用户名: 密码: 验证码:
大容量输电长线可控并联补偿与潜供电弧抑制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
远距离、大容量输电的需求带动了特高压输电技术的研究,基于可控电抗器的超、特高压无功补偿装置的研究和应用是我国当前电力系统需要解决的重大关键技术课题。本文针对大容量输电长线的特点,确定了采用可控电抗器的并联补偿方案,对磁阀式可控电抗器的结构、特性、损耗等进行了全面分析,研究了其在补偿大容量输电长线的充电功率时的容量调节问题,同时,配合一定的中性点小电抗实现了潜供电弧的抑制。
     通过引入可控硅关断角改进了可控电抗器基于状态变量的数学模型,更加精确地描述了可控电抗器随可控硅开关状态变化的不同运行模式,基于MATLAB建立了较为精确的磁阀式可控电抗器仿真模型,重点研究了可控电抗器的谐波特性,基于谐波移相抵偿的基本思想,首次提出了一种抑制可控电抗器谐波的方法,有效降低可控电抗器并网时向系统注入的谐波;同时,采用提高控制电压和充电电容器放电的方法,实现了可控电抗器的快速励磁。基于ANSYS建立了可控电抗器的电磁场分析模型以及场路耦合模型,并在此基础上对可控电抗器的小截面设计及损耗分析进行了初步研究,为大容量、高电压等级可控电抗器的优化设计提供了理论依据。
     引入了信号的相关性分析技术,定义了相位相似度函数、频率相似度函数和波形相似度函数,更好地描述了电压和电流之间的功率关系。在此基础上,提出了一种基于相似理论的无功功率检测方法,该方法实现简单,比较适合工程应用,为进一步提高采样频率和补偿精度打下基础。同时,完善了可控电抗器的无功容量定义,设计了可控电抗器功率控制的闭环系统,对大容量输电长线的充电功率进行了补偿研究,可以有效地控制可控电抗器的补偿容量,保持系统电压在允许范围之内。
     针对特高压线路潜供电弧难以熄灭,影响单相重合闸成功率的问题,采取并联可控高抗配合中性点小电抗的方式进行了抑制研究,基于分布参数的特高压长线建立了潜供电弧的动态模型,对不同影响因素下潜供电流的变化特性进行了定量的计算分析,得到了不同补偿度下,并联高抗与中性点小电抗的协调控制关系,为工程应用提供参考;设计了可控电抗器的物理实验样机,搭建了输电长线的实验平台,对理论分析结果进行了验证。
For the requirement of long-distance and large transmission capacity,ultra-high voltage(UHV) transmission technology becomes more and more significant.The research and application of extra/ultra-high voltage reactive power compensation device based on controllable reactor are the great key topic of current power system in our country.According to the characteristics of the large capacity long transmission line,the shunt compensation scheme by adopting controllable reactor is introduced in this paper. And the structure,characteristics and loss of the controllable are analyzed completely. Then the capacity adjustment for the compensation of large capacity long transmission line is studied.Meanwhile,the suppression of secondary arc is also achieved through the coordinate control between shunt reactors and the neutral small reactor.
     The thyristor turn-off angle is introduced in this paper for improving the state variables based mathematic model of controllable reactor,which describes the different operation modes of controllable reactor accurately.Furthermore,simulation model is established in MATLAB,and the harmonic characteristics are studied deeply.According to the phase-shifting harmonic compensation theory,a circuit topology of controllable reactor harmonic suppression is put forward,which can effectively reduce the harmonics injected to the system by controllable reactor itself.Quantitative calculations which have guiding significance in engineering are gained.Furthermore,the Electromagnetic field analytical model and field-circuit coupled model of controllable reactor are established in ANSYS.The magnetic circuit system and loss are analyzed through finite element analysis method.All these provide basic theory for the optimization design of large capacity and high voltage controllable reactor.
     The correlation analysis technology is introduced,and the phase similar degree function,frequency similar degree function and waveform similar degree function are established for the first time.Thus,the relationship between voltage and current is described from a different point of view,from which the definition of reactive power is derived and a new detection method of reactive power is proposed.The closed-loop system of power control for the controllable is built to achieve the reactive power compensation of the large capacity long transmission ling,which can effectively control the compensation capacity of the controllable reactor and keep the system voltage within the scope of permit.
