用户名: 密码: 验证码:
青藏高原羌塘盆地岩石圈结构及其对油气远景的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羌塘盆地地处青藏高原北部,位于巨型油气聚集带—特提斯构造域的东段,是青藏高原内部海相地层保存最完整、最具油气远景的盆地。众多的地球物理资料表明羌塘盆地可能是印度板块与亚洲板块碰撞交锋的地域,南北向挤压应力影响着盆地内部的构造变形样式。传统的油气勘探方法,对地壳深部构造资料利用甚少。事实上,盆地的深部结构影响着盆地的演化,也影响着油气的运移和保存。因此,深入分析羌塘盆地岩石圈结构,探寻岩石圈构造对油气资源的影响,即是地球科学研究的前沿问题,同时也是青藏高原油气资源调查与评价的迫切任务。
     作者在参加《青藏高原油气资源战略选区调查与评价》项目工作的基础上形成本文。
     (一)论文的主要内容:
     论文主要分为四个部分:第一部分:羌塘盆地岩石圈结构综合研究。根据已有的深部地球物理资料,经系统分析,本文概括出羌塘盆地岩石圈结构具有以下特征:
     羌塘盆地处于印度板块与欧亚板块的碰撞交锋的前缘,俯冲的印度板块与欧亚板块岩石圈地幔在羌塘盆地下方相遇,面对面碰撞汇聚并回流到地幔;地壳减薄,在盆地南北两个缝合带下都存在不同尺度的Moho错断。南侧的拉萨地体和北侧的可可西里地体正向羌塘盆地下挤入;盆地下方大规模的低速体可能是源自温度升高,也可能是地幔物质上涌的结果。在地壳、地幔的部分构造薄弱区可能存在热物质流动的通道,发生大量的物质交换;岩石圈地幔断离后,软流圈地幔物质上涌,地壳发生近东西向的伸展减薄作用。
     第二部分:羌塘盆地基底及其盖层结构研究。由于复杂地表地质条件和恶劣工作条件的影响,羌塘盆地油气勘探技术尚未取得大的突破,盆地基底及其盖层结构特征并不十分清楚。本论文在完成地震数据采集试验和处理试验的基础上,得到在羌塘盆地进行二维反射地震资料采集和处理的技术方法,并提出了对羌塘盆地基底的初步认识。
     (1)采集方案:单井激发,井深不能少于15 m,尽量避免使用组合井。最佳药量为16-18kg;排列长度应大于7000 m,记录长度不少于10 s;合理施放大炮(100kg药量);布设交叉剖面。
     (2)仪器设备:配备大功率、多功能车载钻机。可以保证在多种地质条件下钻进,确保激发井深。先进的采集仪器以保证获得高品质地震数据。
     (3)现场监控:配备高性能的现场监控设备,连夜对当日采集的原始资料进行处理,提供监控剖面。对监控剖面进行评价,指导次日采集,是保证质量的必须措施。
     (4)数据处理:要对地震资料进行精细处理与特殊处理。精细静校正处理过程中需要有针对性地使用有效的静校正方法。综合应用三种地表静校正方法的静校正组合技术和无射线层析成像静校正方法在羌塘盆地应用效果较好;去噪处理时要仔细分析对比,避免在去噪的同时损失大量的有效信号。试验证明自适应噪音压制法和针对不同的噪声分别采用不同的去噪手段的精细去噪能够大大提高剖面的分辨率;采用速度谱解释,与常速扫描、变速扫描和沿层速度分析等方法结合,找出速度变化规律,通过自动剩余静校正迭代处理,建立较准确的速度模型,提高常规速度的分析精度。
     通过新采集的地震剖面和对原有地震数据的重新处理,我们获得了可用于构造解释的剖面,在对这些剖面进行对比分析后,对羌塘盆地基底及其盖层结构提出了一些初步认识:
     羌塘盆地的反射地震剖面在纵向上可分为三部分,上部褶皱变化较剧烈,以TWT2.0 s为界限,可能为中生代地层,TWT 4.5s-6s之间的反射可能为盆地的结晶基底的反映,其上为趋于平缓的古生代地层,其下为元古界。地震剖面上解释出9条多呈北西西向或北西向展布的断裂,对羌塘盆地的基底构造起控制作用;隐伏的中央隆起带向东至少延伸至约89°42′。由西向东中央隆起带的跨度由近61km逐渐减小为40km左右。
     中央隆起将盆地分为南羌塘盆地和北羌塘盆地。中央隆起区盆地的基底较浅、向两侧逐渐加深;基底的变形控制着盆地浅部地层的面貌,盆地浅部的弧形隆起与基底的隆起具有一定的继承性。第三部分探讨了盆地的深部结构对基底及其上覆盖层的影响。主要探讨了缝合带对盆地基底的影响;中央隆起对盆地基底及其盖层的影响;南北向挤压作用对南、北羌塘盆地的改造等内容。认为在班公-怒江缝合带北侧,盆地基底明显受到印度板块岩石圈的向北运动的作用力的影响,基底上部地层受俯冲时产生的拖曳作用而表现为不连续的弧状反射;对比南、北羌塘盆地反射地震剖面,北羌塘盆地的构造变形程度较南羌塘盆地弱。羌塘盆地遭受南北向的构造挤压,导致盆地构造层发生不同程度、不同形式的构造变形,可能由于中央隆起带的阻挡、调节作用,北羌塘盆地变形强度减弱。
     第四部分主要是在以上工作的基础上,对羌塘盆地油气资源远景进行初步的探讨:
     羌塘盆地地壳深处热作用明显,在浅处表现为水热活动及岩浆岩分布,具备了油气田形成和演化所必需的温度条件。中生代地层褶皱变形较强,可以考虑变形相对较弱的古生代地层作为油气勘探另一个重要目的层;羌塘盆地内发育的半地堑构造,作为油气储存的场所,对油气勘察具有战略价值;北羌塘盆地的构造变形程度较南羌塘盆地弱,从而利于油气的保存;羌塘盆地还存在深层油气形成的可能。受欧亚板块和印度板块的碰撞挤压,羌塘盆地的岩石圈发生了不同尺度不同规模的变形,形成的一系列断裂-裂隙系统,为非生物成因的油气由深部向地壳上部运移提供了良好通道。
     (二)论文的主要结论
     在羌塘盆地进行了详尽二维反射地震采集方法试验,提出了在羌塘盆地进行前期二维地震勘探的可行性方案。利用新采集的和重新处理的地震资料,形成了横跨羌塘盆地主体的反射地震长剖面,并对其进行构造解释,这在羌塘盆地的地震工作中尚属首次。在此基础上,作者得出了一些主要结论如下:
     (1)羌塘盆地岩石圈结构
     认为南北向挤压的动力学机制、在缝合带下发生Moho错断、地壳减薄以及深部热作用明显是羌塘盆地岩石圈结构的主要特征。
     (2)羌塘盆地基底及盖层结构研究
     羌塘盆地反射地震剖面有“纵向三分”的特点。上部中生代地层褶皱变化较剧烈,以TWT2.0 s为界限,其下的古生代地层趋于平缓,TWT 4.5s-6s之间的强反射可能反映了盆地的结晶基底,其下为元古界;中央隆起附近基底埋深较浅,向两侧盆地内部逐渐加深,临近班公-怒江缝合带基底最深;南羌塘盆地受班公-怒江缝合带影响较大,构造变形强烈;通过反射地震剖面解释出盆地内部的9条断裂。这些断裂多呈北西西向或北西向展布,控制了盆地的基底构造格架。
     (3)羌塘盆地二维反射地震采集方法研究单井激发,井深不能少于15 m,尽量避免使用组合井;最佳药量为16-18kg;排列长度应大于7000 m,
     记录长度不少于10 s;合理施放大炮(100kg药量);布设交叉剖面。是在羌塘盆地进行前期二维地震勘探的可行性方案。
     (4)羌塘盆地油气资源远景的探讨
