一套真空度达到1E-3 Pa的高真空装置,并建立了基于高纯氮气净化装置的惰气保护系统以及单体,溶剂精制装置,为反应物料的精制、转移和反应提供了条件。
     3.D_3/F_3阴离子开环聚合存在严重的“反咬”及“再分布”副反应。副反应的抑制是实现聚合产物窄分布的关键。通过研究发现,低温、高单体浓度及低转化率有利于对“反咬”及“再分布”副反应的抑制。在此基础上,得到了合适的工艺条件,进行窄分布单硅氢封端聚硅氧烷的制备,产物分子量分布为1.03-1.17.
     4.开环D_3、F_3分别制备得到了分子量分布为1.03-1.14,聚合度为3,6,9,12,21,30,100的单硅氢封端聚二甲基硅氧烷,以及分子量分布为1.10-1.17,聚合度为3,6,9,12,21的单硅氢封端聚甲基三氟丙基硅氧烷。
     5.通过FT-IR跟踪分析,研究了Speier's催化剂对于硅氢封端硅氧烷与烯丙基封端聚氧乙烯醚(PEO)的硅氢加成反应的催化性能,合成并纯化得到了一系列聚硅氧烷与聚氧乙烯醚构建的不同结构、不同组成、不同分子量的两亲性嵌段共聚物。分别为PDMS-b-PEO,PDMS-b-PEO-b-PDMS,PEO-b-PDMS-b-PEO,PMTFPS-b-PEO以及PMTFPS-b-PEO-b-PMTFPS。
     在系列两亲性嵌段共聚物顺利合成的基础上,第二部分工作主要针对相应表面活性、溶液胶束化能力以及溶液自组装行为展开考察与讨论,总结如下:
     1.两亲性嵌段共聚物表面张力分析结果显示,不同于常规表面活性剂,两亲性嵌段共聚物在水溶液中的胶束化能力(以CMC值表示)在受到嵌段共聚物憎水性影响的同时,也受到嵌段共聚物几何结构、以及亲水疏水嵌段结合方式影响。
     2.对三嵌段共聚物的表面活性与其结构的关系进行了考察,认为,对于三嵌段共聚物而言,在水溶液中实现胶束化或者在空气-水界面实现紧密堆积,需要一个分子链段的环化过程。中间嵌段为柔性疏水嵌段的三嵌段共聚物比中间嵌段由亲水嵌段构建的三嵌段共聚物更易在空气-水界面形成致密的保护层,从而表现出更高的表面活性。
     3.对PDMS-b-PEO二嵌段共聚物溶液自组装行为进行了考察,结果显示:
     a)随着嵌段共聚物憎水链段所占比例的增加,嵌段共聚物自组装聚集体表现出了由“星型”胶束向“平头”胶束转变的趋势。
     b)随着纯水自组装体系中,嵌段共聚物浓度的增加,嵌段共聚物溶液出现了所谓的“第二临界胶束浓度”,初级自组装聚集体发生二次聚集,形成具有较大尺度的二次聚集体。
     c)讨论了PDMS-b-PEO嵌段共聚物大复合胶束的形成过程,不同于常规理解,PDMS-b-PEO嵌段共聚物大复合胶束的形成是球状与棒状聚集体共同参与碰撞的结果,在表面能驱动下,碰撞形成的聚集体呈现球状形态。针对形成的机理,给出了合理的解释。
     d)嵌段共聚物在THF/H2O混合溶剂中自组装形成的聚集体形态,随着嵌段共聚物浓度的增加,水含量的增加,表现出从球-棒-双层结构的变化趋势。
     4.对PDMS-b-PEO-b-PDMS以及PEO-b-PDMS-b-PEO三嵌段共聚物的溶液自组装行为进行了考察,结果显示:
     a) PDMS-b-PEO-b-PDMS三嵌段共聚物,随着嵌段共聚物溶液陈化时间的增加,其相应自组装结构更趋于热力学平衡状态,形态变得更为均一。嵌段共聚物组成对于自组装形态影响的考察显示,随着中间嵌段PEO链段的增加,自组装形态发生了由球到棒再到六角囊泡结构的转变。通过影响因素的控制,本文实现了均一囊泡结构的制备。
     b) PEO-b-PDMS-b-PEO三嵌段共聚物,由于PEO嵌段为疏水性甲基封端,疏水性甲基存在逃离亲水性区域进入疏水核的趋势,因此随着陈化时间的增加,聚集体由于PEO的端基化作用,发生不同于PDMS-b-PEO-b-PDMS三嵌段共聚物的变化,小的分散的聚集体在PEO的桥联作用下,聚集形成大的聚集体.而随着嵌段共聚物浓度的增加,聚集体发生二次聚集,聚集体形态呈现出规律性变化。
     c) PEO-b-PDMS-b-PEO三嵌段共聚物水溶液自组装聚集体形态随着嵌段共聚物浓度的增加,表现出从球状到椭圓状再到棒状的转变,认为,三嵌段共聚物在水溶液中的分子构象对自组装聚集体的具体形态存在影响。
     5.对PMTFPS-b-PEO以及PMTFPS-b-PEO-b-PMTFPS嵌段共聚物的溶液自组装进行了考察,结果显示:
     a)对于PMTFPS-b-PEO二嵌段共聚物,随着嵌段共聚物浓度的增加,聚集体二次聚集,发生相应的形态转变。随着嵌段组成亲水嵌段比例的增加,聚集形态表现出“星型”胶束向“平头”胶束的转变。随着陈化时间的增加,聚集体更趋向于达到热力学平衡状态。
     b)对于PMTFPS-b-PEO-b-PMTFPS以及PMTFPS-b-PEO嵌段共聚物,在相应的自组装行为影响因素考察的基础上,均成功制备得到了均一的囊泡结构。
     概括而言,本文在以下几个方面具有创新性
     1.以酸白土非均相催化体系,替代了常规液体酸催化体系,开环D_4实现了具有较窄分子量分布的双硅氢封端聚二甲基硅氧烷的绿色、可控合成,产物分子量分布为1.2-1.4。
     2.考察、分析了D_3、F_3阴离子开环聚合反应的规律及影响因素,优化反应条件,有效抑制了聚合过程中存在的“反咬”及“再分布”副反应,实现了单硅氢封端聚硅氧烷的窄分布合成,产物分布为1.03-1.17。
     3.合成了新型PMTFPS-b-PEO以及PMTFPS-b-PEO-b-PMTFPS两亲性嵌段共聚物,并实现了均一囊泡结构的制备。
     4.比较了PDMS-b-PEO-b-PDMS以及PEO-b-PDMS-b-PEO三嵌段共聚物,发现并解释了中间嵌段为柔性疏水嵌段的三嵌段共聚物具有比中间嵌段为亲水嵌段的三嵌段共聚物更高的表面活性。
     5.在PDMS-b-PEO二嵌段共聚物大复合球状胶束的形成过程中,发现了棒状聚集体的参与作用,提出了关于大复合胶束形成机理的新认识。同时,在PEO-b-PDMS-b-PEO嵌段共聚物自组装形态调控研究中,发现并解释了新型的“球—棒”形态转变过程及机理。
As a very potential method to prepare advanced materials of specific functionality,especially for the preparation of functional materials with desired structure and size(nanometers to micrometers),self-assembly behavior has attracted a lot research attention.
