用户名: 密码: 验证码:
聚合物气体辅助共挤成型的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物共挤成型是一种应用非常广泛的聚合物成型工艺,具有环保、成本低、制品性能优等特点,但也存在诸如挤出胀大、黏性包围及层间界面不稳定等问题,制约了共挤成型技术的进一步发展。多相熔体的黏弹特性差异以及非滑移黏着的剪切挤出机理是产生这些问题的根本原因。本文将共挤成型技术与气辅技术相结合,形成了全新的聚合物气辅共挤成型工艺,以期解决上述问题。通过实验和数值模拟相结合的方法对其进行了深入研究。
     首先,设计加工了一种采用缝隙进气的矩形截面气辅共挤口模,搭建了气辅共挤成型实验系统,并对形成稳定气辅共挤的条件、影响气垫膜层稳定性的因素以及气辅共挤出时各工艺参数对共挤出胀大、共挤界面黏性包围等的影响几个方面开展了实验研究,研究结果表明:(1)在气辅共挤出过程中气体的温度和压力是最为关键的两个因素,当进入气辅口模流道的气体温度和压力与熔体的温度和压力接近时才能形成稳定的气辅共挤出。(2)气辅共挤出制品的挤出胀大现象和黏性包围现象得到了极大改善,传统共挤出胀大率在35%以上,而气辅共挤出胀大率在3%以下,相比传统共挤,在口模出口处,气辅共挤界面的黏性包围程度减小30%以上;在螺杆转速较低的情况下(<10rpm),气辅共挤出产量增加约1.8%~3.8%,气辅共挤出和传统共挤出的制品外观质量无明显差别:(3)气辅共挤出胀大和黏性包围会随入口流率及流率比的增大而略微增大,但其增大的幅度远小于传统共挤。气辅共挤黏性包围程度受黏度比影响相对较大,随黏度比增大而增长,增长率与传统共挤基本相同。
     其次,讨论了建立聚合物完全滑移非黏着黏弹性口模共挤出数值模型的方法,分析了气辅共挤成型过程的边界条件,提出以壁面剪切应力为零来代替气垫膜层的作用,作为气辅共挤口模壁面的动力学边界条件。介绍了所采用的稳态有限元求解技术,给出了有限元计算的方法和技术路线。随后对矩形截面和L型截面气辅共挤口模内外两相聚合物熔体的成型流动过程做了有限元模拟,得到并分析了速度场、压力场、应力场及温度场等相关物理场量,明确了气辅共挤能消除挤出胀大,减小黏性包围程度并改善界面稳定性的根本机理。数值模拟并分析了工艺参数、材料参数等对气辅共挤出胀大、黏性包围和界面剪切应力的影响作用。主要结论有以下几点:(1)气辅共挤时两相熔体的速度场分布均匀一致,熔体呈柱塞状挤出,在口模出口处熔体表面的剪切速率、切向应力及法向应力均为零,气辅共挤流道内压降几乎为零,因而,气辅共挤能基本消除共挤出胀大,有效减小口模内的压力降,减小能量损耗,可大幅提高挤出速率,有效防止制品表面出现“鲨鱼皮”现象,从而全面提高共挤出制品的成型质量和生产效率。(2)气辅共挤出胀大不受熔体黏度值或黏度比值大小的影响,模外没有挤出胀大现象,气辅共挤出胀大率为零,这与实验结果基本相符。气辅共挤出胀大不受松弛时间影响,不受Giesekus本构参数α值影响。(3)气辅共挤界面稳定性优于传统共挤界面的主要原因为:a.气辅共挤层间界面上Y向和Z向速度值较传统共挤界面小,且其分布更为均匀,使得界面的推进和形成更为平缓;b.气辅共挤能有效改善界面上的剪切速率分布,减小剪切速率峰值;c.气辅共挤使得界面上大部分区域的剪切应力值趋近于零,在入口区域存在剪切应力,但其值远小于传统共挤;d.气辅共挤能有效减小界面上第一法向应力差,N1峰值减小可达27%。(4)气辅共挤出的黏性包围在口模入口汇料区域基本上即已完成,受到聚合物熔体黏度比、PTT本构参数ξ和流率比的影响较大,基本不受松弛时间和绝对流率的影响。气辅共挤界面剪切应力最大峰值在口模入口面上,随后迅速减小,在共挤流动大约10mm之后,τyz值趋于稳定,材料黏弹参数对τ、z峰值的影响也主要发生在口模入口区域,一般随黏度比增大而增大,随松弛时间增加而减小。无论是黏性包围还是界面剪切应力,对材料参数或工艺参数的敏感性均远小于传统共挤。(5)随着气体入口位置向口模入口方向推移,口模出口处的界面黏性包围程度逐渐减小,在口模入口和气体入口处,共挤界面上的剪切应力峰值也逐渐减小,也即随着气辅共挤区长度增加,界面稳定性也将得到提高。
     最后,提出了气辅共挤成型的工艺条件和气辅共挤出口模的设计准则。指出气体与熔体间压力差在0.1MPa以内,温度差在10℃之内时最利于形成稳定气垫膜层。降低流率值并使得两熔体流率保持一致,可减小气辅共挤出胀大率和黏性包围程度,增强界面稳定性。气辅共挤口模的进气缝隙厚度值取0.1mm~0.2mm,气辅流道长度设置为30~40mm较为合理。
Polymer co-extrusion is a widely used molding technique due to environmental protection, low cost and high performance products. However, there are still some problems, such as co-extrusion swell, viscous encapsulation and interfacial instability. These problems seriously restrict the further development of co-extrusion. The primary causes are the viscoelasticity difference between multiphase melts and no-slip adhesive shearing extrusion mechanism. To solve these problems, the new gas-assisted co-extrusion technique is proposed in the paper by combining the co-extrusion and gas-assisted technique. The paper makes a thorough research on this new processing technique through experiments and numerical simulations.
     Firstly, the paper designs a rectangular profile gas-assisted co-extrusion die with gas inlet, and establishes the experimental system of gas-assisted co-extrusion. Then, the stable gas-assisted co-extrusion conditions, the factors affected the stability of the gas layer and the effects of processing parameters on co-extrusion swell and encapsulation in gas-assisted co-extrusion are investigated experimentally. The results show that:(1) In gas-assisted co-extrusion process, gas temperature and pressure are the two most critical parameters. Only when the gas temperature and gas pressure are equal to those of melts in the die can the stable gas-assisted co-extrusion be