用户名: 密码: 验证码:
导电结构涡流/超声检测与评估技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工业生产的迅速发展对无损检测技术提出的要求越来越高。以涡流和超声为代表的无损检测方法在常规缺陷的定性检测方面取得了较好的效果。但是,由于受到各自特点的限制,它们在多层导电结构的缺陷分类与定量化检测、表面与深层微小缺陷的定性检测与定量化评估等方面的应用仍存在很多问题有待于解决,还不能满足实际应用需求。本文结合国家自然科学基金资助项目和教育部博士点基金资助项目,围绕涡流检测的参数优化及其与超声检测方法的复合应用技术展开研究,在涡流检测参数的试验优化设计、导电结构缺陷分类与定量化检测、涡流检测与超声检测的异源数据融合、检测结果的检测概率(POD)分析与不确定性评定等方面取得了成果。论文主要研究内容和创新点如下:
     1.将基于田口方法的稳健设计理论应用到涡流无损检测的参数优化中,研究了优化涡流检测参数的相关技术。根据田口稳健设计中参数优选与确定方法,应用信噪比分析原理,通过对试验数据的分析与比较,优化了激励频率与激励电压等关键检测参数;并基于测量的不确定度评定理论,研究了涡流检测结果的不确定度评定技术,给出了典型的评定方法与过程。
     2.针对常规涡流与超声检测在面向导电结构深层缺陷和表面微小缺陷检测中存在的问题,采用Dempster-Shafer证据理论以及BP网络,对涡流与超声检测的异源数据进行融合分类,提高缺陷分类的准确度。论文提出将模糊C-均值算法与Dempster-Shafer证据理论相结合的异源数据融合方法,避免在进行证据组合时对于大量试验数据或专家知识的依赖,提高了算法的实用性,便于进行缺陷的定量化评估。
     3.在检测参数优化与缺陷分类的基础上,研究采用径向基神经网络(RBFNN)以及模糊贝叶斯网络(FBN)对缺陷参数进行定量化评估的方法。论文采用减聚类算法对常规的RBFNN进行改进,并将模糊处理与贝叶斯网络结合起来构建模糊贝叶斯网络,通过利用涡流与超声检测的试验数据进行网络的训练以及缺陷的定量化反演,提高了反演的精度和效率。
     4.引入POD对无损检测结果进行评估。首先研究借助于POD对导电材料缺陷检测结果进行评估的理论,通过综合分析多种现有经验模型的特性,提出了一种简单实用的POD经验模型,在用于检测结果的评估中达到了一定的精度;然后研究了基于辅助模型的POD(MAPOD)建模与评估技术,并采用试验数据验证MAPOD模型的推广性能,弥补了经验模型的不足。
With the rapid development of the modern industrial production, higher and higher demands have been put forward for the nondestructive testing technique. As representative measures of the nondestructive testing (NDT) methods, Eddy current testing (ECT) and Ultrasonic Testing (UT) techniques have gained better effects in the qualitative inspection of the conventional defects. However, due to their own limitations, lots of difficult problems remain unsolved for ECT and UT in the defects classification and quantitative inspection of the multi-layer conductive structures, the qualitative inspection and the quantitative evaluation of the minor defects, and the practical inspection demands can't be satisfied. In this dissertation, supported by the National Natural Science Foundation of China and the Ph.D. Programs Foundation of Ministry of Education of China, investigations have been conducted on the optimization of ECT and UT and their compound application technology, much effort has been devoted to the investigation of the optimization design of ECT experiment, the defects classification and quantitative testing of the conductive structures, the data fusion from different types of sensors of ECT and UT, the probability of detection (POD) and the uncertainty of measurement research of the testing results by means of two different kinds of NDT methods, and some primary results have been obtained in the end. The main contents of the dissertation and the innovations of the research chiefly include the following:
     1. The robust design based on Taguchi method is introduced into the optimization design of the ECT experiment so as to determine the optimal inspection parameters of ECT conveniently. In accordance with the parameters selection and determination method in the Taguchi method, utilizing the SNR analysis principle, such key inspection parameters as the excitation frequency and voltage have been optimized by means of analyzing and comparing the experiment data. In addition, the assessing technology of uncertainty of measurement for ECT is investigated based on the theory of uncertainty of measurement, and the typical assessing scheme and process have been presented.