     For the difficult extinguish of secondary arc in ultra-high voltage system,the controllable shunt reactors with small neutral reactor is used widely to suppress such phenomenon.The dynamic model of secondary arc based on distributed parameter on UHV long line is established.Quantitative analysis of variation characteristics of the secondary arc current under different influence is studied.The coordinative control relationship between shunt reactor and the neutral reactor under different compensation degree is gained,which provide reference for project application.A group of experimental device of controllable reactor is designed,and theoretical analysis results are verified via the corresponding experiments.
引文
[1]刘振亚.特高压电网[M].北京:中国经济出版社,2005
    [2]粟时平,刘桂英编著.静止无功功率补偿技术[M].北京:中国电力出版社,2006
    [3]盛建科.基于磁通控制的可调电抗理论及其在消弧线圈中的应用研究[D].武汉:华中科技大学,2005
    [4]周腊吾.新型特高压可控电抗器的理论及应用[D].湖南:湖南大学,2008
    [5]陈柏超.新型可控饱和电抗器理论及应用[M].武汉:武汉水利电力大学出版社,1999
    [6]陈维贤,陈禾,鲁铁成等.关于特高压可控并联电抗器[J].高电压技术,2005,31(11):26-27
    [7]刘乾业.并联电抗器在我国电网中的应用[J].福建电力与电工,1996,16(2):22-25
    [8]刘虹.裂芯式可控电抗器研究[D].武汉:武汉水利电力大学,1995
    [9]K.O.斯捷潘楚克,H.A.基那可夫.高电压技术[M].北京:机械工业出版社,1990
    [10]梅忠恕.超高压电网潜供电流和单相重合闸[J].云南电力技术,1999,27(2):9-11
    [11]梅忠恕.超高压电网潜供电流与单相重合闸(Ⅱ)[J].云南电力技术,1999,27(3):15-18
    [12]商立群,施围.同杆双回输电线路的潜供电流与恢复电压[J].高电压技术,2003,29(10):22-23,31
    [13]林莘,何柏娜,徐建源.超高压线路上潜供电弧熄灭特性的分析[J].高电压技术,2006,32(3):7-9
    [14]何柏娜.800kVGIS中采用快速接地开关抑制潜供电弧的研究[D].沈阳:沈阳工业大学,2006
    [15]杨芳,廖远忠,王巨丰.基于分布参数电路的潜供电弧参数的计算[J].广西电力,2006,(5):57-59
    [16]杨芳.高压输电线路的潜供电流特性与对策研究[D].南宁:广西大学,2006
    [17]商立群,施围.计算同杆双回输电线路潜供电流与恢复电压的二次模方法[J].西安交通大学学报,2005,39(2):196-199
    [18]刘亚芳,曹荣江.电力系统潜供电弧无补偿情况试验研究[J].华北电力技术,1995(7):1-5
    [19]刘业芳,曹荣江.补偿电抗器的存在对潜供电流及潜供电弧特性的影响[J].华北电力技术,1996(7):1-4
    [20]谷定燮.我国特高压输电系统的过电压和绝缘配合[J].中国电力,1999,32(4):65-68
    [21]雍军,施围,穆广棋.采用快速接地开关限制潜供电流[J].高压电器,1996,32(2):28-33
    [22]韩彦华,范越,施围.快速接地开关熄灭潜供电弧的研究[J].西安交通大学学报,2000,34(8):14-17
    [23]R.M.Hasibar,A.C.Legate,J.Brunke,W.G.Peterson.The application of high-speed grounding switches for single-pole reclosing on 500 kV power systems [J].IEEE Trans.on Power Apparatus and Systems,1981,vol.PAS-100:1512- 1515.