developed. (2) Extrusion swell and viscous encapsulation in gas-assisted co-extrusion are enormously decreased. The die swell ratio in traditional co-extrusion is over 35%, but in gas assisted co-extrusion, the die swell ratio is less than 3%. The degree of viscous encapsulation in gas-assisted co-extrusion is 30% less than that of traditional co-extrusion. On the same condition of low screw speed(less than 10rpm), the output of gas-assisted co-extrusion is 1.8%-3.8% more than that of the traditional co-extrusion. There is no obvious difference between gas-assisted co-extrusion and traditional co-extrusion in appearance quality. (3) In gas-assisted co-extrusion, the die swell ratio and the degree of viscous encapsulation increases slightly as the flow rate or its ratio increases. The viscosity ratio brings relatively great influence on the viscous encapsulation, the degree of encapsulation also increases with the viscosity ratio, and the growth rate is the same as traditional co-extrusion.
     Secondly, the method of building viscoelastic numerical model for full-slip flow in co-extrusion die is discussed. The boundary conditions are analyzed, and the shearing stress on the wall of co-extrusion die is set to be zero to replace the function of gas layer, which is used as the kinetic conditions of the wall. The key solution techniques of FEM adopted by the paper are studied, and the whole routine to solve the finite element analysis of 3D viscoelastic co-extrusion flow is presented. Then, the paper performs FEM simulations for the flow of polymer melts inside and outside the gas-assisted co-extrusion die with rectangle and L shaped section, obtains the physical fields such as velocity field, pressure field and stress field. Based on the penetrating analysis of the physical fields, the paper reveals the fundamental mechanism that explains why gas-assisted co-extrusion can eliminate die swell, reduce the degree of encapsulation and improve the stability of the interface. The influence of process parameters and material parameters on die swell, viscous encapsulation and shear stress of interface in gas assisted co-extrusion is simulated and analyzed. The main conclusions are presented as follows:(1) In gas-assisted co-extrusion, the distribution of two melts'velocity field is uniform and the melts are extruded like a rod; The shear stress, tangential stress and normal stress of melt surface in die outlet are all zero, the pressure drop in the die channel is almost zero, so gas-assisted co-extrusion can eliminate co-extrusion swell, reduce the pressure drop and energy loss in the die effectively. The extrusion speed can be improved greatly and the "sharkskin" on the surface of the polymer parts can be prevented effectively. Thus, gas-assisted co-extrusion can improve quality and efficiency of the co-extruded parts comprehensively. (2) In gas-assisted co-extrusion the die swell is not affected by the viscosity or viscosity ratio of melts. The swell ratio of gas-assisted co-extrusion is zero, and there are no extrusion swell outside of the die, which agrees with the experimental results. The co-extrusion swell is also not affected by relaxation time and parameter a of Giesekus constitutive equation. (3)The interface stability of gas-assisted co-extrusion is superior to that of traditional co-extrusion, the