用户名: 密码: 验证码:
远距离被保护层卸压煤层气地面井开发地质理论及其应用研究-以淮南矿区为例
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于疏水降压的原位煤层气地面井抽采技术在淮南高瓦斯矿区效果不佳,针对淮南矿区煤层气富集、构造煤发育、长壁多煤层开采等地质与井巷开拓背景,试图探索一种煤矿采动区与煤炭开采相结合的远距离被保护层卸压煤层气地面井抽采地质理论与工程技术。论文以煤储层为切入点,应用光学显微镜观测、电子显微镜观测、地球物理测井、压汞分析、低温液氮吸附、高压等温吸附、渗透率测定等方法手段开展了构造煤的系统观测和储层特性分析,查明了构造煤的地质发育特征和卸压煤层气地面井抽采的储层条件;以卸压煤层气地面井抽采工程跟踪研究、矿井采场岩移监测数据、保护层开采上覆岩层变形与煤层气井孔破坏的相似材料实验模拟和数值模拟为依据,研究了保护层开采引起的被保护层储层改造与渗透性演变规律,奠定了卸压煤层气地面井可采的地质理论基础,并建立了作为煤层气抽采布井、钻井、完井地质依据的远距离卸压煤层气地面井井孔稳定性理论;最终将采场应力下煤储层改造理论与煤层气地面井井孔理论应用于卸压煤层气抽采工程实践,提出了远距离卸压煤层气地面井井位、井身优化设计方案。
     证实了构造煤储层是卸压煤层气地面井抽采的优质储层。煤体结构的破坏通过增加外生孔的数量,不仅增加了煤孔隙度、总孔容、大孔孔容及中孔孔容,还使微孔孔容及微孔比比表面积大幅增加,使得构造煤煤体破坏程度越高吸附能力越强,储气能力越强。自制加卸载试验仪的实验结果表明构造煤渗透性对于应力的增减较原生结构煤更为敏感,具有更为明显的“加压减流”、“卸压增流”能力,且煤体结构破坏程度越高对应力变化的响应越迅速。原因是应力释放会导致孔隙度的大幅增大、数量较多的高连通性的采动裂隙、卸压松弛裂隙的伴生。揭示了采动影响下远距离被保护层储层渗透性的时空演变规律与改造机理。
     工作面推进过程中被保护层裂隙发育区及高渗区位于工作面后方的未压实采空区中部,其具有随工作面前移而移动的动态发育规律,且高渗特性保持时间短,限制了地面井抽采的有效抽采时间和产能。采动影响稳定后,裂隙发育区及高渗区位于压实线与四周断裂线限定的环形圈内,构造煤储层得到显著改造,且采动发生后即发育,稳定后仍保持,为卸压煤层气地面井长期高效抽采提供了理论依据。
     建立了卸压煤层气地面井的井孔稳定性理论。采场应力下上覆岩层移动对井孔的破坏存在平面和层域控制效应,井孔破坏主要表现为剪切破坏和轴向拉压破坏及两者兼有的组合破坏三种力学破坏类型和松散层中下部、岩层软弱结构面、软硬岩层交界、厚软岩层内部四处主要破坏位置。地质及采场工程要素显著影响煤层气井孔稳定性。岩移的大小和速率变化控制了井孔受破坏程度,在平面上采区中线附近受破坏程度大,在层域上靠近开采层的位置受破坏程度大。岩层厚度和岩性组合的综合作用控制了岩层内部井孔破坏位置,上硬下软的岩性组合易发生由离层发育引起的轴向拉压破坏,硬软硬的岩性组合极易在软弱结构面发生剪切破坏,上厚下薄、上软下硬的软岩层中部易发生组合破坏。同时大采高、快推进速度则会加剧以上的各种破坏。
     以煤储层卸压改造和井孔稳定性理论为依据,探索性地提出了卸压煤层气地面井的采区优化布置和井身优化设计方案,认为采空区压实线与采场四周边界线限定的区域是卸压煤层气抽采布井的最佳位置;提出Ⅰ类井身结构在采高不大于2.0m,推进速度不大于5m/d,松基比不大于1时,Ⅱ类井身结构在采高不大于2.6m,推进速度不大于5m/d,松基比不大于1.8时,具有高稳定性。
This study introduces a way to drainge stress relief coalbed methane(CBM) from the distant protected coal seam after the lower protective coal seam mined through surface vertical wells over the longwall panel which is drilled in advance of mining. The compression in the overlying protected coal seam is relieved and gas flow ability is greatly increased because of the relaxation of the overlying strata after the protective coal seam is mined, which make that the wells get high gas production. This study has proved that the stress relief drainage technology through surface vertical wells is scientific in theory through sheared coal reservoir characteristics experiments, physical and numerical simulation tests, moreover, dynamic variation of sheared coal reservoir permeability during the protective coal seam mining and after the protective coal seam mined is summarized to design the well deployment in the area where the high gas flow ability would maintain a long time. Some engineering problems resulted in surface wells stopping producing are analyed too. The position where the wellbore is easily broken is found and some solutions are provided to maintain the wellbore integrity. The design methods of wellbore structure are summarized through engineering practice, and some drilling and completing methods to strengthen the wellbore stability are gave to help the surface well get high drainage efficiency.