    [24]李峰,傅正财,江秀臣等.调匝式消弧电抗器的自动调谐[J].上海交通大学学报,1996,30(1):70-77
    [25]S.Sugimoto,S.Neo,H.Arita,J.Kida,Y.Matsui,T.Yamagiwa.Thyristor controlled ground fault current limiting system for ungrounded power distribution systems[J].IEEE Transactions on Power Delivery,1996,11(2):940-945
    [26]史常青,黄文新.自耦调压器用作可调电抗的方法[J].实验室研究与探索,1999(4):84-85
    [27]周腊吾,徐勇,朱青等.新型可控电抗器的工作原理与选型分析[J].变压器,2003,40(8):1-5
    [28]尹克宁,杨辛华,樊建堂.可连续调节电抗值的新型消弧线圈[J].1994(3):5-6
    [29]Klaus Papp.Arc suppression coils for neutral grounding of distribution systems,Published by sterling publications international Ltd.Power technology interal,1992
    [30]Tian Mingxing,Li Qingfu,Li Qunfeng.A Controllable Reactor of Transformer Type.IEEE Transactions on Power Delivery,2004,19(4):1718-1726
    [31]宁广忠.新型无级调感技术在消弧线圈装置中的应用[D].哈尔滨:哈尔滨理工大学,2003
    [32]刘涤尘,陈柏超,田翠华等.新型可控电抗器在电网中的应用与选型分析[J].电网技术,1999,24(2):56-59
    [33]张绪红,周有庆.超导故障限流器的结构及特点[J].低温与超导,2002,30(4):20-24
    [34]Y.A.Bashkirov,I.V.Yakimets,et al.Application of superconducting shields in current-limiting and special-purpose transformers[J].IEEE Trans.on Applide superconductivity,1995,5(2):1075-1078
    [35]T.Wass,S.Hornfeldt.Magnetic circuit for a controllable reactor[J].IEEE Trans.on Magnetics,2006,42(9):2196-2200
    [36]T.Wass.The design of a high temperature superconductor(HTS) control winding of a controllable reactor[J].IEEE Trans.on Applied Superconductivity,2005,30(9):1558-1564
    [37]李民族,朱国荣,刘晓东等.新型可控电抗的潮流调节方法[J].中国电机工程学报,2001,21(4):56-59
    [38]Mu Longhua,Wang Chonglin,Meng Qinghai.Thyristor Controlled Reactor and Its Effect on Distribution Network[J].4th IEEE International Conference Power Electronics and Drive Systems,2001(1):214-217
    [39]Zheng Xu,Guibin Zhang,Haifeng Liu.The controllable impedance range of TCSC and its TCR reactance constraints[C].IEEE Power Engineering Society Summer Meeting,2001,7(2):939-943
    [40]Jen-Hung Chen,Wei-Jen Lee,Mo-Shing Chen.Using a Static Var Compensator to Balance a Distribution System[J].IEEE Trans.on Industry Applications,1999,35(2):298-304
    [41]Cai xu.A new arc-suppression coil with magnetic bias and its characteristics analysis[C].Sixth International Conference on Electrical Machines and Systems,2003(2):903-906
    [42]蔡旭.新型偏磁式消弧线圈及其控制[J].电力系统自动化,2002(5):32-35
    [43]蔡旭,谢桂林.偏磁式消弧线圈工作机理研究(一)[J].华北电力大学学报,2000,27(4):7-12
    [44]蔡旭,谢桂林.偏磁式消弧线圈工作机理研究(二)[J].华北电力大学学报,2001,28(1):10-14
    [45]刘虹.裂芯式可控电抗器研究[D].武汉:武汉水利电力大学,1995.