primary reasons are presented as follows:a. On the gas-assisted co-extrusion interface the velocity of in Y and Z axis direction is less than that of traditional co-extrusion, and is distributed uniformly, so that the co-extrusion interface advances and developes gently; b. In gas-assisted co-extrusion, the distribution of shear rate in interface can be improved effectively and the peak value of shear rate can be decreased; c. In the gas-assisted co-extrusion shear stress in most area of interface approaches to zero, although there is shear stress at the die entrance, the value is far less than that of traditional co-extrusion; d. The normal stress difference at the interface can be decreased effectively, peak value of N1 decreases by 27%. (4) In the gas-assisted co-extrusion the viscous encapsulation is almost completed at the entrance of co-extrusion die where two polymers converge. The viscous encapsulation is affected by polymer viscosity ratio,ξvalue of PTT constitutive equation parameter and the ratio of two melts'flow rates. It is almost not affected by relaxation time and flow rate. The peak of shear stress of the interface appears at the entrance surface, then, decreases rapidly. The value ofτyz tends to be stable when the melts flowed as far as about 10mm. The influence of material parameters on peak value ofτyz, which increases with viscosity ratio but decreases with relaxation time, occurs at the entrance. For viscous encapsulation or the shear stress, the sensitivity to material parameters or process parameters are both far less than that of traditional co-extrusion. (5)With the gas inlet moving towards die entrance, the viscous encapsulation degree at the die entrance decreases gradually. At the die entrance and the gas inlet, the peak of shear stress on the co-extrusion interface also decreases gradually. That means the stability of the interface improves as the length of the gas-assisted co-extrusion increases.
     Finally, the process conditions for gas-assisted co-extrusion and the principles for designing the gas-assisted co-extrusion die are proposed. It is pointed out that the stable gas layer can be propitiously formed when the pressure difference between gas and melts is within 0.1MPa and the temperature difference is within 10℃. Reducing the flow rate of melts and keeping them same can decrease the co-extrusion swell and viscous encapsulation and improve the stability of the interface. For gas-assisted co-extrusion die, the proper thickness of gas inlet is 0.1mm-0.2mm, the proper length of gas-assisted sect is 30mm-40mm.
引文
[1]吕柏源,唐跃,赵永先等.挤出成型与制品应用[M].北京:化学工业出版社,2002.
    [2]江波.我国塑料挤出成型机及辅机的发展现状与技术水平分析(上)[J].橡塑技术与装备.2002,28(10):]-5.
    [3]江波.我国塑料挤出成型机及辅机的发展现状与技术水平分析(下)[J].橡塑技术与装备.2002,28(11):5-11.
    [4]吴大鸣,李晓林.高聚物的精密挤出[J].合成橡胶工业.2002.25(3):131-135.
    [5]杨顺根.橡胶挤出技术发展述评[J].世界橡胶工业.2005,32(11):36-39.
    [6]韩宇.橡胶挤出成型技术的最新进展[J].世界橡胶工业.2007,34(6):41-44.
    [7]王强,吴超.木塑复合材料挤出技术的现状及发展趋势[J].工程塑料应用.2008,36(1):76-78.
    [8]张春吉,唐跃,张惠敏.塑料挤出成型发展概况[J].工程塑料应用.2004,32(4):67-70.
    [9]高峰,李海梅,申长雨.塑料成型加工实用技术讲座(第四讲)挤出成型发展现状[J].工程塑料应用.2003,31(6):52-55.
    [10]黄兴元,柳和生,周国发,等.辅助挤出技术在聚合物挤出加工中的应用[J].工程塑料应用.2005,33(3):34-37.
    [11]胡火根,刘芮,郑天勤.塑料异型材后共挤成型技术[J].化学建材,2000,(5)18-19
    [12]刘斌,马骏.塑料异型材软硬共挤技术的研究现状与趋势[J].塑料工业,2007,35(11):1-4.
    [13]周宏志,江波,许澍华.浅析高聚物共挤出技术[J].橡塑技术与装备,2004,30(9):4-14.