     Different from ordinary surfactants,amphiphilic copolymers behave in a much more complicated way in solution.Through proper choose of constituting blocks and appropriate control of the structure of block copolymers and the proportion of different blocks,the structure of self-assembled aggregates could be easily tuned.And meanwhile,the constituting blocks could be selected by one's will so that certain functionality introduced would qualify the applications of these copolymers in certain areas.
     In this dissertation,polysiloxane(and fluoro-containing polysiloxane) and poly(ethylene oxide) were chosen respectively as the hydrophobic and hydrophilic block.A series of amphiphilic block copolymers were constructed with different block composition and different structure by hydrosilation reactions between Si-H functional polysiloxane and ally terminated PEO homopolymers.The influence of block composition and block structure on the copolymer's solution property and self-assembly was studied.The detailed works were briefed as following:
     1.With the use of acid treated bentonite as the catalyst,we successfully prepared a series of functional polysiloxane hompolymers with relatively narrow molecular weight distribution.A discussion into the reaction mechanism was carried out.We thought that different from ordinary ring-opening polymerization of D4 with the catalysis of liquid acid,the current reaction system was constructed by two phases, the liquid monomer and the solid catalyst.Active sites for catalyzing are covalently bonded to the acid treated bentonite particles;therefore,the reaction system is free of free counter ions.Without the free counter ioins,the polymerization process is largely simplified.And meanwhile,because the bentonite particles serve as large counter ions,the steric hinderance provided would also influence the way the living chains grow and very probably force them to grow in a more disciplined way.By this catalysis system,we have successfully prepared functional polysiloxanes with relatively narrow molecular weight distribution(in the range of 1.2-1.4).
     2.In comparison,a series of mono-functional polysiloxanes with different molecular weight were synthesized.Reaction route for the anionic ring-opening polymerization of D_3 was designed and correspondent reactors for the polymerization were constructed.High vacuum techniques were used to prepare a series of monofunctional polysiloxane homopolymers with different molecular weight and narrow molecular weight distribution.Monofunctional polysiloxanes include two separate kinds,they are respectively polydimethylsiloxanes and polymethyltrifluoropropylsiloxanes.The prepared functional polymers were carefully characterized by ~1H-NMR,FT-IR and GPC characterizations.The results show a good support for the well-defined structure and good control of the molecular weight of prepared polymers.The polydispersity index is lower than
     1.1.Influence of different reaction conditions was also investigated.
     3.The suitability of Speier's catalyst for the hydrosilation reaction between Si-H terminated polysiloxane and aryl terminated poly(ethyleneoxide) was investigated. For the investigated hydrosilation reactions,speier's catalyst shows high selectivity and activity.The completeness of the hydrosilation reactions was proved with conversions higher than 99%.Through hydrosilation reactions between Si-H terminated polysiloxanes and ally terminated poly(ethylene oxide) homopolymers,we have successfully prepared five series of amphiphilic block copolymers,PDMS-b-PEO,PDMS-b-PEO-b-PDMS,PEO-b-PDMS-b-PEO, PMTFPS-b-PEO and PMTFPS-b-PEO-b-PMTFPS.The synthesized copolymers were shown to be well-defined through characterizations such as GPC,~1H-NMR and FT-IR measurements.
     4.Solution properties of the copolymers synthesized were studied mainly by surface tensiometer.The possible influence of copolymer structure and composition on copolymer solution property was discussed and accordingly we proposed our understandings.
     5.Self-assembly behavior of different copolymers in aqueous solution was also investigated.Various morphologies of aggregates were found,including sphere, rod,vesicle and several others.Discussion into the factors which would influence the morphology of aggregates formed was carried out.And a discussion into specific shape transition was also provided,such as morphology transition from sphere-to-rod.
     The originality of this dissertation lies in:
     1.A more environmentally friendly synthesis route was proposed instead of traditional reaction route for the preparation of di-functional polydimethylsiloxane.With the use of insoluble acid treated bentonite,a series of narrow molecular weight distributed dihydrogen terminated polydimethylsiloxane were successfully prepared with polydispersity index ranging from 1.2-1.4
     2.Effectively inhibits the "backbiting" and "redistribution" side reactions in the anionic ring-opening polymerization of D_3 and F_3.A series of mono-functional polysiloxanes were successfully prepared with polydispersity index ranging from 1.03-1.17.
     3.Two kinds of novel amphiphilic copolymers PMTFPS-b-PEO and PMTFPS-b-PEO-b-PMTFPS were synthesized and vesicle formations were found from solutions of these two kinds of copolymers.
     4.Structure of triblock copolymers was found to greatly influence the surface activities of correspondent copolymers.A plausible mechanism was proposed.
     5.In the solution self-assembly study of PDMS-b-PEO and PEO-b-PDMS-b-PEO copolymers,novel formation process of large compound micelle and novel "sphere-to-rod" morphology transition were observed.And correspondent plausible mechanisms were proposed.