    [46]Feng Guihong,Wang Fengxiang,Zhang Bingyi.Modeling and characteristics of a novel magnet saturation controllable reactor[C].The Fifth International Conference on Power Electronics and Drive Systems,2003,11(1):313-315
    [47]Mingxing Tian,Qingfu Li,Qunfeng Li.An equivalent circuit and simulation analysis of magnetically-saturated controllable reactors[C].Sixth International Conference on Electrical Machines and Systems,2003,11(1):314-316
    [48]尹忠东.磁阀式可控电抗器的理论研究及应用[D].武汉:武汉水利电力大学,1997
    [49]邓占锋,王轩,周飞,雷晰,于坤山,邱宇峰.超高压磁控式并联电抗器仿真建模方法[J].中国电机工程学报,2008,28(36):108-113
    [50]R.N.Nayak,Y.K.Sehgal,Subir Sen,Manju Gupta.Optimization of neutral grounding reactor parameters-an analysis for a double circuit EHV line[C].IEEE Power India Conference,2006
    [51]M.C.Tavares,C.M.Portela.Transmission system parameters optimization sensitivity analysis of secondary arc current and recovery voltage[J].IEEE Trans.on Power Delivery,2004,19(3):1464-1471
    [52]周勤勇,郭强,卜广全,班连庚.可控电抗器在我国超/特高压电网中的应用[J].中国电机工程学报,2007,27(07):1-6
    [53]Feng Guihong,Wang Fengxiang.Design Principles of Magnetically Controlled Reactor[C].Proceedings of International Conference on Electrical Machines and Systems,2001(8):212-214
    [54]清华大学工业自动化系.饱和电抗器原理与设计[M].北京:1977
    [55]耿大勇.变流器供电系统的无功补偿与谐波抑制研究[D].沈阳:沈阳工业大学,2002
    [56]王凤翔,耿大勇.移相电抗器对变流器供电系统谐波抑制的机理研究[J].中国电机工程学报,2003,23(2):54-57
    [57]周丽霞,尹忠东,张华,郑立.可控电抗器及其谐波抑制的研究[J].现代电力,2006,23(2):10-14
    [58]冯桥.交流可控电抗器磁场的数值分析与控制电路设计[D].浙江:浙江大学,2002
    [59]潘艳霞.新型磁控开关型故障限流器研究[D].上海:上海交通大学,2008
    [60]瓦修京斯基(苏)著,崔立君,杜恩田译.变压器的理论与计算[M].北京:机械工业出版社,1983
    [61]周克定.工程电磁场数值计算的理论方法及应用[M].北京:高等教育出版社,1994
    [62]马信山,张济世,王平.电磁场基础[M].北京:清华大学出版社,1995
    [63]刘圣民.电磁场的数值方法[M].武汉:华中理工大学出版社,1991
    [64]颜威利,杨庆新,汪友华.电气工程电磁场数值分析[M].北京:机械工业出版社,2005
    [65]Massimo Fabbri,Antonio Morandi,Francesco Negrini,et al.Magnetic-shield-type fault current limiter equivalence circuit[J].IEEE Trans.on Applied Superconductivity,2004,14(3):1966-1973
    [66]梁振光.大型变压器场路耦合三维瞬态涡流场和绕组短路强度的研究[D].沈阳:沈阳工业大学,2001
    [67]陈敏.高温超导变压器中电磁问题的研究[D].北京:中国科学院电工研究所,2004
    [68]小飒工作室.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社,2004
    [69]N.Demerdash,T.Nehl,O.Mohammed,et ai.Nonlinear three dimensional magnetic vector potential finite element solution of field problems including experimental verification[J].IEEE Trans.on Magnetics,1981,17(6):3408-3410
    [70]S.Sugita,H.Ohsaki.FEM analysis of current limiting characteristics of a superconducting thin film current limiting device by the current vector potential method[J].IEEE Trans.on Applied Super-conductivity,2003,13(2):2020-2023
    [71]金建铭,王建国译.电磁场有限元方法[M].西安:西安电子科技大学出版社,2001
    [72]阎照文.ANSYS 10.0工程电磁分析技术与实例详解[M].北京:中国水利水电出版社,2006
    [73]ANSYS Inc.Release 10.0 Documentation for ANSYS[M].2004
    [74]陈维贤.超高压电网稳态计算[M].北京:水利电力出版社,1993
    [75]杨仁刚.广义无功功率及其特征参数定义及电弧炉动态无功补偿调节器研究[D].北京:清华大学,1993
    [76]杨明皓,杨仁刚.非正弦系统广义无功功率及广义功率因数的物理解释[J].中国农业大学学报,1997,2(2):98-104
    [77]凌志斌,邓超平,叶芃生.单相任意周期波形系统中功率因数定义的探讨[J].中国电机工程学报,2003,23(9):39-43
    [78]吴竞昌.供电系统谐波[M].北京:中国电力出版社,1998
    [79]杨芳.高压输电线路的潜供电流特性与对策研究[D].广西大学,2006
    [80]IEEE Committee Report.Single Phase Tripping and Auto Re-closing of Transmission Lines[J].IEEE Trans.on Power Delivery,1992,7(1):182-192
    [81]I.M.Dudurych,T.J.Gallagher,E.Rosolowski.Arc effect on single-phase re-closing time of a UHV power transmission line[J].IEEE Trans on Power Delivery,2004,19(2):855-860
    [82]鲁炜.超高压输电输电线路雷电过电压及单相闪络跳闸后潜供电流的研究[D].武汉:武汉大学,2004
    [83]J.Esztergalyos,J.Richak,D.H.Colwell,et al.Single phase tripping and auto re-closing of transmission lines[J].IEEE Trans.on Power Delivery,1992(71):182-192.