     The results also indicate that reservoir adsorption capacity and gas storage ability is correlated positively with the level of the coal structure destruction. Sheared coal has better gas flow ability than primary coal while the compression is relieved. All these have proved that sheared coal reservoir is convenient for stress relief CBM drainage by surface vertical wells.
     The permeability of the protected coal seam varied dynamically during the protective coal seam mining and after the protective layer mined. Well developed abscission layer and high permeability area in the protected coal seam locate in the central panel in plane behind the face during mining , it moves with face advancement and has a short life. However, after the lower protective coal seam mined, well developed abscission layer and high permeability area in protected coal seam shifts from the central panel to the zone aound the gob, it may be kept for a long time.
     The wellbore stability is closely relevant to casing strength, borehole diameters, geological conditions , mining factors of the lower protective coal seam. The wellbore structure of surface wells for stress reilief CBM is destroyed at the beginning of the mining influence because of the axial tension failure and shear failure resulted from overburden movement. Axial tension failure and shear failure to casing is initiated by vertical and horizontal movements of overburden. The extent of the casing failure is different in various position. The failure is serious while wells locate in the central panel in plane and casing is near mined coal seam in vertical direction. The difference of rock layer thickness and the lithology combination have great influence on wellbore stability too. The bigger mining height and greater face advance speed would strengthen all kinds of the above-mentioned failure.
     Mining fractures and high permeability area are located in zones where lines of compaction and the panel boundary line are determined after its effect has become relatively stable, in this area, the wellbore stability is better than central panel too. So it is the optimum well location for surface vertical wells to drain stress relief CBM.
     The technology parameters of wellbore structure and their applicalble geological conditions and mining factors are summarized from the engineering practice. And a new kind of wellbore structure is designed to strengthen the wellbore integritybased on the above research results.
     The drilling and completing technologies are discussed and some suggestions are provided to strengthen the wellbore stability during the lower protective coal seam mining.
引文
[1]桑树勋,秦勇,姜波等.淮南地区煤层气地质研究与勘探开发潜势[J].天然气工业,2001,29(4):19-22.
    [2]黄华州,桑树勋,方良才等.采动区远程卸压煤层气抽采地面井产能影响因素[J].煤田地质与勘探,2010,38(2):18-22.
    [3]桑树勋,方良才,黄华州等.淮南矿区卸压煤层气地面井开发工程与技术进展[J]. 2008资源高技术论坛,2008.
    [4]张正林,李树刚.卸压瓦斯抽采技术研究及其效果[J].陕西煤炭, 2005,(04):10-11.
    [5]秦勇,桑树勋,傅雪海等.中国重点矿区煤层气资源潜力及若干评价理论问题[J].中国煤层气,2006,3(4):17-20.
    [6]秦勇.中国煤层气产业化面临的形势与挑战(Ⅱ)-关键科学技术问题[J].天然气工业,2006,26(2):6-10.
    [7] HUANG Hua-zhou, SANG Shu-xun, et al. Optimum well location of surface wells for remote pressure relief coalbed methane drainage in mining areas[J]. Mining Science and Technology, 2010, 20(2): 230-237.
    [8]屠锡根,吴继周,胡光龙.地面钻孔抽放瓦斯[J].煤矿安全,1979,(6):1-4.
    [9]于不凡,采空区瓦斯抽放技术[J].煤矿安全与环保,1988:1-10.
    [10]于不凡,王佑安等.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000.
    [11]包头矿务,煤炭科学研究院抚顺研究所.地面钻孔抽放邻近层瓦斯[J].煤炭科学技术,1981,(6):5-9.
    [12]吕绍林.地面抽放瓦斯钻孔工艺参数分析[J].煤矿安全,1993,(11):29-31.
    [13]梁子明,张斌,吴宏斌.地面钻孔抽放邻近层(含采空区)瓦斯的尝试[J].煤矿安全,1999,(11):32-34.
    [14]井多胜,徐传田.地面钻孔抽放瓦斯斯技术的试验[J].煤炭技术,2006,(6):84-86.
    [15]许家林,刘华民.采空区瓦斯抽放钻孔布置的研究[J].煤炭科学技术,1997,25(4):28-30.
    [16]李明好,胡海军,严涛等.地面垂直钻孔抽放采空区瓦斯的尝试[J].矿业安全与环保,2000,27(4):6-8.
