用户名: 密码: 验证码:
转换横波分裂分析及校正技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,多波多分量地震勘探技术研究取得了极大进步,人们对于各向异性现象的了解也更为深入。多波资料比单纯纵波含有更为丰富的地层信息,综合利用纵横波资料可以获取更为详尽可靠的地层参数。当横波斜交穿过各向异性介质(裂缝)时会发生分裂,偏振方向沿裂缝走向时,传播速度快,称为快横波,偏振方向垂直裂缝走向时,传播速度慢,称为慢横波。只有当横波与裂缝方位呈一定的角度时才会发生横波分裂,分裂的快慢横波的强弱与裂缝的强度密切相关。通过对横波分裂现象的分析可以得到裂缝的发育方向和密度等参数,利用这些参数可以更为准确地预测裂缝。当进行纵波源激发的转换波勘探时,下行纵波遇到分界面时会转换成横波,横波在向上传播过程中遇到裂缝时,同样会发生分裂。因此,利用转换横波分裂的快慢横波成为研究裂缝方向及其发育程度的最直接最可靠的方法。
     将转换波的径向和横向分量数据按照方位顺序排列起来,由于各向异性的影响,径向分量的方位道集存在较大的方位时差,0°到360°的方位数据的同相轴表现为一个“正弦”波形,而横向分量具有较强的能量,并且也表现出了较大的方位时差。在径向分量上“正弦”的波峰代表各向异性(裂缝)的走向,而波谷代表垂直于各向异性方向。研究发现在横向分量上每间隔90°就会发生极性反转现象,极性反转点就代表各向异性方向的变化点。在强各向异性数据基础上,要得到较好的成像剖面,必须进行方位各向异性校正。
     Alford旋转方法最早用于双源激发的四分量VSP资料,根据SV波和SH波得到快慢横波信息,实现快慢横波分离。这篇硕士论文基于转换横波分裂理论,利用地面宽方位转换波资料,通过构建互相垂直的转换波径向和横向分量对,从而将Alford旋转方法成功用于转换波处理,进而实现地面资料的快慢横波分离。同时,利用宽方位转换波的径向和横向分量资料,完成了多层裂缝介质的各向异性分析。在此基础上,还完成了转换波方位各向异性校正研究,大大提高了宽方位转换波径向分量成像质量。
     宽方位转换横波分裂方位各向异性校正处理的主要步骤是:
     首先,根据径向和横向方位数据确定一个浅层分析时窗,在分析时窗内利用Alford旋转方法分离快慢横波。如果有多个方位角数据,则需要分别求取各个方位的快慢横波,然后进行累加。
     其次,根据快慢横波相似原则,求取快慢横波互相关值,解释角度-时延谱得到各向异性方向和快慢横波时延。
     然后,将快慢横波时延用于慢横波上,进行时延补偿。
     最后,根据各向异性方位角,利用反旋转技术将快横波和时延补偿后的慢横波反旋转回原来的径向和横向方向上,得到各向异性校正后的径向和横向分量。
     这样,就完成了第一层裂缝的各向异性分析,同时还得到第一层的裂缝方向、裂缝密度、补偿后的径向分量等数据。将第二分析时窗内的快慢波数据与第一时窗内的快慢波数据加权平滑拼接。依此类推,在完成浅层时窗的横波分裂方位各向异性校正后的数据上,进行深层数据的分析和处理。
     在本论文中,根据反射率法正演模拟了横波分裂现象,利用模拟的数据进行了Alford旋转快慢横波分离和方位各向异性校正处理,处理结果表明了方法的正确性。将研究的转换横波分裂方位各向异性校正技术应用于川西XC气田的宽方位三维三分量地震数据处理,不但得到了裂缝参数,而且还消除了宽方位转换波的方位各向异性影响,提高了转换波径向分量的成像质量,达到了研究目的。
In recent years, multi-wave and multi-component technology has made great progress, People have made more understanding for anisotropy, Multi-wave data contain more information than single P-wave, Utilization for P-wave and S-wave data can get more detailed and reliable formation parameters. When S-wave is not parallel nor perpendicular through the anisotropic medium (fracture), S-wave splitting occurs .When the polarization direction along the fracture, the propagation speed is faster, named as fast S-wave, when the shear wave polarization direction perpendicular to the fracture, the propagation speed is slow, named as slow S-wave.Only when the wave with the fracture orientation at some angle, S-wave will split, and the strength of splitting is closely related to fracture intensity, and we can get the fracture orientation and density from the analysis of S-wave splitting. These parameters can be used to predict fracture more accurately. When P-waves was uesd to explore, the downgoing and upgoing wave meet the interface will be converted into S-waves. When upgoing S-wave encounters fracture, splitting also occurs. Thus, the use of fast and slow wave splitted from converted S-wave has become into smost direct and reliable method to study the development fracture and its direction.