     2. In order to solve the problems in detecting deep defects and the minor surface defects of the conductive structures for ECT and UT, Dempster-Shafer evidence theory and BP networks are applied to fusing different detecting results from ECT and UT and the precision of defects classification has been improved. A data fusion method of different sources to combine the fuzzy C-means clustering algorithm with Dempster-Shafer evidence theory is proposed, avoiding depending on large amounts of experiment data or the expert knowledge in combining different evidences. The practicability of the algorithm is improved and thus it's convenient for the quantitative evaluation of defects.
     3. On the basis of detection parameters optimization and the defects classification, the radial basis function neural networks (RBFNN) and the fuzzy Bayesian networks (FBN) are used to evaluate the defects parameters quantitatively. The subtractive algorithm is utilized to improve the conventional radial basis function neural network, and the fuzzy processing is combined with Bayesian networks to construct the FBN, the ECT and UT data are used to train the networks and inverse the defects quantitatively, and better effect has been achieved in the inversion precision and efficiency.
     4. The application of probability of detection (POD) in the evaluation of the inspection results is introduced. Firstly, the fundamentals of evaluating the inspection results of the flaws in the conductive materials are discussed by means of POD. On the basis of analyzing different existing POD empirical models synthetically, a practical three-parameter empirical model is put forward, and a certain precision has been arrived at in evaluating the inspection results; then the modeling and evaluating schemes based on model-assisted POD (MAPOD) are investigated, the experiment results validate the generalization performance of MAPOD, and the limitation of the empirical model has been offset.
引文
[1]Adamsa R D, Cawley P. A review of defect types and nondestructive testing techniques for composites and bonded joints[J].NDT International.1988,21(4):208-222.
    [2]Auld B A, Moulder J C. Review of advances in quantitative eddy current nondestructive evaluation[J]. Journal of Nondestructive Evaluation.1999,18(1):3-39.
    [3]任吉林,林俊明.电磁无损检测[M].北京:科学出版社,2008.
    [4]任吉林,涡流检测技术近20年的进展[J].无损检测.1998,20(5):121-125.
    [5]Sun Y, Ouyang T, Udpa S. Recent advances in remote field eddy current NDE techniques and their applications in detection, characterization, and monitoring of deeply hidden corrosion in aircraft structures [C]. 1999.
    [6]黄平捷.多层导电结构厚度与缺陷电涡流检测若干关键技术研究[D].杭州:浙江大学,2004.
    [7]中国机械工程学会无损检测学会.涡流检测[M].北京:国防工业出版社,1985.
    [8]李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社,2002.
    [9]范孟豹,黄平捷,叶波,等.脉冲涡流解析模型研究[J].浙江大学学报(工学版).2009,43(9):1621-1624.
    [10]Sophian A, Tian G Y, Taylor D, et al. Electromagnetic and eddy current NDT:a review[J]. Insight. 2001,43(5):302-306.
    [11]Smith R A, Hugo G R. Transient eddy current NDE for ageing aircraft-capabilities and limitations[J]. Insight.2001,43(1):14-25.
    [12]徐晨曦.脉冲涡流检测实验系统的研制[D].上海:上海交通大学,2009.
    [13]范孟豹.多层导电结构电涡流检测的解析建模研究[D].杭州:浙江大学,2009.
    [14]Sun Y S, Udpa L, Udpa S. A novel remote field eddy current technique for inspection of thick-walled aluminum plates[J]. Materials Evaluation.1998,56(1):94-97.
    [15]曲民兴,司家屯,孙雨施,等.采用复式激励的新型远场涡流探头[J].电工技术学报.1997,12(3):11-18.
    [16]严舒.远场涡流无损检测技术的发展与应用[J].石油科技论坛.2008,27(3):55-56.
    [17]Thomas W. Eddy current imaging[J]. Materials Evaluation.1993,51(4):444-451.