引文
1.Merrett F.M.Interaction ofpolymerizing systems with robber and its homologs.Polymerization of MMA and styrene,Trans Faraday Soc,1954,50:759-767
    2.Molau G.E.Colloidal and morphological behavior of block and graft copolymers,In:Aggarwal SL,editor.Block copolymers.New York:Plenum Press;1970,79-106
    3.Price C.Colloidal properties of block copolymers,In:Goodman I,editor.Developments in block copolymers 1.London:Applied Science;1982,39-79
    4. Piirma I. Polymeric surfactants, Surfactant science series 42, New York: Marcel Dekker; 1992,1-285
    5. Tuzar Z, Kratochvil P. Micelles of block and graft copolymers in solution. In: Matijevic E, editor. Surface and colloid science, vol. 15. New York: Plenum Press; 1993. p. 1-83. chapter 1
    6. Webber S.E., Munk P., Tuzar Z. Solvents and self-organization of polymer, NATO ASI series, serie E: applied sciences, vol. 327. Dordrecht: Kluwer Academic Publisher; 1996,1-509
    7. Alexandridis P., Hatton T.A. Block copolymers, Polymer materials encyclopedia 1, Boca Raton: CRC Press; 1996, 743-54
    8. Nace V.M. Nonionic surfactants: polyoxyalkylene block copolymers, Surfactant science series 60, New York: Marcel Dekker; 1996,1-266
    9. Hamley I.W. In: Hamley IW, editor. The physics of block copolymers, 4. Oxford Science Publication; 1998,131-265
    10. Alexandridis P., Lindman B. Amphiphilic block copolymers: self assembly and applications, Amsterdam: Elsevier; 2000,1-435
    11. Riess G., Dumas P., Hurtrez G. Block copolymer micelles and assemblies, MML series 5, London: Citus Books; 2002, 69-110
    12. Xie H.Q., Xie D. Molecular design, synthesis and properties of block and graft copolymers containing PEO segments, Prog Polym Sci, 1999, 24: 275-313
    13. Melville H.W. Some themes in the chemistry of macromolecules, J Chem Soc, 1941,414-426
    14. Mishra M.K., Yagci Y. Block copolymers, Comprehensive polymer science 7, Oxford: Pergamon Press; 1989, 808-814
    15. Lieske A., Jaeger W. Synthesis and characterization of block copolymers containing cationic blocks, Macromol Chem Phys, 1998,199: 255-260
    16. Riess G. Interfacial activity of block copolymers, In: Legge NR, Holden G, Schroeder HE, editors. Thermoplastic elastomers: a comprehensive review. Munich: Hanser; 1987, 325-348
    17. Otsu T., Yoshita M. Role of initiator-transfer-agent-terminator (Iniferter) in radical polymerization, Makromol Chem Rapid Commun, 1982, 3: 127-132
    18. Malmstrom E.V., Hawker C.J. Macromolecular engineering via 'living free radical polymerization', Macromol Chem Phys, 1998, 199: 923-935
    19. Georges M.K., Veregin R.P., Kazmaier P.K., Hamer G.K. The synthesis of block copolymers by a free radical polymerization process, ACS Polymer Prepr (Div Polym Chem), 1994,35(2): 582-592
    20. Hawker C.J. Molecular weight control by a living free radical polymerization process, J Am Chem Soc, 1994,116:11185-11186
    21. Hammouch S.O., Catala J.M. Living diradical polymerization, Macromol Rapid Commun, 1996,17:149-154
    22. Wang J.S., Matyjaszewski K. Controlled 'living' radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process, Macromolecules, 1995,28:7901-7910
    23. Kotani Y., Kato M., Kamigaito M., Sawamoto M. Living radical polymerization of alkyl methacrylates with ruthenium complex and synthesis of their block copolymers, Macromolecules 1996,29:6979-6982
    24. Matyjaszewski K., Gaynor S.G., Qiu J., Beers K., Coca S., Davis K., Mu¨hlebach A., Xia J., Zhang X. The preparation of welldefined water soluble-swellable (co)polymers by atom transfer radical polymerization, In: Glass JE, editor.Associative polymers in aqueous media. ACS symposium series 765, ACS; 2000, 52-71
    25. Wang X.S., Armes S.P. Scope and limitation of atom transfer radical polymerization in aqueous media, ACS Polym Prepr (Div Polym Chem), 2000, 41(1) :413-414
    26. Wang X.S., Malet F.L.G., Armes S.P., Haddleton D.M., Perrier S. Unexpected viability of pyridyl methanimine based ligands for transition-metal-mediated living radical polymerization in aqueous medium at ambient temperature, Macromolecules, 2001,34: 162-164
    27. Steenbock M., Klapper M., Mullen K., Pinhal N., Hubrich M. Synthesis of block copolymers by nitroxyl-controlled radical polymerization, Acta Polym, 1996,47: 276-279
    28. Coca S., Matyjaszewski K. Block copolymers by transformation of living carbocationic into living radical polymerization, Macromolecules, 1997,30: 2808-2810
    29. Chiefari J, Chong Y.K., Ercole F., Krstina J., Jeffery J., Le T.P.T., Mayadunne R.T.A., Meijs G.F., Moad C.L., Moad G., Rizzardo E., Thang S.H. Living free radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process, Macromolecules, 1998,31: 5559-5562
    30. Chong Y.K., Le T.P.T, Moad G., Rizzardo E., Thang S.H. A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: the RAFT process, Macromolecules, 1999,32: 2071-2074
    31. Corpart P., Charmot D., Biadatti T., Zard S., Michelet D. Rhodia Chimie. Int Appl WO 9858974, CA 1999,130: 82018.
    32. Ladaviere C., Dorr N., Claverie J.P. Controlled radical polymerization of acrylic acid in protic media, Macromolecules, 2001,34: 5370-5372
    33. Save M., Armes S.P. Atom transfer radical polymerization of 2,3-dihydroxypropyl methacrylate, Abstract PI07. Bayreuth Polym Symp 2001, Sep
    34. Monteiro M.J., De Barbeyrac J. Preparation of reactive composite latexes by living radical polymerization using RAFT process. A new class of polymer materials, Macromol Rapid Commun, 2002,23:370-374
    35. Cassebras M., Pascual S., Polton A., Tardi M., Vairon J.P. Synthesis of di- and triblock copolymers of styrene and butylacrylate by controlled atom transfer radical polymerization, Macromol Rapid Commun, 1999,20: 261-264
    36. Gravano S., Borden M., Chen A., Doerffler E., Patten T.E., Longo M. Synthesis of a well-defined amphiphilic block copolymer via ATRP, ACS Polym Prepr (Div Polym Chem), 2001,42(1): 549-550
    37. Szwarc M. Polymerization initiated by electron transfer to monomer. A new method of formation of block copolymers, J Am Chem Soc, 1956, 78: 2656-2657
    38. Riess G., Hurtrez G., Bahadur P. Block copolymers, 2nd ed. Encyclopedia of polymer science and engineering, vol. 2.New York: Wiley; 1985, 324-434
    39. Quirk R.P., Kinning D.J., Fetters L.J. Block copolymers. Comprehensive polymer science 7, Oxford: Pergamon Press; 1989,1-26
    40. Calderara F., Hruska Z., Hurtrez G., Nugay T., Riess G., Winnik M.A. Synthesis of chromophore labelled PS-PEO diblock copolymers, Makromol Chem, 1993, 194(5): 1411-1420
    41. Hirao A., Nakahama S. Anionic living polymerization of functionalized monomers, Acta Polym, 1998,49: 133-144
    42. Webster O.W., Hertler W.R., Sogah D.Y., Farnham W.B., Rajanbabu T.V. Group-transfer polymerization. 1. A new concept for addition polymerization with organosilicon initiators, J Am Chem Soc, 1983,105: 5706-5708
    43. Vamvakaki M., Billingham N.C., Armes S.P. Synthesis of novel block and statistical methacrylate based ionomers containing acid, basic or betaine residues, Polymer, 1998,39:2331-2337
    44. Dreyfuss M.P., Dreyfuss P. A living polymer after cationic initiation, Polymer, 1965,6:93-95
    45. Higashimura T., Mitsuhashi M, Sawamoto M. Synthesis of pmethoxystyrene-isobutyl vinyl ether block copolymers by living cationic polymerization with iodine, Macromolecules, 1979,12:178-183
    46. Charleux B., Faust R. Synthesis of branched polymers by cationic polymerization, Adv Polym Sci, 1999,142:1-68
    47. Faust R. Block copolymers by living cationic polymerization, comparison of synthetic approaches, ACS Polym Prepr (Div Polym Chem), 1999,40(2): 960-961
    48. Kim C., Lee S.C., Chang Y., Yoon J.S., Chin I.J., Kwon I.C., Kim Y.H. Synthesis and characterization of micelles based on amphiphilic diblock copolymers of poly(ethyl-2-oxazoline)and poly(DL-lactide), ACS Polym Prepr (Div Polym Chem), 1996, 37(2): 159-160