    [17]刘华民.淮北芦岭矿低透气性煤层采空区煤层气开发技术方案研究[J].中国煤层气,1995,(2):82-86.
    [18]张明元,杨世安,孙玉印等.地面垂直钻孔抽取采空区瓦斯的应用[J].中国煤层气,1995,2:79-81.
    [19]李国君,刘正国,范思祥.铁法矿区瓦斯抽放技术综述[J].煤矿安全,1999(9):5-7.
    [20]李国君,刘长久.铁法矿区地面垂直采空区井技术[J].中国煤层气,2005,2(4):7-10.
    [21]李国君.铁法矿区高瓦斯低透气性煤层群煤层气产业化研究与工程实践[D].北京:中国矿业大学,2007.
    [22]袁亮.淮南矿区的瓦斯治理战略[J].中国煤炭,2003,29(10):29-32.
    [23]袁亮.淮南矿区煤矿煤层气抽采技术[J].中国煤层气,2006,3(1):6-9.
    [24]梁运培.淮南矿区地面钻井抽采瓦斯技术实践[J].采矿与安全工程学报,2007,24(4):409-413.
    [25] S.SHUXUN, H.JIAZHANG, C.ZHIZHONG, H.HUAZHOU. Surface Vertical well technology for pressure relief coalbed methane exploitation in huainan coal mining area[C]. Proceedings of the 2008 Asia Pacific CBM Symposium, Austrilia, University of Queensland, 2008.
    [26] Han J Z, Sang S X, Cheng Z Z, Huang H Z. Exploitation technology of pressure relief coalbed methane in vertical surface wells in the Huainan coal mining area[J]. Mining Science and Technology, 2009, 38(1): 25-30.
    [27]黄华州,桑树勋,李国君,徐宏杰,杨欣超,武杰,吴国代.采动区远程卸压煤层气地面直井抽采机理[J].煤炭科学技术,2010,38(3):62-66.
    [28]于不凡.开采解放层的认识与实践[M].北京:煤炭工业出版社,1986.
    [29]于不凡.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2005.
    [30]钱鸣高,刘听成.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [31]邓喀中.开采沉陷中的岩体结构效应[M].徐州:中国矿业大学出版社,1998.
    [32]宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988.
    [33]苏仲杰.采动覆岩离层变形机理研究[D].辽宁工程技术大学博士学位论文,2001.
    [34]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [35]欧聪,李日富,谢向东,王振.被保护层保护效果的影响因素研究[J].矿业安全与环保,2008,35(4):8-10.
    [36]李明好.下保护层开采卸压范围及卸压程度的研究[D].安徽:安徽理工大学,2005.
    [37]刘林.开采保护层保护效果及范围的数值模拟研究[J].矿业安全与环保,2005,32(6):6-9.
    [38]秦玉金.邻近层卸压范围的研究[D].煤炭科学研究总院抚顺分院,2004.
    [39]刘泽功,袁亮,戴广龙等.采场覆岩裂隙特征研究及在瓦斯抽放中应用[J].安徽理工大学学报,2004,24(4):10-15.
    [40]刘泽功.卸压瓦斯储集与采场围岩裂隙演化关系研究[D].合肥:中国科学技术大学,2004.
    [41]马占国,涂敏,马继刚等.远距离下保护层开采煤岩体变形特征[J].采矿与安全工程学报,2008,23(3):253-257.
    [42]石必明,俞启香,周世宁.保护层开采远距离煤岩破裂变形数值模拟[J].中国矿业大学学报,2004,33(3):259-263.
    [43]石必明,俞启香,王凯.远程保护层开采上覆煤层透气性动态演化规律试验研究[J].岩石力学与工程学报,2006, 25(9):1917-1921.
    [44]石必明.保护层开采覆岩移动变形特性及防突工程应用实践[M].北京:煤炭工业出版社,2008.
    [45]程远平,周德永等.保护层卸压瓦斯抽采与涌出规律研究[J].采矿与安全工程学报,2006,23(1):12-18.
    [46]俞启香,程远平,蒋承林等.高瓦斯特厚煤层煤与卸压瓦斯共采原理及实践[J].中国矿业大学学报,2004,33(2).
    [47]夏红春,程远平,柳继平.远程覆岩卸压变形及其渗透性研究[J].西安科技大学学报,2006,26(1):10-14.
    [48]石必明.远距离下保护层开采上覆煤层变形及透气性变化规律的研究[D].徐州:中国矿业大学,2004.
    [49]涂敏,缪协兴,黄乃斌.远程下保护层开采被保护煤层变形规律研究[J].采矿与安全工程学报,2006,23(3):253-257.
    [50]涂敏,黄乃斌,刘宝安.远距离下保护层开采上覆煤岩体卸压效应研究[J].采矿与安全工程学报,2007,24(4):418-426.