     Arrange the radial and transverse components of converted wave together in accordance with the azimuth order, due to the impact of anisotropy, there is a big azimuth time-delay in radial component azimuths gathers, 0 degrees to 360 degrees azimuths datas show form of sine wave; there is strong energy in transverse component, and also show a great azimuths time delay. In the radial component, peak of the sine wave said direction of anisotropy, while trough side the direction perpendicular to the anisotropy; study found that in the transverse component of 90-degree intervals, the polarity reversal occurs, very reversal point represents the change in the direction of anisotropy. Strong anisotropy in the data, to get better imaging section, anisotropy must be corrected.
     Alford rotation method is mainly used for four-component VSP data by dual-source exploration, according to the SV and SH wave we got the fast and slow wave information and then realize the separation of fast wave and slow wave. This thesis based on converted shear wave splitting theory, using ground azimuth converted wave data, by building mutually perpendicular radial and transverse wave components on which the Alford rotation method used successfully, so as to realize the separation of fast wave and slow wave in surface data. At the same time, by using converted wave azimuth radial and transverse component data, we completed the analysis of multi-layer fracture media. On this basis, we have completed the correction of converted wave azimuthal anisotropy, which greatly improved the azimuth radial component of converted wave imaging quality.
     Azimuth converted shear wave splitting anisotropy correction contain the next main steps:
     First, according to the radial and transverse azimuthal data to determine a shallow analysis window, use Alord rotation in the analysis window to seprate fast and slow wave; If there are multiple azimuth data, you need to strike a different direction, respectively, and then accumulate.
     Secondly, because fast and slow wave are similar, we can get cross-correlation values, and get the anisotropy direction and shear wave time delay by explaining the angle-delay spectrum.
     Then, the time-delay was applied to slow wave to compensate time-delay.
     Finally, according to anisotropy azimuth, use anti-rotation technique to make fast wave and slow wave after compensating time-delay to the original radial and transverse direction, then we can get radial and transverse component after anisotropy corrected.
     These can only complete the anisotropy in first fracture, get the fracture direction in first layer,fracture density, the compensated radial component and other data. The data of fast and slow wave were jointed weighted in first and second analysis window. And so on, to do the deeper data analysis and processing after complete shallow layer analysis.
     In this paper, we forward modeling shear wave splitting according to the reflection ratio method, not only using modeling data to separate the fast and slow wave, but also do the wave anisotropy correction, and the results show that the method is correct. The research method of converted shear wave splitting anisotropy correction was applied to process 3D3C wide-azimuth seismic data in the XC gas fields in West of Sichuan. Not only the fracture parameters was obtained, but also the azimuthal anisotropy of converted waves was eliminated, and the image quality was increased greatly.
引文
[1]姚姚.多波地震勘探的发展历程和趋势展望[J].勘探地球物理进展,2005,28(3):9-14.
    [2]马在田.计算地球物理学概论[M].北京:同济大学出版社,1997.
    [3]蒲静,秦启荣.油气储层裂缝预测方法综述[J].特种油气藏,2008,15(3):169-175.
    [4]黄中玉,等.多分量地震技术[M].北京:石油工业出版社,2007.
    [5]易桂喜,朱介寿,等.用Raileig面波方位各向异性研究中国大陆岩石圈形变特征[J].地球物理学报,2010,53(2):256-268.
    [6]贺振华,黄德济,文晓涛.裂缝油气藏地球物理预测[M].成都:四川科学技术出版社,2007.12.
    [7]朱成宏.地震各向异性研究的新进展[C].第73届SEG年会论文集.
    [8]张中杰.地震各向异性研究进展[J].地球物理学进展,2002,17(2):281-293.
    [9]王良书,等.从地震波各向异性到各向异性地震学:地震波各向异性研究综述[J].高校地质学报,2005(4):544-551.
    [10]王世瑞,等.多分量转换波裂缝检测技术的进展[J].特种油气藏,2004,11(3):12-15.
    [11]曾新吾,等.各向异性介质中的矢量褶积模型与横波分裂算法[J].石油地球物理勘探,1998,33(2):191-198.
    [12]唐建侯,等.p-sv快慢横波旋转分离公式研究[J].天然气工业.2004,24(12):191-198.