    49. Cohen P., Abadie MJ., Schue F., Richards D.H. Block copolymerization by a cation to anion transformation process. 2. Polymerization of styrene by poly THF possessing terminal secondary nitrations, Polymer, 1982,23: 1105-1107
    50. Labeau M.P., Caramail H., Deffieux A. Amphiphilic block copolymers of controlled dimensions with hydrophilic glycosidic vinyl ether moieties, Macromol Chem Phys, 1998,199: 335-342
    51. Kobatake S., Harwood H.J., Quirk R.P., Priddy D.B. Block copolymer synthesis by styrene polymerization initiated with nitroxy-functionalized polybutadiene, Macromolecules, 1998, 31: 3735-3739
    52. Yagci Y., Mishra M.K. Block copolymers, In: Salamone JC, editor. Polymeric materials encyclopedia, vol. 1. Boca Raton: CRC Press; 1996,789-814
    53. Hawker C.J., Hedrick J.L., Malmstrom E., Trollsas M., Mecerreyes D., Moineau G., Dubois P., Jerome R. Dual living free radical and ring opening polymerizations from a doubleheaded initiator, Macromolecules, 1998,31: 213-219
    54. Berger G., Levy M., Vofsi D. Mutual termination of anionic and cationic living polymers, J Polym Sci Polym Lett, 1996,4: 183-186
    55. Verma A., Nielsen A., Mc Grath J.E., Riffle J.S. Preparation of ester terminated poly(alkylvinylether) oligomers and block copolymers using a combination of living cationic and group transfer polymerization, Polym Bull, 1990,23: 563-570
    56. Esselborn E., Fock J., Knebelkamp A. Block copolymers and telechelic oligomers by end group reaction of polymethacrylates, Makromol Chem Macromol Symp, 1996,102: 91-98
    57. Forder C., Patrickios C.S., Billingham N.C., Armes S.P. Novel hydrophilic-hydrophilic block copolymers based on poly(vinylalcohol), J Chem Soc Chem Commun, 1996, 883-884
    58. Saegusa T., Ikeda H. Preparation of block copolymer of 2- oxazoline and butadiene, Macromolecules, 1973,6: 805-809
    59. Hurtrez G. Study of PS-PEO and PEO-PS-PEO block copolymers (in French). PhD Thesis. University Haute Alsace, France; 1992
    60. Munk P. Equilibrium and nonequilibrium polymer micelles, In: Webber SE, Munk P, Tuzar Z, editors. Solvents and selforganization of polymer. NATO ASI series, serie E: applied sciences, vol. 327. Dordrecht: Kluwer Academic Publisher; 1996,19-32
    61. Tuzar Z. Overview of polymer micelles, In: Webber SE, Munk P, Tuzar Z, editors. Solvents and self-organization of polymer. NATO ASI series, serie E: applied sciences, vol. 327. Dordrecht: Kluwer Academic Publisher; 1996,1-17
    62. Munk P. Classical methods for the study of block copolymer micelles, In: Webber SE, Munk P, Tuzar Z, editors. Solvents and self-organization of polymer. NATO ASI series, serie E: applied sciences, vol. 327. Dordrecht: Kluwer Academic Publisher; 1996, 367-381
    63. Chu B., Zhou Z. Physical chemistry of polyoxyalkylene block copolymer surfactants, In: Nace VM, editor. Nonionic surfactants: polyoxyalkylene block copolymers. Surfactant science series 60, New York: Marcel Dekker; 1996, 67-143
    64. Webber S.E. Use of fluorescence methods to characterize the interior of polymer micelles, In: Webber SE, Munk P, Tuzar Z, editors. Solvents and self-organization of polymer. NATO ASI series, serie E: applied sciences, vol. 327. Dordrecht: Kluwer Academic Publisher; 1996,457-78
    65. Mortensen K. Small angle scattering studies of block copolymer micelles, micellar mesophases and networks. In: Alexandridis P, Lindman B, editors. Amphiphilic block copolymers: self assembly and applications. Amsterdam: Elsevier; 2000,191-220
    66. Zana R. Fluorescence studies of amphiphilic block copolymers in solution. In: Alexandridis P, Lindman B, editors. Amphiphilic block copolymers: self assembly and applications. Amsterdam: Elsevier; 2000,221-252
    67. Peter Ph. Controlled agglomeration of latexes by block copolymers. PhD Thesis. University Haute Alsace, France; 1998
    68. Esselink F.J., Dormidontova E., Hadziioannou G. Evolution of block copolymer micellar size and structure evidenced by cryo electron microscopy, Macromolecules, 1998, 31: 2925-232
    69. Lam Y.M., Grigorieff N., Goldbeck-Wood G. Direct visualization of micelles of Pluronic block copolymers in aqueous solution by cryo-TEM, Phys Chem Chem Phys, 1999,1(14): 3331-3334
    70. Goldraich M., Talmon Y. Direct-imaging cryo-transmission electron microscopy in the study of colloids and polymer solutions. In: Alexandridis P, Lindman B, editors. Amphiphilic block copolymers: self assembly and applications. Amsterdam: Elsevier; 2000,253-280
    71. Calderara F. Synthesis and characterization of vinylpyridine containing block copolymers. Temporary protecting coatings and lubricants for metallic substrates. PhD Thesis. University Upper Alsace, France; 1995
    72. Moffitt M, Zhang L., Khougaz K., Eisenberg A. Micellization of ionic block copolymers in three dimensions, In: Webber SE, Munk P, Tuzar Z, editors. Solvents and self-organization of polymer. NATO ASI series, serie E: applied sciences, vol. 327. Dordrecht: Kluwer Academic Publisher; 1996, 53-72
    73. Kositza M.J., Bohne C., Hatton T.A., Holzwarth J.F. Micellization dynamics of PEO-PPO-PEO block copolymers measured by stopped flow, Prog Colloid Polym Sci, 1999,112:146-151
    74. Riess G., Hurtrez G. Block copolymers: synthesis, colloidal properties and application possibilities of micellar systems. In: Webber SE, Munk P, Tuzar Z, editors. Solvents and selforganization of polymer. NATO ASI series, serie E: applied sciences, vol. 327. Dordrecht: Kluwer Academic Publisher; 1996, 33-51
    75. Rager T., Meyer W.H., Wegner G. Micelle formation of PAA- PMMA block copolymers in mixtures of water with organic solvents, Macromol Chem Phys, 1999,200:1672-1680
    76. Schillen K., Yekta A., Ni S., Winnik M.A. Characterization by fluorescence energy transfer of the core of polyisoprene- poly(methyl methacrylate) diblock copolymer micelles. Strong segregation in acetonitrile, Macromolecules, 1998,31: 210-212
    77. Van Stam J., Creutz S., de Schryver F.C., Je'ro'me R. Tuning of the exchange dynamics of unimers between block copolymer micelles with temperature, cosolvents, and cosurfactants. Macromolecules, 2000, 33: 6388-6395
    78. Prochazka K., Limpouchova Z., Webber S.E. Block copolymer micelles. 2. Fluorimetric studies and computer modeling). In: Salamone JC, editor. Polymer materials encyclopedia, vol. 1. Boca Raton: CRC Press; 1996, 764-772
    79. Spevacek J. Proton NMR study of styrene-butadiene block copolymer micelles in selective solvents, Makromol Chem Rapid Commun, 1982, 3: 697-703
    80. Gao Z., Zhong X.F., Eisenberg A. Chain dynamics in coronas of ionomer aggregates, Macromolecules, 1994,27: 794-802
    81. Nagarajan R. Solubilization of hydrophobic substances by block copolymer micelles in aqueous solution. In: Webber SE, Munk P, Tuzar Z, editors. Solvents and self-organization of polymer. NATO ASI series, serie E: applied sciences, vol. 327. Dordrecht: Kluwer Academic Publisher; 1996,121-65
    82. Stepanek M., Krijtova K., Prochazka K., Teng Y., Webber S.E., Munk P. Solubilization and release of hydrophobic compounds from block copolymer micelles, Acta Polym, 1998,49: 96-102
    83. Arca E. Experimental results on hydrophobe release. In: Webber SE, Munk P, Tuzar Z, editors. Solvents and selforganization of polymer. NATO ASI series, serie E: applied sciences, vol. 327. Dordrecht: Kluwer Academic Publisher; 1996, 115-20
    84. Quintana J.R., Salazar R.A., Katime I. Micelle formation and polyisobutylene solubilization by PS-poly(ethylene-cobutylene)-PS block copolymers, Macromol Chem Phys, 1995, 196: 1625-1634
    85. Isrealachvilli J.N., Mitchell D.J., Ninham B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, J Chem Soc Faraday Trans II, 1976,72:1525-1568