    [51]程远平,俞启香,袁亮.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报,2004,33(2):133-136.
    [52]程远平,俞启香等.上覆远程卸压岩体移动特性与瓦斯抽放技术研究[J].辽宁工程技术大学大学学报,2003,22(4):132-138.
    [53]钱鸣高,缪协兴.岩层控制中关键层的理论研究[J].煤炭学报,1996,21(3):25-230.
    [54]杨大明,俞启香.缓倾斜下解放层开采后岩层地应力变化规律的研究[J].中国矿业学院学报,1988(1):32-36.
    [55]陈祥恩,李德海,勾攀峰.巨厚松散层下开采及地表移动[M].徐州:中国矿业大学出版社,2001.
    [56]何国清,杨伦,凌赓娣等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1989.
    [57]许家林,钱鸣高.覆岩采动裂隙分布特征的研究[J].矿山压力与顶板管理,1997(34):210-212.
    [58]许家林,钱鸣高.覆岩注浆减沉钻孔布置的研究[J].中国矿业大学学报,1998,27(3):276-279.
    [59]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-348.
    [60]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998,23(5):466-469.
    [61]孙海涛.采动影响下地面钻井的变形破坏机理研究[D].重庆:重庆大学,2008.
    [62]涂敏.煤层气卸压开采的采动岩体力学分析与应用研究[D].徐州:中国矿业大学,2008.
    [63]许家林,钱鸣高.地面钻井抽采上覆远距离卸压煤层气试验研究[J].中国矿业大学学报,2000,29(1):78-82.
    [64]李日富,梁运培,欧聪等.采空区瓦斯地面抽采钻井稳定性因素分析[J].矿业安全与环保, 2008,35(3):11-17.
    [65]李日富,梁运培,张军.地面钻孔抽采采空区瓦斯效率影响因素[J].煤炭学报,2009,34(7):942-946.
    [66]梁运培,胡千庭,郭华等.地面采空区瓦斯抽放钻孔稳定性分析[J].煤矿安全,2007,1-4.
    [67]张军,孙东玲,黄旭超,孙炳兴.地面钻井抽放采动区域瓦斯技术的试验研究[J].矿业安全与环保,2007,34(01):1-5.
    [68]周德昶,焦先军.地面钻井抽采瓦斯技术的发展方向[J].矿业安全与环保,2006,33(6):77-79.
    [69]胡千庭,梁运培,林府进.采空区瓦斯地面钻孔抽采技术试验研究[J].中国煤层气,2006,(2):3-6.
    [70]刘玉洲等.地面钻孔抽放采空区瓦斯及其稳定性分析[J].岩石力学与工程学报,2005,24(增1):4982-4987.
    [71] Hogan K. Options for reducing methane emissions internationally[R]: Report to Congress, US Environmental Protection agency, EPA 430-R-93-006, 1993.
    [72] Zuber, M.D.. Production characteristics and reservoir analysis of coalbed methane reserveoirs[J]. International Journal of Coal Geology, 1998,(38), 27–45.
    [73] Mucho, T.P., Diamond, W.P., Garcia, F., Byars, J.D., Cario, S.L.. Implications of recent NIOSH tracer gas studies on bleeder and gob gas ventilation design[C]. Society of Mining Engineers Annual Meeting, Feb. 28–Mar. 1, Salt Lake City, UT, 2000.
    [74] Pavone A M, Schwerer F C. Development of coal gas production simulators and mathematical models for well test strategies[R]. Final Report under GRI Contract Number 5081-321-0457, 1984, 4982-4987.
    [75] Peng, S S and Chiang, H S. Longwall Mining[M]. New York: Wiley Interscience Publication, 1984.
    [76] Singh, M M. and F S Kendorski. Strata disturbance prediction for mining beneath surface water and waste impoundments[C]. 1st Conf. Ground Control in Mining, Morgantown, West Virginia University, 1981, 76-89.
    [77] Wang L, Cheng Y P, Li F R, Wang H F, LIU H B. Fracture evolution and pressure relief gas drainage from distant protected coal seams under an extremely thick key stratum[J]. Journal of China University of Mining & Technology, 2008,(18): 182-186.
    [78] Palchik, V.. Formation of fractured zones in overburden due to longwall mining[J]. Environmental Geology, 2003,(44): 28–38.
    [79] Cui, X., Wang, J., Liu, Y.. Prediction of progressive surface subsidence above longwall coal mining using a time function[J]. International Journal of Rock Mechanics and Mining Sciences, 2001(,38): 1057–1063.
    [80] Palchik, V., Locatization of mining-induced horizontal fractures along rock layer interfaces in overburden: field measurements and prediction[J]. Environmental Geology, 2005,(48): 68–80.
    [81] Karacan C. ?zgen. Reconciling longwall gob gas reservoirs and venthole production performances using multiple rate drawdown well test analysis[J]. International Journal of Coal Geology, 2009,(80): 181-185.