    [84]I.M.Dudurych,T.J.Gallagher,E.Rosolowski.Arc effect on single-phase re-closing time of a UHV power transmission line[J].IEEE Trans on Power Delivery,2004,19(2):855-860
    [85]S.R.Atmuri,R.S.Thallam,D.W.Gerlach,et al.Neutral Reactors on Shunt Compensated EHV lines[C].Proceedings of the IEEE Power Engineering Society,1994(4):10-15
    [86]G.Ban,L.Prikler,A.R.Said.Use of Neutral Reactors for Improving the Successfulness of Three-phase Reclosing[C].International Conference on Electric Power Engineering,1999:142
    [87]谷定燮,周沛洪,特高压输电系统过电压、潜供电流和无功补偿.高电压技术,2005,31(11):21-25
    [88]商立群,施围.同杆双回输电线路的潜供电流与恢复电压[J].高电压技术,2003,29(10):22-23,31
    [89]王安定,葛耀中.模量变换技术在反应故障分量的微机保护中的应用研究[J].电力系统自动化,1988,12(3):17-27
    [90]施同.电力系统过电压计算[M].西安:西安交通大学出版社,1988
    [9l]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996
    [92]商立群,施围.计算同杆双回输电线路潜供电流与恢复电压的二次模方法[J].西安交通大学学报,2005,39(2):196-199
    [93]X.G.Wang,R.M.Mathur.Real Time Digital Simulator of the Electromagnetic Transients of Transmission Lines with Frequency Dependence[J].IEEE Trans.on Power Delivery,1989,4(4):2249-2255
    [94]T.M.Winkel.An accurate and complete frequency dependent transmission line characterization using S-parameter measurements[J].Electrical Performance of Electronic Packaging,1999:133-136
    [95]H.W.Dommel,EMTP Theory Book[M].Branch of System Engineering,Bonneville Power Administration,1986
    [96]L.Marti.Simulation of transients in underground cables with frequencydependent modal transformation matrices[J].IEEE Trans.on Power Delivery,1988,3(3):1099-1110
    [97]Dommel H.W.(加拿大)著,李永庄,林集明,曾昭华译.电力系统电磁暂态计算理论[M].北京:水利电力出版社,199l
    [98]W.Shi,F.Li,Y.H.Han,Y.G.Li.The effect of ground resistance on secondary arc current on an EHV transmission line[J].IEEE Transactions on Power Delivery,2005,20(2):1502-1506
    [99]韩彦华,施围.故障点接地电阻对超高压输电线路潜供电流的影响[J].西安交通大学学报,2002,36(6):555-558,603
    [100]E.W.Kimbark.Selective-pole switching of long double-circuit EHV line[J].IEEE Trans.on Power Apparatus and Systems,1976,1(1):219-230
    [101]商立群,施围.超高压同杆双回输电线路中熄灭潜供电弧的研究[J].电力系统自动,2005,29(10):60-63,72
    [102]G.C.Thomann,S.R.Lambert,S.Phaloprakarn.Nonoptimum compensation schemes for single pole reclosing on EHV double circuit transmission lines[J].IEEE Transactions on Power Delivery,1993,8(2):651-659.
    [103]陈维贤,陈禾.并联电抗器的可控调节[J].高电压技术,2000,26(5):11-14
    [104]陈禾,陈维贤.并联电抗器中性点小电抗的选择[J].高电压技术,2002,28(8):9-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700