    86. Isrealachvilli J.N., Marcelja R.G., Rev Soc, 1980,13:121.
    87. Shen H., Eisenberg A. Morphological phase diagram for a ternary system of block copolymer PS310-b-PAA52/dioxane/H2O, J Phys Chem B, 1999,103(44): 9473-9487
    88. Zhang L., Eisenberg A. Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution, J Polym Sci B Polym Phys, 1999,37(13): 1469-1484
    89. Yu K., Zhang L., Eisenberg A. Novel morphologies of "crew-cut" aggregates of amphiphilic diblock copolymers in dilute solution, Langmuir, 1996, 12(25): 5980-5984
    90. Zhang L., Eisenberg A. Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) bloc copolymers in dilute solution, Macromolecules, 1999, 32(7): 2239-2249
    91. Jain S., Bates F.S. Science, 2003,300: 460-464
    92. Cornelissen J.J.L.M., Fischer M., Sommerdijk N.A.J.M., Nolte R.J.M. Science, 1998,280:1427-1430
    93. Massey J., Power K.N., Manners I., Winnik M.A. J Am Chem Soc 1998,120: 9533-9540
    94. Savic R., Luo L.B., Eisenberg A., Maysinger D. Science, 2003, 300: 615-618
    95. Rosier A., Vandermeuler G.W.M., Klok H.A. Adv Drug Delivery Rev, 2001, 53: 95-108
    96. Jenekhe S.A., Chen L.D. Science, 1998,279: 1903-1907
    97. Zhang L., Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution, Polym Adv Technol, 1998,9:677-699
    98. Shen H., Eisenberg A. Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H2O, Macromolecules, 2000, 33(7): 2561-1572
    99.Yu Y.,Zhang L.,Eisenberg A.Morphogenic effect of solvent on crew-cut aggregates of amphiphilic diblock copolymers,Macromoleeules,1998,31(4):1144-1154
    100.Desbaumes L.,Eisenberg A.Single-solvent preparation of crew-cut aggregates of various morphologies from an amphiphilic diblock copolymer,Langmuir,1999,15(1):36-38
    101.Shen H.,Eisenberg A.Block length dependence of morphologi-calphase diagrams of the ternary system of PS-b-PAA/Dioxane/H20,Macromolecules,2000,33:2561-2572
    102.张晓宏,黄鹏程,汪鹏飞.两亲嵌段共聚物溶液内胶束形成的温度效应,高等学校化学学报.1997,2:303-308
    103.施斌,方超,裴元英.两亲性嵌段共聚物胶束的研究进展,中国医药工业杂志,2005,36(4):239-243
    104.张晓宏,吴世康.荧光探针技术研究共溶剂对PEO-PPO-PEO嵌段共聚物溶液胶束的形成及内部结构的影响,高分子学报,1999,4:183-187
    105.Zhang L.,Eisenberg A.Formation of crew-cut aggregatesof various morphologies from amphiphilic block copolymers in solution,Polym Adv Technol,1998,9(10-11):677-699
    106.Terreau O.,Bartels C.,Eisenberg A.Effect of Poly(acrylic acid) Block Length Distribution on Polystyrene-b-poly(acrylic acid) Block Copolymer Aggregates in Solution.2.A Partial Phase Diagram,Langrnuir,2004,20(3):637-645
    1.Allen G.,Bevington C.J.In:Comprehensive Polymer Science,Vol.4,Pergamon Press,New York,1989,Chap.25
    2.Wilczek L.,Rubinsztajn S.,Chojnowski J.Comparison of the cationic polymerization of octamethylcyclotetrasiloxan and hexamethylcyclotrisiloxane,Makromol Chem,1986,187:39-51
    3.Wilczek L.,Chojnowski J.Acidolytic ring opening of cyclic siloxane and acetal monomers:Role of hydrogen bonding in cationic polymerization initiatedwith protonic acids,Macromolecules,1981,14:9-17
    4.Feng Y.,Liu Z.Q.Zheng Q.Synthesis of high molecular weight poly (dimethylsiloxane) containing Si-H segments,Polym Mater Sci Eng,2000,16(2):33-36.(in Chinese)
    5.Fang X.,Chen Z.R.,Yin H.,Su K.F.Kinetics of bulk polymerization of octamethyltetrasiloxane,Chin J Chem Eng,2004,12(1):156-158
    6.Hurd D.T.On the mechanism of the acid-catalyzed rearrangement ofsiloxane linkages in organopolysiloxanes,J Am Chem Soc,1955,77:2998-3001
    7.Wilczek L.,Rubinsztajn S.,Chojnowski J.Comparison of the cationic polymerization of octamethylcyclotetrasiloxan and hexamethylcyclotrisiloxane,Makromol Chem,1986,187:39-51
    8.Cypryk M.,Chonjnowski J.Monte Carlo simulation of the eyclization-chain extension kinetics for the cationic polymerization ofhexamethylcyclotrisiloxane,Macromolecules,1991,24:2498-2505
    9.Sigwalt P.,Gobin C.,Nicol P.,Moreau M.,Masure M.Inhibiting or cocatalytic effect of water and other additives on cationic polymerization of cyclodimethylsiloxanes,Polym Prepr(Am Chem Soc Div Polym Chem),1990,31:40-41
    10. Cyprykt M., Sigwalt P. Acid-catalyzed condensation of model oligo (dimethylsiloxanediol)s, Macromolecules, 1994,27:6245-6253
    11. Johannson O.K. Method of polymerizing cyclic diorganosiloxanes, U.S. Patent 3,002,951 (1961)
    12. Fang X., Chen Z.R., Yin H., Su K.F. Kinetics of bulk polymerization of octamethyltetrasiloxane, Chin J Chem Eng, 2004,12(1): 156-158
    13. Wang Q.J., Zhang H.S., Surya Prakash G.K., Hogen-Esch T.E., Olah G.A. Cationic ring-opening polymerization of cyclosiloxanesinitiated by electron-deficient organosilicon reagents, Macromolecules, 1996,29:6691-6694
    1.Elkins C.L.,Long T.E.Living Anionic Polymerization of Hexamethylcyclotrisiloxane(D3) Using Functionalized Initiation,Macromolecules,2004,37:6657-6659
    2.James L.,Thieo E.H.E.Synthesis and Characterization of Narrow Molecular Weight Distribution AB and ABA Poly(vinylpyridine)-Poly(dimethylsiloxane)Block Copolymers via Anionic Polymerization,Macromolecules,2001,34:2805-2811
    3.Yi L.,Zhan X.,Chen F.,Du F.,Huang L.Synthesis and Characterization of Poly[styrene-bmethyl(3,3,3-trifluoropropyl)siloxane]Diblock Copolymers via Anionic Polymerization,J Polym Sci Part A Polym Chem,2005,43:4431-4438
    4.Pierce O.R.,Holbrook G.W.,Johannson O.K.,Saylor J.C.,Brown E.D.Fluorosilicone Rubber,Ind Eng Chem,1960,52:783-784
    5.Brown E.D.,Carmichael J.B.Cyclic distribution in 3,3,3-trifluoropropylmethylsiloxane polymers,J Polym Sci Polym Lett Ed,1965,3:473-482