    [14]姜敏,彭少贤,等.铝塑复合管的现状与发展[J].塑料科技,2002,(1):16-18.
    [15]贾明印、薛平、朱复华等.共挤出技术在聚合物成型加工中的应用及其设备的最新进展[J].工程塑料应用.2006,34(1):66-69.
    [16]徐军,曾梵,陈方.芯层发泡PVC管材的三机共挤[J].塑料科技.1997,30(3):37-39.
    [17]陈祖敏.PVC塑料管材现状经济发展策略[J].塑料.1998,27(3):11-14.
    [18]陈杰.多层共挤复合膜的生产与应用[J].合成树脂及塑料.1996,13(2):45-48+12.
    [19]李锐.双层挤出技术在电线电缆生产上的应用[J].广西机械.2003,55(2):55-56.
    [20]C D Han, R.Shetty. Studies on Multilayer Film Co-extrusion. The Rheology of Flat Film Coextruion. Polym.Eng.Sci,1976,16(10):
    [21]C D Han, H B Chin. Theoretical Prediction of the Pressure Gradients in Coextrusion of Non-Newtonian Fluids. Polym. Eng. Sci,1979,19(16):
    [22]Williams, M. C. Migration of two liquid phases in capillary extrusion:an energy interpretation. AICHE,1975,21:1204-1207.
    [23]Eerage, A. E. Theory of bicomponent flow of polymer melts. Equilibrium Newtonian tube flow. Trans. Soc. Rheol,1973,17:629-646.
    [24]Karagiannis A, Hrymak A N, Vlachopoulos J. Three-dimensional studies on bicomponent extrusion[J]. Rheologica Acta,1990,29(1):71-87.
    [25]Puissant S, Vergnes B, Agassant J F, et al. Two-dimensional multilayer coextrusion flow in a flat coat-hanger die Experiments and theoretical validation[J]. POLYMER ENGINEERING AND SCIENCE,1996.36(7):936-942.
    [26]武停启,江波,毕超,等.复合共挤出熔体中界面位置三维模拟[J].塑料,2006,35(3):82-86.
    [27]黄益宾,柳和生,黄兴元,等.聚合物共挤成型界面位置的三维黏弹数值模拟[J].中国塑料,2008,22(9):66-69.
    [28]Lee P C, Christopher W M. Die design for layer thickness uniformity in multilayer coextrusion[C]. Chicago, IL, United states:Society of Plastics Engineers,2009.
    [29]Daniel, D J, Yuriko Renardy. Instability of the flow of two immiscible liquids with different viscosities in a pipe. J. Fluid Mech,1984,141:309-317.
    [30]Joseph D D, Renardy M, Renardy Y. Instability of the flow of two immiscible liquids with different viscosities in a pipe[J]. Journal of Fluid Mechanics,1984,141:309-317.
    [31]J Dooley, Hyun KS.K H. An experimental study on the effect of polymer viscoelasticity on layer rearrangement in coextruded structures[J]. Polymer Engineering and Science,1998, 38(7):1060-1071.
    [32]Anderson P D, Dooley J, Meijer H E H. Viscoelastic Effects in Multilayer Polymer Extrusion[J]. Applied Rheology,2006,16(4):198-205.
    [33]R.I. Tanner. Engineering Rheology[M]. Oxford University Press,1985.
    [34]R.B. Bird, R.C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids[M]. Wiley, New York,1987.
    [35]H.A. Barnes, J.F. Hutton. An Introduction to Rheology[M]. Elsevier, Amsterdam,1989.
    [36]J.M. Dealy and T.K.P. Vu. The Weissenberg effect in molten polymers[J]. J. Non-Newtonian Fluid Mech.,1978,3:127-140.
    [37]G.S. Beavers and D.D. Joseph. The rotating rod viscometer[J], J. Fluid Mech., 1975,69:475-511.
    [38]B. Debbaut and B. Hocq. On the numerical simulation of axisymmetric swirling flows of differential viscoelastic liquids:the rod climbing and the Quelleffekt[J]. J. Non-Newtonian Fluid Mech.,1992,43:103-126.
    [39]B. Debbaut. Numerical simulation of the Weissenberg effect of a Giesekus fluid, in P. Moldenaers and R. Keunings (eds.), Theoretical and Applied Rheology, Elsevier, Amsterdam, 1992, pp.271-273.