    [18]Fitzpatrick G L, Thome D K, Skaugset R L, et al. Magneto-optic/eddy current imaging of aging aircraft: a new NDI technique[J]. Materials Evaluation.1993,51(12):1402-1407.
    [19]Metala M J, Clark W G, Monroeville W R, et al. Apparatus and method for providing a combined ultrasonic and eddy current inspection of a tube[P]. United States.
    [20]Komura I, Hirasawaa T, Nagaia S, et al. Crack detection and sizing technique by ultrasonic and electromagnetic methods[J]. Nuclear Engineering and Design.2001,206(2-3):351-362.
    [21]Horn D, Mayo W R. NDE reliability gains from combining eddy-current and ultrasonic testing[J]. NDT & E International.2000,33(6):351-362.
    [22]周正干,黄凤英,于芳芳.电磁超声和涡流组合检测方法[J].无损检测.2009,31(9):707-712.
    [23]中国机械工程学会无损检测学会.超声波检测[M].北京:机械工业出版社,2005.
    [24]胡建恺,张谦琳.超声检测原理和方法[M].合肥:中国科学技术大学出版社,1993.
    [25]菜大志.铜—钢熔敷焊接头自动超声检测系统研究[D].南京:南京理工大学,2007.
    [26]王勇.基于数字信号处理技术的钢轨超声检测系统的研究[D].天津:天津大学,2005.
    [27]吴斌,邓菲,何存富.超声导波无损检测中的信号处理研究进展[J].北京工业大学学报.2007,33(4):342-348.
    [28]刘镇清,刘骁.超声无损检测的若干新进展[J].无损检测.2000,22(9):403-406.
    [29]沈建中.无损检测的几个热点问题和技术[J].无损检测.2005,27(1):24-27.
    [30]李国华,吴淼.现代无损检测与评价[M].北京:化学工业出版社,2009.
    [31]王长龙,梁四洋,左宪章,等.漏磁检测的研究现状及发展[J].军械工程学院学报.2007,19(4):13-16.
    [32]陈健生,王海民,付洋.磁粉检测20年回顾[J].无损检测.1998,20(4):91-95.
    [33]李亚江,陈茂爱,孙俊生.实用焊接技术手册[M].石家庄:河北科学技术出版社,2000.
    [34]王汝琳,王咏涛.红外检测技术[M].北京:化学工业出版社,2006.
    [35]任吉林,林俊明,池永滨,等.金属磁记忆检测技术[M].北京:中国电力出版社,2000.
    [36]Smid R, Docekal A, Kreidl M. Automated classification of eddy current signatures during manual inspection[J]. NDT&E International.2005,38(6):462-470.
    [37]Liu Z, Forsyth D S, Safizadeh M S, et al. A data-fusion scheme for quantitative image analysis by using locally weighted regression and Dempster-Shafer theory [J]. IEEE Transactions on Instrumentation and Measurement.2008,57(11):2554-2560.
    [38]Rosa J, Fleury G, Sonia E O, et al. Markov Chain Monte Carlo posterior density approximation for a groove-dimensioning purpose[J]. IEEE Transactions on Instrumentation and Measurement.2006,55(1): 112-122.
    [39]边境,张立东,刘贵民.再制造工程中的无损检测技术[J].四川兵工学报.2004,32(5):13-15.
    [40]陈理渊.多传感器数据融合及其在电机故障诊断中的应用研究[D].杭州:浙江大学,2005.
    [41]Hall D L, Llinas J. An introduction to multisensor data fusion[J]. Proceedings of the IEEE.1997,85(1): 6-23.
    [42]何友,王国宏,陆大金,等.多传感器信息融合及应用[M].北京:电子工业出版社,2000.
    [43]汤晓君,刘君华.多传感器技术的现状与展望[J].仪器仪表学报.2005,29(12):1309-1313.
    [44]简小刚,贾鸿盛,石来德.多传感器信息融合技术的研究进展[J].中国工程机械学报.2009,7(2):227-232.
    [45]Bizon K, Continillo G, Mancaruso E, et al. POD-based analysis of combustion images in optically accessible engines[J]. Combustion and Flame.2010,157(4):632-640.