    [13]刘红爱,马昭军,甘其刚.基于Alford旋转地转换波各向异性校正技术[J].天然气工业,2011,31(3):41-43.
    [14] Li X Y, Bancroft J C.Converted wave migration and common conversion point binning by equivalent offset[J]. 67th SEG Annual Meeting 1997,Expand Abstract,1587-1590.
    [15]黄中玉.多分量地震勘探的机遇和挑战[J].石油物探,2001,40(2):131-137.
    [16] Xiang-Yang Li, Hengchang Dai. Converted-wave imaging in anisotropic media: An overview[C] SEG, Expanded Abstracts, SEG/Denver 2004 Annual Meeting, 2004, 881-884.
    [17]刘洋,王长春.三维三分量地震勘探观测系统设计方法[J].石油地球物理勘探,2002,37(6):550-555.
    [18] Jianxin Yuan, Xiang-Yang Li.A new approach for converted-wave moveout in transversely isotropic media[J] SEG Expanded Abstracts,1998,17(1):1495-1498.
    [19] Leon Thomsen. Converted‐wave reflection seismology over anisotropic, inhomogeneous media[J].SEG Expanded Abstracts, 1998, 17(1): 2048-2051.
    [20]王磊,李建荣,等.多分量转换波地震勘探技术[J].油气地质与采收率,2002,9(6):1-4.
    [21]杜启振,杨慧珠.方位各向异性介质的裂缝预测方法研究[J].石油大学学报,2003,27(4):32-37.
    [22]李彦鹏,马在田.快慢波分离及其在裂缝监测中的应用[J].石油地球物理勘探,2000,35(4):428-433.
    [23]刘恩儒,岳建华,等.地震各向异性—多组裂隙对横波偏振的影响[J].地球物理学报,2006,49(5):1401-1409.
    [24]李录明,罗省贤.基于横波分裂的裂缝预测方法与应用[J].成都理工大学学报,2003,30(1):52-59.
    [25]甘文权,董良国,等.含裂隙介质中横波分裂现象的数值模拟[J].同济大学学报,2000,28(5):547-551.
    [26]滕佃波,邢春颖.基于地震横波分裂理论的火成岩裂缝预测[J].地球物理学进展,2005,20(2):513-517.
    [27] Bob A.Hardage,Michael V.Deangelo.裂缝系统的横波分析[J].国外石油动态,2007,233(3):18-19.
    [28] Chiou-Fen Shieh.用正交变换估算横波分裂时间[J].石油物探译丛,1998(2):58-61.
    [29]丁伟,等.转换波技术在泥岩裂缝研究中的应用[J].成都理工大学学报,2003,30(1):52-59.
    [30]唐建侯,等.利用横波分裂研究各向异性[J].石油物探译丛,1992(2):23-32.
    [31]裴正林.层状各向异性介质中横波分裂和再分裂数值模拟[J].石油地球物理勘探,2006,41(1):17-25.
    [32]屠世杰,等.YC地区转换波数据处理及裂隙预测[J] .地球物理学进展, 2006,21(2):512-519.
    [33] Jianming Tang,Xiang-Yang Li.Case study of PP and PS seismic response from fractured tight gas reservoirs[C]. SEG Expanded Abstracts, SEG/San Antonio 2007 Annual Meeting, 2007, 1049-1053.
    [34] ianxin Jerry Yuan, Genmeng Chen,Alex Calvert,et al.Estimating effective gamma from C-wave conversion point offsets[C].SEG Expanded Abstracts,SEG/San Antonio 2007 Annual Meeting, 2007,1054-1058.
    [35] Tang Jianming, Xu Xiangrong, Li Xiangui.3D3C Application in Prediction of Fractures of Deep-seated Tight Reservoir:An Example of Gas Exploration in Member 2 of Upper Triassic Xujiahe Formation,Xinchang Gas Field[C].CPS/SEG Beijing 2009 International Geophysical Conference & Exposition,ID:1244, 2009.
    [36] Tianji Xu,Bing-jie Cheng,Qi-gang Gan.Research and Application of 3D Post-stack PP and PS Waves Joint Inversion[C].CPS/SEG Beijing 2009 International Geophysical Conference & Exposition,ID:1243, 2009.
    [37] Xu Xiangrong,Tang Jianming. Optimization of Converted Wave 3D3C Seismic Acquisition Geometry for Fissured Gas Reservoir[C].CPS/SEG Beijing 2009 International Geophysical Conference & Exposition, ID:1246,2009.