    [40]A.G. Dodson, P. Townsend, K. Walters.Non-Newtonian flow in pipes of non-circular cross-section[J].,Comput. Fluids,1974,2:317-338.
    [41]P. Townsend, W.M. Waterhouse, K. Walters. Secondary flows in pipes of square cross-section and the measurement of the second normal stress difference[J]. J. Non-Newtonian Fluid Mech.,1976,1:107-123.
    [42]White J L, Ufford R C, Dharod K R, et al. Experimental and theoretical study of the extrusion of two-phase molten polymer systems[J]. Journal of Applied Polymer Science, 1972,16(6):1330-1331.
    [43]Uwaji T, Legat V. Numerical analysis on wrap around phenomena of stratified two phase flow. JSPP 97 Symp Papers.
    [44]Takase M. Kihara S. Funatsu K. Three-dimensional viscoelastic numerical analysis of the encapsulation phenomena in coextrusion[J]. Rheol Acta,1998,37(6):624-634.
    [45]B. Gervang and P.S. Larsen, Secondary flows in straight ducts of rectangular cross section, J. Non-Newtonian. Fluid Mech,39(1991)217-237.
    [46]Xue S C, Phan-Thien N, Tanner R I. Numerical study of secondary flows of viscoelastic fluid in straight pipes by an implicit finite volume method[J]. J. Non-Newtonian Fluid Mech,1995, 59:191-213.
    [47]Debbaut B X T, Avalosse T, Hughesb J D A K. On the development of secondary motions in straight channels induced by the second normal stress difference:experiments and simulations[J]. Journal of Non-Newtonian Fluid Mechanics,1997,69(3):255-271.
    [48]Dooley J. Viscoelastic Flow Effects in Multilayer Polymer Coextrusion[D]. Technische Universiteit Eindhoven,2002.
    [49]Ranjbaran M M. Relation between interfacial wave instability and tensile strength of two-layer polymer structure:an Experimental study[J]. Chinese Journal of Polymer Science, 2010,28(6):887-894.
    [50]Ranjbaran M M. A Comparative Experimental Study of Interfacial Wave Instability and Mechanical Properties of Two-layer Polymer Extrudate[J]. Fibers and Polymers,2010,11(3): 448-454.
    [51]Lee, J. L. White. An experimental study of rheological properties of polymer melts in laminar shear flow and of interface deformation and its mechanisms in two-phase stratified flow[J].Trans. Soc. Rheol.,1974,18:467-465.
    [52]W.J. Schrenk, T. Alfey. Polymer Blends [M]. New York Academic Press,1978.
    [53]R.Ramanathan, W.J.Schrenk. Wave's Pattern Instability in Multilayer Coextrusion-an Experimental Investigation[J]. Plastic Engineering,1993,49(6):73.
    [54]C.D. HAN, R.SHETTY. Studies on Multilayer Film Coextrusion II:Interfacial Instability in Flat Film Coextrusion[J]. Polymer Engineering and Science,1978,18(3):180-186.
    [55]WILSON G M, KHOMAMI B. An Experimental Investigation of Interfacial Instabilities in Multilayer Flow of Viscoelastic Fluids Part I:Incompatible Polymper System[J]. Journal of Non-Newtonian Fluid Mechanics,1992,45(3):355-384.
    [56]GANPUL E H K, KHOMAMI B. A Theoretical Investigation of Interfacial Instability in the Three Layer Superposed Channel Flow of Viscoelastic Fluids[J]. Journal of Non-Newtonian Fluid Mechanics,1998,79(2):315-360.
    [57]GANPUL E H K, KHOMAMI B. An Investigation of Interfacial in the Superposed Channel Flow of Viscoelastic Fluids [J]. Journal of Non-Newtonian Fluid Mechanics,1999 81(1):27-69.
    [58]PERDIKOULIAS J, RICHARD C, VLCEKJ, VLACHOPOULOS J. Proceedings of the Society of Plastic Engineering Annual Technical Conference,1991,37:2461.
    [59]Tzoganakis C, Perdikoulias J. Interfacial Instability in Coextrusion Flows of Low-Density Polyethlenes:Experimental Studies. Polymer Engineering and Science,2000, 40(5):1056-1064.
    [60]Zatloukal M, De Witte J. Influence of process aids on zigzag type of interfacial instabilities in multilayer flows:theoretical and experimental investigation[J]. Plastics rubber and composites,2006,35(4):149-154.