    [82] Gale, W. Application of computer modeling in the understanding of caving and induced hydraulic conductivity about longwall panels[C]. proceedings of Coal, 6th Australasian Coal Operator's Conference, Brisbane, Australia, 2005, 11–15.
    [83] Diamond, W. P., Ulery, J. P., and Kravitz, S. J.. Determining the Source of Longwall Gob Gas: Lower Kittanning Coalbed[R]. Cambria County, PA, Bureau of Mines, Information Circular No: 9430, 1992.
    [84] Dixon, C. A. Coalbed Methane: A Miner’s Viewpoint[C]. Proceedings of the 1987 Coalb- ed Methane Symposium, Tuscaloosa, AL, Nov 16-19, Paper 8704, 1987, 7-10.
    [85] Karacan, C.?., Diamond, W.P., Esterhuizen, G.S., Schatzel, S.J.. Numerical analysis of the impact of longwall panel width on methane emissions and performance of gob gas ventholes[C]. Proceedings 2005 International Coalbed Methane Symposium, Paper No. 0505, Tuscaloosa, Alabama. 2005.
    [86] Diamond, W.P., Jeran, P.W., Trevits, M.A.. Evaluation of alternative placement of longwall gob gas ventholes for optimum performance[R]. U.S. Department of the Interior, Bureau of Mines, Information Circular No: 9500, Pittsburgh, PA. 1994.
    [87] Thakur, P C. Optimum widths of longwall panels in highly gassy mines– PartⅠ[J]. In: 11th US Mine Ventilation Symposium, 2006: 433-437.
    [88] Thakur, P C. Optimum widths of longwall panels in highly gassy mines– PartⅡ[C]. In: 12th U.S./North American Mine Ventilation Symposium– Wallace ed), 2008: 81-85.
    [89] Diamond, W P. The influence of gob gas venthole location on methane drainage: A case study in the Lower Kittanning Coalbed, PA.[C]. In: Proceedings of the 7th U.S. Mine Ventilation Symposium, Lexington Kentucky, 1995.
    [90] Ren TX, Edwards JS. Goaf gas modeling techniques to maximize methane capture from surface gob wells[J]. Mine Ventilation, 2002: 279-286.
    [91] Li J L, J Schwoebel and D Brunner. Vertical Gob Well Gas Recovery in Tiefa, China[C]. Proceedings, International Coalbed Methane Symposium, Tuscaloosa, Alabama, The University of Alabama, 1997, 271-281.
    [92] Mazza, R.L., Mlinar, M.P. Reducing Methane in Coal Mine Gob Areas with Vertical Boreholes[R]. U.S. Bureau of Mines Open File Report 142-77, 1977.
    [93] Karacan C ?, G S Esterhuizen, S Schatzel, and W P Diamond. Reservoir simulation-based modeling for characterizing longwall methane emissions and gob gas venthole production[J]. International Journal of Coal Geology, 2007,(71): 225-245
    [94] Addis,M.A and B.Wu. The role of the intermediate principal stress in wellbore stability studies;evidence from hollow cylinder tests[J]. Int.J.Rock Mech.Min.Sci.&Geomech. Abstr, 1993,(30): 1027-1030.
    [95] Insun Song. Borehole Breakouts and Core Disking in Westerly Granite: Mechanisms oftion and Relationship to In Situ Stress[D]. America: University of Wisconsin-Madison,1998.
    [96] D.N.Whittles, I.S.Lowndes, S.W.Kingman, C.Yates, S.Jobling. The stability of methane capture boreholes around a long wall coal panel[J]. International Journal of Coal Geology, 2007(71): 313–328.
    [97]吴俊.突出煤的微观结构及表面特征的研究[J].煤炭学报,1987,(2):40-46.
    [98]琚宜文.构造煤结构演化与储层物性特征及其作面机理[D].徐州:中国矿业大学,2003.
    [99]姜波,琚宜文.构造煤结构及其储层物性特征[J].天然气工业,2004,24(5):27-29.
    [100] Li Huoyin, Yujiro Ogawa, Sohei Shimada. Mechanism of methane flow through sheared coals and its role on methane recovery [J]. Fuel, 2003,(82): 1271-1279.
    [101]袁崇孚.构造煤和煤与瓦斯突出[J].瓦斯地质,1985,1(1):45-52.
    [102]侯泉林,张子敏.关于糜棱煤概念之讨论[J].焦作矿业学院学报,1990,(2):15-19.
    [103] Stach E, Mackowsky M-TH, Teichmiiller M, et al. Stach’s textbook of coal petrology [M] . Berlin: Gebruder Borntraeger, 1982, 381-413.
    [104]姚多喜,吕劲.淮南谢一矿煤的孔隙研究[J].中国煤炭地质,1996,8(4):31-33.