    6.Veith C.A.,Cohen R.E.Kinetic modelling and optimization of the trifluoropropylmethylsiloxane polymerization,J Polym Sci Part A Polym Chem 1989,27:1241-1258
    7.Barre're M.,Maitre C.,Dourges M.A.,He'mery P.Anionic Polymerization of 1,3,5-Tris(trifluoropropylmethyl)cyclotrisiloxane(F3) in Miniemulsion,Macromolecules,2001,34:7276-7280
    8.Veith C.A.,Cohen R.E.Kinetic modelling and optimization of the trifluoropropylmethylsiloxane polymerization,J Polym Sci Part A Polym Chem,1989,27:1241-1258
    9. Elkins C.L., Long T.E. Living Anionic Polymerization of Hexamethylcyclotrisiloxane (D3) Using Functionalized Initiation, Macromolecules, 2004,37: 6657-6659
    10. Friends G., Kunzler J., Ozark R. Ring opening polymerization of trifluoropropylmethylsiloxane cyclic trimer with trifluoromethanesulfonic acid, Polym Prepr, 1992,33(2): 493-494
    11. Elkins C.L., Long T.E. Living Anionic Polymerization of Hexamethylcyclotrisiloxane (D3) Using Functionalized Initiation, Macromolecules, 2004,37: 6657-6659
    12. Hawkridge A.M., Gardella J.A.Jr. Evaluation of matrix-assisted laser desorption ionization mass spectrometry for studying the sec-butyllithium and n-butyllithium initiated ring-opening polymerization of hexamethylcyclotrisiloxane (D3), J Am Soc Mass Spectrom, 2003,14: 95-101
    13. Barrere M., Maitre C., Dourges M.A., Hemery P. Anionic Polymerization of 1,3,5-Tris(trifluoropropylmethyl)cyclotrisiloxane (F3) in Miniemulsion, Macromolecules, 2001,34:7276-7280
    14. Vasilios B., Hermis I., Nikos H. Controlled Anionic Polymerization of Hexamethylcyclotrisiloxane. Model Linear and Miktoarm Star Co- and Terpolymers of Dimethylsiloxane with Styrene and Isoprene, Macromolecules, 2000, 33: 6993-6997
    15. Hammouch S.O., Beinert G.J., Zilliox J.G., Herz J.E. Synthesis and characterization of monofunctional polydimethylsiloxanes with a narrow molecular weight distribution, Polymer, 1995, 36: 421-426
    16. Kobayashi H., Nishiumi W. Preparation and characterization of poly(methyl-3,3,3-trifluoropropylsiloxane-co-dimethylsiloxane), Makromol Chem, 1993,194: 1403-1410
    17. Marcelo A.V., Miguel A.B., Enrique M., Valles J.M.S. Synthesis and characterization of monodisperse α,ω-divinylpolydimethylsiloxane and ω-vinylpolydimethylsiloxane, Pure Appl Chem, 1992, A29(4&5): 391-400
    18. Urich M., Thomas W. Synthesis of high-molecular-weight poly(dimethylsiloxane) of uniform size by anionic polymerization, 1 Initiation by a monofunctional lithium siloxanolate, Makromol Chem, 1992, 193: 2453-2466
    19.Frye C.L.,Salinger R.M.,Fearon W.G.,Klosowski J.M.,DeYoung T.Reactions of Organolithium Reagents with Siloxane Substrates,The Journal of Organic Chemistry,1970,35:1308-1314
    20.Wang Q.,Zhang H.,Prakash G.K.S.,Hogen-Esch T.E.,Olah G.A.Macromolecules,Cationic Ring-Opening Polymerization of Cyclosiloxanes Initiated by Electron-Deficient Organosilicon Reagents,1996,29:6691-6694
    21.Vasilios B.,Hermis I.,Nikos H.Controlled Anionic Polymerization of Hexamethylcyclotrisiloxane.Model Linear and Miktoarm Star Co-and Terpolymers of Dimethylsiloxane with Styrene and Isoprene,Macromolecules,2000,33:6993-6997
    22.易玲敏,詹晓力,陈丰秋.1,3,5-三甲基-1,3,5-三(3′,3′,3′-三氟丙基)环三硅氧烷(F3)的阴离子开环(共)聚合研究进展,高分子材料科学与工程,2005,12(4):5-9
    1.Yu K.,Zhang L.F.,Eisenberg A.Novel Morphologies of"Crew-Cut" Aggregates of Amphiphilic Diblock Copolymers in Dilute Solution,Langmuir,1996,12:5980-5954
    2.Zhang L.F.,Bartels C.,Yu Y.S.,Shen H.W.,Eisenberg A.Mesosized Crystal-like Structure of Hexagonally Packed Hollow Hoops by Solution Self-Assembly of Diblock Copolymers,Phys Rev Lett,1997,79:5034-5037
    3.Yu K.,Eisenberg A.Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution,Macromolecules,1998,31:3509-3518
    4.Talingting M.R.,Munk P.,Webber S.E.Onion-Type Micelles from Polystyrene-block-poly(2-vinylpyridine) and Poly(2-vinylpyddine)-block-poly(ethylene oxide),Macromolecules 1999,32:1593-1601
    5.Cameron N.S.,Corbierre M.K.,Eisenberg A.1998 EWR steacie Award Lecture:Assemmetric amphilic block copolymers in solution:a morphologies wonderland,Can J Chem,1999,77:1311-1326
    6.Riegel I.C.,Eisenberg A.,Petzhold C.L.,Samios D.Novel Bowl-Shaped Morphology of Crew-Cut Aggregates from Amphiphilic Block Copolymers of Styrene and 5-(N,N-Diethylamino)isoprene,Langmuir,2002,18:3358-3363
    7.Zhu J.T.,Liao Y.G.,Jiang W.Ring-Shaped Morphology of"Crew-Cut"Aggregates from ABA Amphiphilic Tdblock Copolymer in a Dilute Solution,Langmuir,2004,20:3809-3812
    8.Massey J.,Power K.N.,Manners I.,Winnik M.A.Self-Assembly of a Novel Organometallic-Inorganic Block Copolymer in Solution and the Solid State:Nonintrusive Observation of Novel Wormlike Poly(ferrocenyldimethylsilane)-b-Poly(dimethylsiloxane) Micelles,J Am Chem Soc,1998,120:9533-9540
    9.Savic R.,Luo L.B.,Eisenberg A.,Maysinger D.Micellar Nanocontainers Distribute to Defined Cytoplasmic Organelles,Science,2003,300:615-618
    10. Rosier A., Vandermeuler G.W.M., Klok H.A. Advanced drag delivery devices via self-assembly of amphiphilic block copolymers, Adv Drug Delivery Rev 2001, 53: 95-108
    11. Jenekhe S.A., Chen L.D. Self-Assembled Aggregates of Rod-Coil Block Copolymers and Their Solubilization and Encapsulation of Fullerenes, Science, 1998,279:1903-1907
    12. Portinha D., Bouteiller L., Pensec S., Richez A., Chassenieux C. Influence of Preparation Conditions on the Self-Assembly by Stereocomplexation of Polylactide Containing Diblock Copolymers, Macromolecules, 2004; 37(9): 3401-3406.