    [46]Bullough R, Dolby R E, Beardsmore D W, et al. The probability of formation and detection of large flaws in welds[J]. International Journal of Pressure Vessels and Piping.2007,84(12):730-738.
    [47]Chang H, Zhang J. Detection probability and detection time using clutter metrics[J]. Infrared Physics. 2007,51(2):83-90.
    [48]刘志平.基于有限元分析的储罐底板磁性检测与评价方法研究[D].武汉:华中科技大学,2003.
    [49]孙立瑛.声发射储罐及管道在线检测技术研究[D].天津:天津大学,2006.
    [50]魏敦军.军用飞机红外热波无损检测技术研究[D].武汉:武汉理工大学,2007.
    [51]程文,孙金立.某型飞机机翼结合螺栓超声检测中异常波分析[J].无损探伤.2010,34(3):37-38.
    [52]刘凯.涡流阻抗分析[J].无损检测.1996,18(2):50-56.
    [53]叶波.多层导电结构深层缺陷电涡流检测和定量化评估研究[D].杭州:浙江大学,2009.
    [54]高扬华.基于GMR传感器的电涡流检测系统开发及深层缺陷检测的可靠性研究[D].杭州:浙江大学,2010.
    [55]中国机械工程学会无损检测学会.无损检测概论[M].北京:机械工业出版社,1993.
    [56]王涛,陈德智,赵玉清,等.基于场量分析的涡流检测技术[J].无损检测.1999,21(6):241-244.
    [57]林萍.多传感器模糊数据融合在气固流化床流型识别中的应用[D].杭州:浙江大学,2004.
    [58]Hall D L, Llinas J. Handbook of multisensor data fusion[M]. New York:CRC Press,2001.
    [59]王凤朝,黄树采,韩朝超.多传感器信息融合及其新技术研究 [J].航空计算技术.2009,39(1):102-106.
    [60]梁继民.多传感器决策融合方法研究[D].西安:西安电子科技大学,1999.
    [61]茆诗松,周纪芗,陈颖.试验设计[M].北京:中国统计出版社,2004.
    [62]刘振学,黄仁和,田爱民.实验设计与数据处理[M].北京:化学工业出版社,2005.
    [63]盛骤,谢式千,潘承毅.概率论与数理统计(第三版)[M].北京:高等教育出版社,2005.
    [64]唐启义,冯明光.DPS数据处理系统[M].北京:科学出版社,2006.
    [65]赵宇,陈松涛.用田口方法推断校准仪器的测量不确定度[J].电子测量与仪器学报.2005,19(2):37-40.
    [66]钟晓芳,韩之俊.关于田口方法中望大特性信噪比的改进[J].南京理工大学学报.2004,28(1):109-1]2.
    [67]李泳鲜,孟庆国,姬振豫.三次设计中望目特性信噪比的讨论与改进[J].机械设计.2001,19(1):10-13.
    [68]刘华新,刘红艳,孙荣书.应用改进的稳健设计法分析梁柱外节点抗剪强度[J].武汉理工大学学报.2007,31(1):148-150.
    [69]叶德培.测量不确定度理解评定与应用[M].北京:中国计量出版社,2007.
    [70]沙定国.误差分析与测量不确定度评定[M].北京:中国计量出版社,2003.
    [71]陈韶.田口方法在测量不确定度评定中的应用研究[D].南京:南京理工大学,2007.
    [72]刘智敏,刘风.现代不确定度方法与应用[M].北京:中国计量出版社,1997.
    [73]倪育才.实用不确定度评定[M].北京:中国计量出版社,2004.
    [74]中国质量技术监督局.测量不确定度评定与表示[S].JJF1059-1999.
    [75]Goodman I R, Mahler R P S, Nguyen H T. Mathematics of data fusion[M]. Dordrecht:Kluwer Academic Publishers,1997.
    [76]Giacinto G, Roli F, Didaci L. Fusion of multiple classifiers for intrusion detection in computer networks[J]. Pattern Recognition Letters.2003,24(12):1795-1803.
    [77]Dempster A. A generalisation of Bayesian inference[J]. Journal of Royal Statistical Society, Series B. 1968,30(2):205-247.