    [61]Zatloukal M, de Witte J, E C L, et al. Investigation of PPA interactions with polymer melts in single layer extrusion and coextrusion flows[J]. Plastics, Rubber and Composites,2007,36(6): 248-253.
    [62]Zatloukal M, Chaloupkova K, Witte J D, et al. Analysis of the free surface instabilities in extrusion and coextrusion flows for metallocene based polyolefins[C]. Athens, Greece: TAPPI Press,2007.
    [63]吕静,陈晋南,胡冬冬.壁面滑移对两种聚合物熔体共挤出影响的数值研究[J].化工学报,2004,55(03):455-459.
    [64]张敏,孙胜,贾玉玺.基于有限元方法的聚合物共挤出界面形成过程数值研究[J].应用基础与工程科学学报,2008,16(5):712-718.
    [65]徐佩弦.高聚物流变学及其应用[M].北京:化学工业出版社,2003.
    [66]梁基照.聚合物短口型挤出胀大方程[J].合成橡胶工业,1995,18(3):171-173.
    [67]梁基照.混炼胶长口型挤出胀大的预测[J].合成橡胶工业,1997,20(3):44-45.
    [68]周彦豪.聚合物流变学基础[M].陕西:西安交通大学出版社,1987.
    [69]金日光.聚合物加工流变学基础[M].北京:化学工业出版社,1996.
    [70]P.Santelicds. Die swell of viscoelastic polymers[J].ANTE,1994:1885-1889.
    [71]Y.Sasaki. Numerical study of extrudate swell[J]. ANTE,1994:1212-1215.
    [72]A.Garcia-Rejon, R.W.Diraddo, M.E.Rgan. Effect of die geometry and flow characteristics on viscoelastic annular swell [J]. Non-Newtonian Fluid Mech.1995,60:107-128.
    [73]Ji-Zao Liang. Effect of the die angle on the extrusion swell of rubber compounds[J]. Journal of materials Processing Technology,1995,59:129-153.
    [74]Chang P W, Pattern T W, Finlayson B A. Collocation and Galerkin finite element methods for viscoelastic fluid flow I. description of method and problems with fixed geometry[J]. Comp Fluids,1979,7(4):267-283.
    [75]Bush M B, Tanner R I. A boundary element investigation of extrudate swell[J]. J. Non-Newtnian Fluid Mech.1985,18:143-162.
    [76]涂志刚,熊洪槐,柳和生.挤塑口模中三维路线示踪与停留时间分布[J].中国塑料,2001,15(3):92-94.
    [77]张敏,孙胜,贾玉玺.聚合物共挤出过程的挤出胀大有限元分析[J].中国机械工程,2006,17(8):862-865.
    [78]周文彦,周国发.聚合物多层共挤成型离模膨胀过程的三维黏弹性数值模拟[J].化工学报,2008,59(12):3033-3041.
    [79]周国发,周文彦.熔体粘弹性流变性能参数对聚合物共挤成型离模膨胀影响的数值分析[J].塑性工程学报,2008,15(6):144-150.
    [80]黄兴元,柳和生,周国发,等.气体辅助挤出的实验研究[J].中国塑料,2005,19(3):17-19.
    [81]黄兴元,柳和生,周国发,等.聚合物气体辅助挤出的挤出胀大研究[J].塑料工业,2005,33(7):32-35.
    [82]黄兴元,柳和生,周国发,等.气体辅助挤出中影响气垫形成及稳定性因素分析[J].塑性工程学报,2005,12(5):101-104.
    [83]黄兴元,柳和生,周国发,等.气辅挤出过程中挤出胀大的实验和模拟研究[J].塑料,,2005.34(6):55-59.
    [84]Santelices P. Die Swell of Viscoelastic Polymers[C]. San Francisco:Soc of Plastics Engineers,1994.
    [85]Ryszard Brzoskowski, James L. White, Witold Szydlowski et al. Air-lubricated die for extrusion of rubber compounds[J]. Rubber Chemistry and Technology,1987,60:945-956.
    [86]黄立.橡胶挤出机气膜润滑口型中胶料流动行为的研究[D].北京化工大学.1993.
    [87]钱百年,童玉清,汪传生,瞿雄伟.气膜润滑剪切机头及其在短纤维增强胶管中的应用[J].橡胶工业,1997,44(6):323-326.
    [88]R F Liang, M R Mackley. The gas-assisted extrusion of molten polyethylene[J]. Rheol,2001, 45(1):211-226.
    [89]黄兴元.聚合物气体辅助挤出成型的理论及实验研究[D].南昌大学,2005.