    13. Patrickios C.S., Forder C., Armes S.P., Billingham N.C. Synthesis and characterization of amphiphilic diblock copolymers of methyl tri(ethylene glycol) vinyl ether and isobutyl vinyl ether, J Polym Sci Part A: Polym Chem, 1996,34: 1529-1541
    14. Nakano M., Matsuoka H., Yamaoka H., Poppe A., Hichter D. Sphere to Rod Transition of Micelles Formed by Amphiphilic Diblock Copolymers of Vinyl Ethers in Aqueous Solution, Macromolecules, 1999,32: 697-703
    15. Andersson S., Jacob M., Ladin S., Larsson K. Z Kristallogr, 1995,210: 315
    16. Nakano M., Sugita A., Matsuoka H., Handa T. Small-Angle X-ray Scattering and 13C NMR Investigation on the Internal Structure of "Cubosomes", Langmuir, 2001,17: 3917-3922
    17. Neto C., Aloisi G., Baglioni P., Larsson K. Imaging Soft Matter with the Atomic Force Microscope: Cubosomes and Hexosomes, J Phys Chem B, 1999,103: 3896-3899
    18. Langer R. New methods of drug delivery, Science, 1990,249: 1527-1533
    19. Rosen MJ., Wu Y. Superspreading of Trisiloxane Surfactant Mixtures on Hydrophobic Surfaces. 1. Interfacial Adsorption of Aqueous Trisiloxane Surfactant-N-Alkyl Pyrrolidinone Mixtures on Polyethylene, Langmuir 2001,17: 7296-7305
    20. Wu Y., Rosen M.J. Superspreading of Trisiloxane Surfactant Mixtures on Hydrophobic Surfaces 2. Interaction and Spreading of Aqueous Trisiloxane Surfactant-N-Alkyl-Pyrrolidinone Mixtures in Contact with Polyethylene, Langmuir 2002,18: 2205-2215
    21.(a) Takarada,M.(Shin-Etsu Chemical Co.).U.S.Patent 5,767,219,June 16,1998;
    (b) Scillite S.(Bayer Aktiengesellschaft).U.S.Patent 5,625,024,April 29,1997;
    (c) Rautschek,H.(Wacker-Chemie GmbH).U.S.Patent 6,187,891 B1,February 13,2001.
    22.Lin Z.,Hill R.M.,Davis H.T.,Striven L.E.,Talmon Y.Cryo transmission electron microscopy study of vesicles and micelles in siloxane surfactant aqueous solutions,Langmuir,1994,10:1008-1011
    23.Kickelbick G.,Bauer,J.;Huesing,N.;Andersson,M.;Palmqvist,A.Spontaneous Vesicle Formation of Short-Chain Amphiphilic Polysiloxane-b-Poly(ethylene oxide) Block Copolymers,Langmuir 2003,19:3198-3201.
    24.Kickelbick G.,Bauer J.,Huesing N.,Andersson M.,Holmberg K.A.Aggregation Behavior of Short-Chain PDMS-b-PEO Diblock Copolymers in Aqueous Solutions,Langrnuir,2003,19:10073-10076.
    25.Lin Y.,Alexandridis P.Self-Assembly of an Amphiphilic Siloxane Graft Copolymer in Water,J Phys Chem B 2002,106:10845-10853
    26.Lin Y.,Alexandridis P.Cosolvent Effects on the Micellization of an Amphiphilic Siloxane Graft Copolymer in Aqueous Solutions,Langmuir,2002,18:4220-4231
    27.赵培真,王洪涛.硅氢加成反应催化剂,有机硅材料及应用,1995,1:1-5
    28.Sommer L.H.,Pietrusza E.W.,Whitmore F.C.Peroxide-catMyzed addition of trichlorosilane tol-octene,J Am Chem Soc,1947,69:188-188
    29.Speier J.L.,Webster J.A.,Barnes G.H.Synthesis and characterization of amphiphilic diblock copolymers of methyl tri(ethylene glycol) vinyl ether and isobutvl vinyl ether,J Am Chem Soc 1957,79:974-979
    30.熊竹君,李凤仪,邓锋杰.硅氢加成反应催化机理的研究进展,有机硅材料,2006,20(6):312-318
    31.Harrod J.F.,Chalk A.J.Dicobalt O ctacarbonyl as a Catalyst for Hydrosilylation of Olefins,J Am Chem Soc,1965,87:1133-1133
    32.Lewis L.N.On the Mechanism of Metal Collid Catalyzed Hydrosilylation:Proposed Explanations for Electronic Effects and Oxygen Cocatalysis,J Am Chem Soc,1990,112(16):5998-6004
    33.LaPoint A.M.,Rix F.C.,Brookhart M.Mechanistic Studies of Palladium(Ⅱ)-Catalyzed Hydrosilation and Dehydrogenative Silation Reactions,J Am Chem Soc,1997,119(5):906-917
    34. Gerard Riess. Micellization of block copolymers, Prog Polym Sci, 2003,28: 1107-1170
    35. Peter Ph. Controlled agglomeration of latexes by block copolymers. PhD Thesis. University Haute Alsace, France; 1998
    36. Shen H.W., Zhang L.F., Eisenberg A. Multiple pH-Induced Morphological Changes in Aggregates of Polystyrene-block-poly(4-vinylpyridine) in DMF/H2O Mixtures, J Am Chem Soc, 1999,121:2728-2740
    37. Desbaumes L., Eisenberg A. Single-Solvent Preparation of Crew-Cut Aggregates of Various Morphologies from an Amphiphilic Diblock Copolymer, Langmuir, 1999,15: 36-38
    38. Yu G., Eisenberg A. Multiple Morphologies Formed from an Amphiphilic ABC Triblock Copolymer in Solution, Macromolecules, 1998,31: 5546-5549
    39. Yu Y.S., Zhang L.F., Eisenberg A. Multiple Morphologies of Crew-Cut Aggregates of Polybutadiene-b-poly(acrylic acid) Diblocks with Low Tg Cores, Langmuir, 1997,13:2578-2581
    40. Sylvio M., Avinoam B.S. Molecular Theory of the Sphere-to-Rod Transition and the Second CMC in Aqueous Micellar Solutions, J Phys Chem B, 2001,105: 630-640
    41. Peng X., Zhang L. Formation and Morphologies of Novel Self-Assembled Micelles from Chitosan Derivatives, Langmuir, 2007,23:10493-10498