    [105]姚艳斌,刘大锰,黄文辉等.两淮煤田煤储层孔—裂隙系统与煤层气产出性能研究[J].煤炭学报,2006,31(2):163-168.
    [106]章云根.淮南煤田煤层气可采潜势[J].中国煤田地质,2005,17(8):21-23.
    [107]徐磊,张华,桑树勋等.淮南地区煤储层含气性总体特征[J].中国煤田地质,2002,14(2):28-30.
    [108]王新民,傅长生,石王景等.国外煤层气勘探开发研究实例[M].北京:石油工业出版社,1998.
    [109]赵庆波.煤层气地质与勘探技术[M].北京:石油工业出版社,1999.
    [110] ScottA R. Composition and origin of coalbed gases from selected basins in the United States[C]. In: Proceedings of the 1993 International Coalbed Methane Symposium. The University of Alabama, School of Mines and Energy Development, Paper 9270, 1993,(1): 174-186.
    [111] Smith J W, Pallasser R. Microbial origin of Australia coalbed methane formation[J]. AAPGBulletin, 1996,(80): 891-897.
    [112] AYERS W B J r. Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juanand powder river basins [J]. A A PGB ul let in, 2002, 86(11): 1853-1890.
    [113] KOTARBA M J, LEWAN M D. Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis [J]. Organic Geochemist ry, 2004, 35(5): 615-646.
    [114] MAZUMDAR B K, MU KHERJ EE S N, BANERJ EE B, et al. Origin and assessment of methane gassiness of coalbeds vis-a-vis coal metamorphism [J]. Journal of Mines, Metals & Fuels, 1997, 45(11-12): 390-399.
    [115] PIEDAD SANCHEZ N, IZART A, MARTINEZ L, et al. Paleothermicity in the Central Asturian Coal Basin, North Spain[J]. International Journal of Coal Geology, 2004, 58(4): 205-229.
    [116]张小军,陶明信,王万春等.生物成因煤层气的生成及其资源意义[J].矿物岩石地球化学通报,2004,23( 2):166-171.
    [117] Busch A, Gensterblum Y, Kcross B M. Methane and CO2 sorption and desorption measurement on dry Aargone premium coals: pure component and mixture[J]. Int J Coal Geol, 2003(,55): 206-224.
    [118]张新民,庄军,张遂安等.中国煤层气地质与资源评价[M].北京:科学出版社,2002.
    [119]钱凯,赵庆波,汪泽成.煤层甲烷勘探开发理论与实验测试技术[M].北京:石油工业出版社,1996.
    [120]中国煤田地质总局.中国煤层气资源[M].江苏徐州:中国矿业大学出版社,1998.
    [121]袁亮.淮南矿区瓦斯治理技术与实践[J].煤炭科学技术,2000,28(1):7-11.
    [122] PALCHIK Vyacheslav. Use of Gaussian distribution for estimation of gob gas drainage well productivity[J]. Mathematical Geology, 2002, 34(6): 743-765.
    [123]袁亮.松软低透煤层群瓦斯抽采理论与技术[M].北京:煤炭工业出版社,2004.
    [124]徐宏杰.淮南矿区地面直井开发卸压煤层气运移与产出特征[D].徐州:中国矿业大学,2009.
    [125]朱兴珊,徐凤银,肖文江.破坏煤分类及宏观微观特征[J].焦作矿业学院学报,1995,14(1):38-44.
    [126]陈善庆.鄂、湘、粤、桂二叠纪构造煤特征及其成因分析[J].煤炭学报,1989,14(4):1-9.
    [127]武汉地质学院煤田教研室.煤田地质学[M].北京:地质出版社,1980.
    [128]焦作矿业学院瓦斯地质研究室.瓦斯地质概论[M].北京:煤炭工业出版社,1990.
    [129]高凌蔚.豫西云盖山地区山西组二l煤层构造形变及厚度变化规律[M].北京:地震出版社,1986.
    [130]李涛,高凌蔚,刘天林.煤岩流变分析[M].见:煤炭科学院勘探分院文集(1).西安:陕西人民出版社,1987.
    [131]王桂梁,朱炎铭.论煤层流变[J].中国矿业学院学报,1984,17(3):47-51.
    [132]周建勋.煤的变形与光性组构的高温高压变形实验研究及煤田构造中石英的显微构造与组构[D].徐州:中国矿业大学,1991.
    [133] Williams, R., Jeffery, W. and Taylor, A. Outbursts of gas from the floor of coal seams part[J]. Trans. Instn. Min. Engrs., 1943,(103): 592-618.
    [134] Sibson R H. Fault rocks and fault mechanism[J]. J Geol soc London, 1977,(133): 191-213.
    [135]李康,钟大赉.煤岩的显微构造特征反其与瓦斯突出的关系—以南桐鱼田堡煤矿为例[J].地质学报,1992. 66(2):148-157.