    [90]蔡奎,周国发,钟序光,等.气辅共挤成型界面不稳定的数值模拟研究[J].工程塑料应用,2005,33(4):22-24.
    [91]尹智龙,黄兴元,柳和生,等.聚合物气辅共挤成型工艺浅析[J].塑料,2007,36(3):69-71.
    [92]顾尔祚.流体力学有限差分法基础[M].上海:上海交通大学出版社,1988.
    [93]卢臣.塑料异型材气辅挤出口模流动的理论与实验研究[D].南昌大学,2007.
    [94]章本照.流体力学中的有限方法[M].北京:机械工业出版社,1986.
    [95]王元淳.边界元法基础[M].上海:上海交通大学出版社,1989
    [96]刘希云.流体力学中的有限元与边界元法[M].上海:上海交通大学出版社,1993.
    [97]Proceedings of The 4th China-Japan Symposium on Boundary Element Methods,1992.
    [98]Charles L.Turker Ⅲ. Fundamentals of Computer Modeling for Polymer Processing[M]. Hanser Publishers, New York,1989.
    [99]Proceedings of The China-Japan Syposium:Theory and Applications of The Boundary Element Methods, Pergamon Press,1986.
    [100]M.B.Bush. A Method for Approximate Prediction of Extrudate Swell[J]. Polym. Eng. Sci., 1993,33(15):950-958.
    [101]Sasmal G P.A finite volume approach for calculation of viscoelastic flow through an abrupt symmetric contraction[J]. Journal of Non- Newtonian Fluid Mechanics,1995,56:15-47.
    [102]张敏.双组分聚合物异型材共挤出过程的数值模拟研究[D].山东大学,2007.
    [103]中长雨,陈静波,刘春太等.塑料成型加工过程的CAE技术[J].塑料加工,2005,40(2):32-37.
    [104]Z.Tadmor, I.Klein. Engineering Principles of Plasticating Extrusion[M]. New York: Wiley-Inter-science,1970.
    [105]Cheng Hongfei, I. Manas-Zloczower. Distributive Mixing in Conveying Elements of a ZSK-53 Co-Rotating Twin Screw Extruder[J]. Polym Eng Sci.1998,38(6):926-935.
    [106]Chih-Hsiang Yao, I. Manas-Zloczower. Influence of Design on Dispersive Mixing Performance in an Axial Discharge Continuous Mixer-LCMAX 40[J]. Polymer Engineering and Science.1998,38(6):936-946.
    [107]V.L.Bravo, A.N.Hrymak, J.D.Wright. Numerical simulation of pressure and velocity profiles in kneading elements of a co-rotating twin screw extruder[J]. Polymer Engineering and Science,2000,40(2):525-541.
    [108]Ahmed, Liang R.F. Mackley M.R. Experimental observation and numerical prediction of planar entry flow and die swell for molten polyethylenes[J]. J. Non-Newtonian Fluid Mech,1995,59(2-3):129-153.
    [109]B. P. Huynh Numerical investigation of non-isothermal extrusion through annular dies[J]. International Journal of Engineering Science.1998,36(2):171-188.
    [110]Y. D. Rubin, T. M. Marchal. Coextrusion of an automotive profile with metal insert numerical simulation and die design Polyflow[J]. Conference Proceedings Annual Technical Conference-ANTEC, Soc Plast Eng,1998,1:299-303.
    [111]Evan Mitsoulis. Three-dimensional non-Newtonian computations of extrudate swell with the finite element method Computer Methods[J]. Applied Mechanics and Engineering 1999,180(3):333-344.
    [112]S. Kihara, T. Gouda et al. Numerical simulation of three-dimensional viscoelastic flow within dies[J]. Polym Eng Sci,1999,39(1):152-163.
    [113]P. Jay, J. M. Piau. Reduction of viscous extrusion stresses and extrudate swell computation using slippery exit surfaces[J]. Journal of Non-Newtonian Fluid Mechanics 1998,79(2-3): 599-617.
    [114]李鹏,耿孝正,马秀清.啮合同向双螺杆挤出机螺纹元件三维流场分析[J].中国塑料.2001,15(6):73-77.
    [115]马秀清,耿孝正,李鹏.非啮合双螺杆挤出过程中螺纹元件流道三维流场分析—等温牛顿模型[J].中国塑料,2000,14(10):78-85.