    [78]Shafer G. A Mathematical Theory of Evidence[M]. NJ:Princeton University Press,1976.
    [79]Zadeh L A. Review of Shafer's a mathematical theory of evidence[J]. AI Magazine.1984,5(3):81-83.
    [80]张军.证据理论中冲突证据的处理及其应用[D].南昌:南昌大学,2007.
    [81]Yager R. R. On the Dempster-Shafer framework and new combination rules[J]. Information Science. 1989,41(2):93-137.
    [82]王加阳,周勇.冲突证据的融合方法研究[J].计算机应用研究.2008,25(7):2046-2049.
    [83]Smets P. The combination of evidence in the transferable belief model[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence.1990,12(5):447-458.
    [84]Dubois D, Prade H. Representation and combination of uncertainty with belief functions and possibility measures[J]. Computational Intelligence.1988,4(3):244-264.
    [85]张山鹰.证据推理及其在目标识别中的应用[D].西安:西北工业大学,1999.
    [86]黎湘,刘永祥,付耀文,等.基于D-S证据理论的修正融合目标识别模型[J].自然科学进展.2000,10(11):]040-1043.
    [87]吴英,蒋雯,王栋,等.一种最优冲突证据组合方法[J].电机与控制学报.2009,13(S1):178-182.
    [88]韩峰,杨万海,袁晓光.一种有效处理冲突证据的组合方法[J].电光与控制.2010,17(4):5-9.
    [89]白剑林,王煜.一种解决D-S理论证据冲突的有效方法[J].系统工程与电子技术.2009,31(9):2106-2109.
    [90]Martin A, Jousselme A L, Osswald C, et al. Conflict measure for the discounting operation on belief functions[C]. Cologne:2008.
    [91]高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004.
    [92]党宏社,韩崇昭,王立琦,等.基于模糊推理原理的多传感器数据融合方法[J].仪器仪表学报.2004,25(4):527-530.
    [93]郭元术,陈松.基于模糊C均值聚类的二进制信号盲分离[J].数据采集与处理.2010,25(4):512-515.
    [94]孔金生,李文艺.基于模糊集合的证据理论信息融合方法[J].计算机工程与应用.2008,44(20):152-154.
    [95]Dongxiao N, Jialiang L, Hongyan L. Evaluating electric environmental issues using BP neural network with optimised hidden layer nodes[J]. International Journal of Global Environmental Issues.2009,9(3): 227-238.
    [96]马玉梅,武玉厚.动量因子对BP算法的影响[J].中央民族大学学报(自然科学版).2008,17(4):35-40.
    [97]郑伟,张辉,王杨明.基于BP神经网络组合导航融合算法[J].空间电子技术.2008,41(4):82-88.
    [98]苏义鑫,杨小林,许泱.军用飞机无损检测设备发展简介[J].无损检测.2005,27(8):416-418.
    [99]Li G, Huang P, Chen P, et al. Application of multi-sensor data fusion in defects evaluation based on Dempster-Shafer theory:2011 IEEE International Instrumentation and Measurement Technology Conference[Z]. Hangzhou, P. R. China:2011:61.
    [100]李国厚,黄平捷,陈佩华,等.基于减聚类的RBF在缺陷定量化涡流检测中的应用研究[J].浙江大学学报(录用).2011,45.
    [101]Oukhellou L, Come E, Bouillaut L. Combined use of sensor data and structural knowledge processed by Bayesian network:Application to a railway diagnosis aid scheme[J]. Transportation Research Part C.2008, 16(6):755-767.
    [102]叶波,蔡晋辉,黄平捷,等.多层导电结构电涡流扫描检测缺陷自动识别和分类技术研究[J].传感技术学报.2007,20(10):2253-2258.
    [103]Oukhellou L, Aknin P. Modified Fourier descriptors:a new parametrization of eddy current signatures applied to the rail defect classification[J]. Quebec:1997.
    [104]黄平捷,侯迪波,周泽魁.多层导电结构缺陷电涡流扫描检测信号预处理技术研究[J].传感技术学报.2006,19(1):222-227.