    [136]侯泉林,李培军,李继亮.闽西南前陆褶皱冲断带[M].北京:地质出版社,1995.
    [137]琚宜文.构造煤结构演化与储层物性特征及其作用机理[D].徐州:中国矿业大学, 2003.
    [138]琚宜文,姜波,王桂樑等.构造煤结构及储层物性[M].中国矿业大学出版社,2005.
    [139]薛喜成,高雅翠.淮南煤田煤体结构分布特征及其控制因素探讨[J].西安科技大学报,2006,26(2):193 -195.
    [140]王大曾.瓦斯地质[M].北京:煤炭工业出版社,1992.
    [141] Brunauer.S, Emmet P H, Teller E. Journal American[J]. Chemical. Society, 1938,(60): 309.
    [142] Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. J. Am. Chem. Soc., 1916,(40): 1361.
    [143]傅雪海.煤层气地质学[M].徐州:中国矿业大学出版社,2008.
    [144]苏现波,林晓英.煤层气地质学[M].北京:煤炭工业出版社,2007.
    [145]钟玲文,张新民.煤的吸附能力与其煤化程度和煤岩组成间的关系[J].煤田地质与勘探,1990,(4):29-35.
    [146] Crosdale, P.J., Beamish, B.B., Valix, M. Coalbed methane sorption related to coal composi- tion[J]. International Journal of Coal Geology, 1998,(35):147-158.
    [147]张群,杨锡禄.平衡水平条件下煤对甲烷的等温吸附特性研究[J].煤炭学报,1999,24(6):566-570.
    [148] Ettinger, I., Eremin, I., Zimakov, B., Yanvoskaya, M. Natural factors influencing coal sorp- tion properties. I. Petrography and sorption properties of coals[J]. Fuel, 1966,(45): 267-275.
    [149] Bustin, R.M., Clarkson, C.R.. Geological controls on coalbed methane reservoir capacity and gas content[J]. International Journal of Coal Geology. 1998,(38): 3–26.
    [150]钟玲文,张慧,员争荣等.煤的比表面积、孔体积及对煤吸附能力的影响[J].煤田地质与勘探,2002,30(3):26-33.
    [151]吴俊.中国煤成烃基本理论与实践[D].北京:煤炭工业出版社,1993.
    [152]张松航,汤达祯,唐书恒等.鄂尔多斯盆地东缘煤储层微孔隙结构特征及其影响因素[J].地质学报,2008,82(10):1341-1349.
    [153]陈萍.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-555.
    [154]张慧,李小彦,郝琦,何德长,庄军.中国煤的扫描电子显微镜特征[M].北京:地质出版社,2003.
    [155] McCulloch C.M., Deul J.M., Jeran P.W. Cleats in bituminous coal beds[R]. U.S. Bur. Mines, Rept.Invest.7910, 23, 1974.
    [156]张慧,王晓刚.煤的显微构造及其储集性能[J].煤田地质与勘探,1998,26(6):33-36.
    [157]毕建军,苏现波,韩德馨,陈江峰.煤层割理与煤级的关系[J].煤炭学报,2001,26(4): 346-349.
    [158] Close,J.C., and Dutcher, R.R. Perdiction of permeability trends and origins in coalbed methane reservoirs of the Raton Basin, Coloraso and New Merico. In Bauer, P.W., Lucas, S.G., Mawer, C.K., and Mclntosh, W.C., eds.. Tectonic development of the southern Rocky Mountains[C]. New Mexi-co: New Mxico Geological Society Guidebook, 41st Annual Field Conference, September 12-15, 1990.
    [159]王生维,陈钟惠.煤储层孔隙、裂隙系统研究进展[J].地质科技情报,1995,14(1): 54-59.
    [160]霍永忠,张爱云.煤层气储层的显微孔裂隙成因分类及其应用[J].煤田地质与勘探,1998,(06):28-32.
    [161]曹运兴.构造煤的动力变质及其灾害性[D].北京:中国矿业大学北京研究生部, 1999.
    [162]郭德勇,韩德馨,冯志亮.围压下构造煤的孔隙度和渗透率特征实验研究[J].煤田地质与勘探,1998,26(4):31-33.
    [163]谢文兵,陈晓祥,郑百生.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社,2005.
    [164]康建荣,王金庄,胡海峰.相似材料模拟试验经纬仪观测方法分析[J].矿山测量,1999,(1):43-46.
    [165] Syds Peng. Surface subsidence engineering society for mining[J]. Metallurgy and Exploration, Inc, 1992.
    [166] Brown C.B. and King I.P. Automatic embankment analysis[J]. Geotechnique, 1966, 16(3).