    [116]刘志芳,冯连勋,董力群.新型锥形双螺杆混合段三维流场分析[J].中国塑料.2001,15(5):86-91.
    [117]彭炯,陈晋南.同向旋转双螺杆机计量段中聚合物挤出的模拟[J].中国塑料.2001,15(7):39-42.
    [118]彭炯,胡冬冬.陈晋南,等.同向双螺杆机捏合段三维流动的数值模拟[J].工程塑料应用,2002,30(1):26-28.
    [119]彭炯.陈晋南.计算流体力学(CFD)在口模设计中的应用[J].现代塑料加工应用.2001,13(6):31-33.
    [120]柳和生,卢臣,黄兴元,等.T型异型材气辅口模挤出胀大的数值模拟和实验研究[J].塑性工程学报,2008,15(1):158-161.
    [121]肖建华,柳和生,黄兴元,等.气辅挤出口模中滑移段长度对压力降和第一法向应力差的影响[J].高分子材料科学与工程,2009,25(06):167-170.
    [122]肖建华,柳和生,黄兴元,等.气辅挤出胀大比与滑移段长度的关系[J].高分子材料科学与工程,2009,25(07):166-174.
    [123]王贵恒.高分子材料成型加工原理[M].北京:化学工业出版社,1991.
    [124]Alvarez-Martinez, L., Kondury.K.P. Harper,J.M. A general model for expansion of extruded products[J]. J. Food Sci.,53,609-615.
    [125]Giacomin A. J. Jeyaseelan. R. S. A constitutive theory oscillatory shear[J]. Polym. Eng. Sci, 1995,15(9):768-777.
    [126]柳和生,涂志刚,熊洪槐.聚合物熔体粘弹性本构方程[J].高分子材料科学与工程,2002.18(1):22-25.
    [127]Mohseni M M, Rashidi F. Viscoelastic fluid behavior in annulus using Giesekus model[J]. Journal of Non-Newtonian Fluid Mechanics,2010,165(21-22):1550-1553.
    [128]Surana K S, Deshpande K M, Romkes A, et al. Numerical simulations of BVPs and IVPs in fiber spinning using Giesekus constitutive model in hpk framework[J]. International Journal of Computational Methods in Engineering Science and Mechanics,2009,10(2): 143-157.
    [129]Ravanchi M T, Mirzazadeh M, Rashidi F. Flow of Giesekus viscoelastic fluid in a concentric annulus with inner cylinder rotation[J]. International Journal of Heat and Fluid Flow,2007,28(4):838-845.
    [130]Tome M F, Paulo G S, Pinho F T, et al. Numerical solution of the PTT constitutive equation for unsteady three-dimensional free surface flows[J]. Journal of Non-Newtonian Fluid Mechanics,2010,165(5-6):247-262.
    [131]Tanner R I. Revisitation of PTT model[J]. Journal of Central South University of Technology (English Edition),2007,14(1 SUPPL.):26-29.
    [132]Esselaoui D, Ramadane A, Zine A M. Decoupled approach for the problem of viscoelastic fluid flow of PTT model. I:Continuous stresses[J]. Computer Methods in Applied Mechanics and Engineering,2000,190(5-7):543-560.
    [133]Crochet M J, Keunings R. Die swell of a Maxwell fluid:Numerical prediction[J]. J. Non-Newtonian Fluid Mech.1980,7:199-212.
    [134]M. S. Darwish, J. R.Whiteman, Numerical modelling of viscoelastic liquids using a finite-volume method[J]. J. Non-Newtonian Fluid Mech,1992,45:311-337.
    [135]U. Lang, W. Michaeli, Comparison of velocity measurements and different calculation methods in silt dies[J]. ANTEC,97:2289-2293.
    [136]Sunwoo K B, Park S J, Lee S J, et al. Three-dimensional numerical simulation of nonisothermal coextrusion process with generalized Newtonian fluids[J]. Korea-Australia Rheology Journal,2000,12(3/4):165-173.
    [137]Polyflow 3.11 User's Guide[M]. Polyflow Inc.2007.
    [138]中长雨.塑料模具计算机辅助工程[M].河南:河南科学出版社,1998.
    [139]Luo X L, Tanner R I. A Pseudo-time integral method for non-isothermal viscoelastic flows and its application to extrusion simulation[J]. RheologicaActa,1987,26:499-507.
    [140]Marehal J M, Croehet M J. A new mixed finite element for calculating viscoelastic flow[J]. Journal of Non-Newtonian Fluid Mechanics,1987,26:77-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700