    42. Hammouda B., Ho D.L., Kline S. Insight into Clustering in Poly(ethylene oxide) Solutions, Macromolecules, 2004, 37: 6932-6937
    1.Desbaumes L.,Eisenberg A.Single-Solvent Preparation of Crew-Cut Aggregates of Various Morphologies from an Amphiphilic Diblock Copolymer,Langmuir,1999,15:36-38
    2.Yu G.,Eisenberg A.Multiple Morphologies Formed from an Amphiphilic ABC Tdblock Copolymer in Solution,Macromolecules,1998,31:5546-5549
    3.Yu Y.S.,Zhang L.F.,Eisenberg A.Multiple Morphologies of Crew-Cut Aggregates of Polybutadiene-b-poly(acrylic acid) Diblocks with Low Tg Cores,Langmuir,1997,13:2578-2581
    4.Zhang L.F.,Eisenberg A.Multiple Morphologies of"Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers,Science,1995,268:1728-1731
    5.Zhang L.F.,Yu K.,Eisenberg A.Ion-lnduced Morphological Changes in "Crew-Cut" Aggregates of Amphiphilie Block Copolymers,Science,1996,272:1777-1779
    6.Zhang L.F.,Eisenberg A.Multiple Morphologies and Characteristics of "Crew-Cut" Micelle-like Aggregates of Polystyrene-b-poly(acrylie acid) Diblock Copolymers in Aqueous Solutions,J Am Chem Soe,1996,118:3168-3181
    7.Discher D.E.,Eisenberg A.Polymer Vesicles,Science,2002,297:967-973
    8.Zhu J.T.,Liao Y.G.,Jiang W.Ring-Shaped Morphology of"Crew-Cut"Aggregates from ABA Amphiphilic Triblock Copolymer in a Dilute Solution,Langmuir,2004,20:3809-3812
    9.Stewart S.,Liu G.J.Block Copolymer Nanotube,Angew Chem Int Ed,2000,39:340-344
    10.Riegel I.C.,Eisenberg A.Novel Bowl-Shaped Morphology of Crew-Cut Aggregates from Amphiphilic Block Copolymers of Styrene and 5-(N,N-Diethylamino)isoprene,Langmulr,2002,18:3358-3363
    11.Prochazka K.,Martin T.J.,Webber S.E.,Munk P.Onion-Type Micelles in Aqueous Media,Macromolecules,1996,29:6526-6530
    12.Gohy J.F.,Wilier N.,Varshney S.,Zhang J.X.,Jerome R.Core-Shell-Corona Micelles with a Responsive Shell,Angew Chem Int Ed,2001,40:3214-3216
    13.Shen H.W.,Zhang L.F.,Eisenberg A.Multiple pH-Induced Morphological Changes in Aggregates of Polystyrene-block-poly(4-vinylpyridine) in DMF/H20Mixtures,J Am Chem Soc,1999,121:2728-2740
    14.Harada S.,Fujita N.,Sano T.Kinetic studies of the sphere-rod transition of micelles,J Am Chem Soc,1988,110:8710-8711
    15.Burke E.S.,Eisenberg A.Kinetics and Mechanisms of the Sphere-to-Rod and Rod-to-Sphere Transitions in the Ternary System PS310-b-PAA52/Dioxane/Water,Langmuir,2001,17:6705-6714
    1.(a) Takarada,M.(Shin-Etsu Chemical Co.).U.S.Patent 5,767,219,June 16,1998;
    (b) Scillite S.(Bayer Aktiengesellschaft).U.S.Patent 5,625,024,April 29,1997;
    (c) Rautschek,H.(Wacker-Chemie GmbH).U.S.Patent 6,187,891 B1,February 13,2001
    2.Rosen M.J.,Wu Y.Superspreading of Trisiloxane Surfactant Mixtures on Hydrophobic Surfaces.1.Interracial Adsorption of Aqueous Trisiloxane Surfactant-N-Alkyl Pyrrolidinone Mixtures on Polyethylene,Langmuir,2001,17:7296-7305
    3.Wu Y.,Rosen M.J.Superspreading of Trisiloxane Surfactant Mixtures on Hydrophobic Surfaces 2.Interaction and Spreading of Aqueous Trisiloxane Surfactant-N-Alkyl-Pyrrolidinone Mixtures in Contact with Polyethylene,Langmuir,2002,18:2205-2215
    4.Lin Z.;Hill R.M.,Davis H.T.,Striven L.E.,Talmon Y.Cryo transmission electron microscopy study of vesicles and micelles in siloxane surfactant aqueous solutions,Langmuir,1994,10:1008-1011
    5.Kickelbick G.,Bauer,J.;Huesing,N.;Andersson,M.;Palmqvist,A.Spontaneous Vesicle Formation of Short-Chain Amphiphilic Polysiloxane-b-Poly(ethylene oxide) Block Copolymers,Langmuir 2003,19:3198-3201.
    6.Kickelbick G.,Bauer J.,Huesing N.,Andersson M.,Holmberg K.A.Aggregation Behavior of Short-Chain PDMS-b-PEO Diblock Copolymers in Aqueous Solutions,Langmuir,2003,19:10073-10076.
    7. Lin Y., Alexandridis P. Self-Assembly of an Amphiphilic Siloxane Graft Copolymer in Water, J Phys Chem B 2002,106:10845-10853
    8. Lin Y., Alexandridis P. Cosolvent Effects on the Micellization of an Amphiphilic Siloxane Graft Copolymer in Aqueous Solutions, Langmuir, 2002,18:4220-4231
    9. Zhang Q., Zhan X., Chen F., Shi Y., Wang Q. Block copolymers of dodecafluoroheptyl methacrylate and butyl methacrylate by RAFT miniemulsion polymerization, J Polym Sci Part A: Polym Chem 2007,45: 1585-1594
    10. Linemann R.F., Malner T.E., Brandsch R., Bar G., Ritter W., Mulhaupt R. Latex Blends of Fluorinated and Fluorine-Free Acrylates: Emulsion Polymerization and Tapping Mode Atomic Force Microscopy of Film Formation, Macromolecules, 1999,32:1715-1721
    11. Hammouda B., Ho D.L., Kline S. Insight into Clustering in Poly(ethylene oxide) Solutions, Macromolecules, 2004,37: 6932-6937

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700