    [38] Ye Tairan,Tang Jianming,John Tinnin.Application of Combined PP/PS Wave Inversion in the Prediction of Deep Tight Clastic Rock Reservoir in the Area of West Sichuan[C].CPS/SEG Beijing 2009 International Geophysical Conference & Exposition, ID:1248,2009.
    [39] Ma Zhaojun,Tang Jianming,Xu Xiangrong.Technology of Prestack Time Migration For Converted Wave and Its Applications[C].CPS/SEG Beijing 2009 International Geophysical Conference & Exposition, ID: 1249, 2009.
    [40] Cheng Bingjie,Tianji Xu, Jianming Tang.Splitting Estimation and Compensation of Converted Wave in Multilayer Fracture Media:A Numerical Modeling Study[C].CPS/SEG Beijing 2009 International Geophysical Conference & Exposition,ID:1249, 2009.
    [41]赵邦六等.多分量地震勘探技术理论与实践.北京:石油工业出版社,2007.
    [42] Crampin,S. and Lovel,J.H.A decade of shear-wave splitting in the Earth’s crust:what does it means?what use can we make of it?what should we do next?Geophysical Journal International 107,1991,387-407.
    [43] H.H.普济廖夫,等著,裘慰庭,等译.横波和转换波法地震勘探.北京:石油工业出版社,1993.
    [44] James Gaiser,Colin Macbeth,Simon Spitz,et all.Multicomponent technology:the players,problems,applications,and trends[J].The Leading Edge.2001,20(9):974-977.
    [45] John Gibson,Roy Burnett,Shuki Ronen,et al.MEMS sensors:Some issues for consideration[J]. The Leading Edge.2005,24(8):786-790.
    [46] Jack Bouska,Rodney Johnston.The first 3D/4-C ocean bottom seismic surveys in the Caspian Sea: Acquisition design and processing strategy[J].The Leading Edge.2005, 24(9):910-921.
    [47] Dominic M.,Manley,Sean F,Rowland W.et al.Structural interpretation of the deepwater Gunashli Field,facilitated by 4-C OBS seismic data[J].The Leading Edge.2005,24(9): 922-926.
    [48] Louis M. Houston, James A. Rice,Drake S. et al.Method for shear-wave static corrections using converted wave refractions[J].SEG Expanded Abstracts,1989,8(1):1298-1301.
    [49] Slotboom. Converted wave (P-SV) moveout estimation[J].SEG Expanded Abstracts,1990, 9(1):1104-1106.
    [50] Armin W.Schafer.Determination of converted-wave statics using P refractions together winth SV refraction[J].SEG Expanded Abstracts,1991,10(1):1413-1415.
    [51] Leon Thomsen.Converted‐wave reflection seismology over anisotropic, inhomogeneous media[J].SEG Expanded Abstracts,1998,17(1):2048-2051.
    [52] Heng-chang Dai,Colin MacBeth.Converted wave phase stability in seabed seismic data[J]. SEG,Expanded Abstracts,1999, 18(1):884-887.
    [53]徐总打,孙波,唐宗璜.P-SV转换波反射系数与野外采集观测系统设计[J].石油物探,1996,35(1):1-12.
    [54]彭苏萍,霍全明,勾精为,等.基于模型的3D3C采集设计与评价[J].煤田地质与勘探,2002, 30(5): 51-54
    [55]刘洋,王长春.三维三分量地震勘探观测系统设计方法[J].石油地球物理勘探,2002,37(6): 550-555.
    [56]芦俊,王赟,孟召平,等.优化P—P、P—SV波联合采集观测系统设计方法[J].地球勘探学进展,2003,18(4):715-723.
    [57]张建军,李占强.用极化分析法提取有效瑞雷波信号[J].矿业科学技术,1999,(3-4):8-13
    [58]黄绪德.由面波求表层横波速度[J].勘探地球物理进展.2004,27(1):9-15.
    [59]罗省贤,李录明,陈春继.VTI介质多波速度与各向异性系数求取及应用[J].物探与化探计算技术,2005, 27(8):214-218.
    [60]刘洋,魏修成.转换波三参数速度分析及动校方法[J].石油地球物理勘探,2005,40(5):504-509.
    [61]李录明,罗省贤.多波多分量地震勘探原理及数据处理方法[M].成都:成都科技大学出版社,1997.
    [62]唐建明马昭军.宽方位三维三分量地震资料采集观测系统设计-以新场气田三维三分量勘探为例[J].石油物探, 2007, 46(3): 310-318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700