    [167]赵德深,朱广轶,刘文生,范学理.覆岩离层分布时空规律的实验研究[J].辽宁工程技术大学学报(自然科学版),2002,21(1):4-7.
    [168]张建全,廖国华,黄在文,冯恩杰,刘青洲.综放开采条件下覆岩离层动态发育规律[J].北京科技大学学报,2001,23(6):492-494.
    [169]许家林,孟广石.应用上覆岩层采动裂隙“O”形圈特征抽放采空区瓦斯[J].煤矿安全,1995,(7):2-4.
    [170]煤矿瓦斯治理国家工程研究中心,淮南矿业(集团)有限责任公司,安徽建筑工业学院,中国矿业大学,安徽理工大学,沈阳天安矿山机械科技有限公司.深井煤层群无煤柱快速留巷Y型通风煤气共采关键技术[R].淮南:淮南矿业(集团)有限责任公司,2008.
    [171]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995:2-3.
    [172] Close J C. Natural fracture in coal [J]. In: Hydrocarbons from coal, Law B E. and Rice D D. (eds), AAPG, Studies in Geology, 1993,(38):119-132.
    [173] Long J.C.S., Gilmour, P., Witherspoon, P.A. A Model for Steady Fliud in Random Three Dimensional Networks of Disc-shaped Fractures[J]. Water Resources Res., 1985,(21): No.B.
    [174] McKee C.R., Bumb A.C., Koening R.A. Stress-dependent permeability and porosity of coal[J]. Rocky Mountain Association of Geologists, 1988: 143-153.
    [175] HARPALANI S, CHEN G. Influence of gas production induced volumetric strain on permeability of coal [J]. Geotechnical and Geological Engineering, 1997, 15(4): 303-325.
    [176]赵德深.煤矿区采动覆岩离层分布规律与地表沉陷控制研究[D].阜新:辽宁工程技术大学,1996.
    [177]唐世斌,唐春安,杨天鸿等.保护煤层开采引起煤层垮落及其被保护煤层透气性变化的数值模拟[J].岩石力学与工程学报,2005,24(增1):5096-5102.
    [178]金宏伟.岩层移动对瓦斯抽放钻孔破坏的机理研究[D].徐州:中国矿业大学,2005.
    [179]沈健,金洪伟,许家林.岩层移动对瓦斯抽放钻孔的破坏研究[J].煤矿安全,2010,(3):1-4.
    [180]程强,周德培,寇小兵.红层软岩地区公路建设中的主要岩土工程问题[C]//第8次全国岩石力学与工程学术大会论文集.北京:科学出版社,2004, 128–131.
    [181]王仲茂,卢万恒,胡江明.油田油水井套管损坏的机理及防治[M].北京:石油工业出版社,1994
    [182] DUSSEAULT,MAURICE B.Casing shear:causes,caseS,cures[J].SPE 48864,1998:337-345.
    [183]林元华,曾德智,施太和,杜仁德,何开平.软岩层引起的套管外载计算方法研究[J].岩石力学与工程学报,2007,26(3):538-543
    [184]徐乃忠,马伟民.沿接触面滑动的条件及冲积层中移动传播方向[J].中国矿业大学学报, 1997,26(1):73-76
    [185]许延春,徐法奎,官云章.煤矿工业场地内深厚松散层的水平移动特征研究[J].煤炭学报,2003,28(4): 353-356.
    [186]克拉菠H.采动损害及其防护[M].马伟民,王金庄,王绍林译.北京煤炭工业出版杜,1984.302~37
    [187]何秀清.套损井修复压裂过程力学分析及其应用[D].:大庆:大庆石油学院, 2006
    [188]狄乾生,隋旺华,黄山民.开采岩层移动工程地质研究[M].北京:中国建筑工业出版社,1992.
    [189]刘瑾,孙占法,张永波.采深和松散层厚度对开采沉陷地表移动变形影响的数值模拟研究[J].水文地质工程地质,2007,(4):88-92.
    [190]神克强.巨厚松散层下开采覆岩移动规律研究及应用[D].淮南:安徽理工大学,2009.
    [191]焦先军.淮南潘谢矿区地面钻井卸压瓦斯抽采技术及应用研究[D].徐州:中国矿业大学,2009.
    [192]方恩才.不同推进速度下覆岩移动规律数值模拟研究[J].能源技术与管理.2009,(6): 14-16.
    [193]刘希圣.钻井工艺原理(完井工程)[M].北京:石油工业出版社,1988.
    [194]胡湘炯,高德利.油气井工程[M].北京:中国石化出版社,2003.
    [195]李伟,陈家祥,刘华民等.地面钻井“一井三用”先抽后采治理瓦斯试验研究[J],第32届国际矿山安全研讨会论文集[C].北京:煤炭工业出版社,2007,50-54.
    [196]贺天才,秦勇.煤层气勘探与开发利用技术[M].徐州:中国矿业大学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700