    [105]叶波,黄平捷,周泽魁.涡流检测探头提离变化对阻抗的影响及消除技术[J].仪器仪表学报.2005,26(8):732-734.
    [106]Au-Yang M K, Griffith J C. Analysis of eddy current data using a probabilistic neural network(PNN)[J]. J. Pressure Vessel Technol.2002,124(3):261-264.
    [107]Chen S, Billings S A. Neural networks for nonlinear dynamic system modeling and identification[J]. Int. J. Control.1992,56(2):319-346.
    [108]闻新.MATLAB神经网络应用设计[M].北京:科学出版社,2000.
    [109]Moody J E, Darken C. Fast learning in networks of locally tuned processing units[J]. Neural Computation.1989,1(2):281-294.
    [110]Leonardis A, Bischof H. An efficient MDL-based construction of RBF networks[J]. Neural Networks. 1998,11(8):963-973.
    [111]张军峰,胡寿松.基于一种新型聚类算法的RBF神经网络混沌时间序列预测[J].物理学报.2007,56(2):713-719.
    [112]Pan H, Liu L. Fuzzy Bayesian networks-a general formalism for representation, inference and learning with hybrid Bayesian networks[J]. International Journal of Pattern Recognition and Artificial Intelligence. 2000,14(7):941-962.
    [113]Ren J, Jenkinson I, Wang J, et al. An offshore risk analysis method using fuzzy Bayesian network[J]. Journal of Offshore Mechanics and Arctic Engineering.2009,131(4):1-12.
    [114]Park H, Yoo J, Cho S. A context-aware music recommendation system using fuzzy Bayesian networks with utility theory[J]. Lecture Notes in Computer Science.2006,4223:970-979.
    [115]刘海燕,陈红林,史志富,等.基于模糊贝叶斯网络的空中目标多传感器融合识别研究[J].电光与控制.2009,16(3):37-41.
    [116]Rajesh S N. Probability of detection models for eddy current NDE methods[D]. Iowa:Iowa State University,1993.
    [117]Hsu C, Tu S. Probability-based tampering detection scheme for digital images[J]. Optics Communications.2010,283(9):1737-1743.
    [118]Ichikawa K, Akamatsu T, Shinke T, et al. Detection probability of vocalizing dugongs during playback of conspecific calls[J]. Journal of the Acoustical Society of America.2009,126(4):1954-1959.
    [119]Patan K, Korbicz J. Fault detection in catalytic cracking converter by means of probability density approximation[J]. Engineering Applications of Artificial Intelligence.2007,20(7):912-923.
    [120]Thoreson G G, Schneider E A. Efficient calculation of detection probabilities[J]. Nuclear Instruments. 2010,615(3):313-325.
    [121]Rajesh S N, Udpa L, Udpa S S. Numerical model based approach for estimating probability of detection in NDE applications[J]. IEEE, Trans. Magn.1993,29(3):1857-1860.
    [122]Nakastuji T, Kuramochi M, Fujimori T. Reliability of manual ultrasonic examination of welds in steel building construction. Part 2. Defect detection probability [J]. Journal of Nondestructive Inspection.1981, 30(4):257-263.
    [123]Yang J N, Trape J W. Reliability analysis of fatigue-critical aircraft structures under random loading and periodic inspections[R]. Washington D C:Air Force Materials Laboratory,1975.
    [124]李典庆,张圣坤,唐文勇.船体结构检测概率模型对裂纹分布更新的影响[J].上海交通大学学报.2004,38(11):1865-1869.
    [125]Harding C A, Hugo G R, Bowles S J. Application of a model-assisted POD using a transfer function approach[J]. Review of Quantitative Nondestructive Evaluation.2009,28(3):1792-1799.
    [126]Knopp J S, Aldrin J C, Lindgren E, et al. Investigation of a model-assisted approach to probability of detection evaluation,,2007, Vol.26,[J]. Review of Quantitative Nondestructive Evaluation.2007,26(3): 1775-1782.
    [127]Yan G. The new methods on NDE systems pod capability assessment and robustness improvement[D]. Detroit:Wayne State University,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700