     羌塘盆地是较强热作用使盆地具备了油气田形成和演化所必需的温度条件;羌塘盆地内部古生代地层变形相对较弱,可以考虑作为油气勘探另一个目的层;羌塘盆地内发育的半地堑构造,是羌塘盆地中良好的油气聚集单元,对油气勘察具有战略价值;北羌塘的变形相对较弱,油气保存条件要好于南羌塘。
Located in the northern Qinghai-Tibetan Plateau and the eastern tectonic realm of Tethys, where is the accumulation zones of the huge oil and gas in the world, Qiangtang basin is a region of the most hydrocarbon potential, and the most intact marine strata in the northern Qinghai-Tibetan plateau. Geophysical data indicate that the Qiangtang basin may be the collision zone between the Indian plate and the Asian plate, and the north-south compressional stress affects the tectonic deformation pattern of the basin. The previous method of oil and gas exploration has used little deep crustal structure information. In fact, deep structure of the basin affects not only evolution of the basin, but also the formation and migration of the oil and gas. Therefore, analysing the lithosphere structure of the Qiangtang basin and searching the effect of the lithosphere structure on oil and gas resources, are the forefront of earth science research, and also the urgent task of perspective evaluation of oil and gas resource.
     The author completes the paper on the basis of participates in seismic data acquisition and data processing in the project《The investigation and evaluation of strategic precinct of oil and gas resources in the Tibetan Plateau》.
     (1)The main contents:
     This paper can be divided into 4 parts by contents. The first part: Researches on the lithosphere structure in the Qiangtang basin. After the data analysis to the previous deep geophysical data, the author summarized the following characteristics of the lithosphere structure in the Qiangtang basin:
     The Qiangtang basin is located in the front of collision between the Indian plate and Eurasian plate. The subducted Indian plate met with the mantle of Eurasian plate beneath the Qiangtang basin, and entered in the mantle after face-to-face collision. The crust and lithosphere become thin obviously, and the Moho offset occurs in different scales under two sutures on southern and northern boundary of basin, respectively. Lhasa Block to the north basin and the Hoh Xil Block to the south of basin are squeezing into the Qiangtang basin; the large scale low velocity bodies occur beneath the basin has been interpreted to be originated from the going-up of temperature or upwelling of the mantle. There may be channels for the flowing of hot material in partial structural weakness of the crust and mantle, where the large material exchange; after the lithospheric mantle breaking off, the rheosphere mantle upwelling, and the crust was extended near EW direction, and the north-south extensional tectonics occurred in the basin.
     The second part: Study on the basement and covers of the Qiangtang basin. Because of the complex geology conditions and tough work environment, the oil and gas exploration in the Qiangtang basin has not achieved the breakthrough so far. How the basement and covers of the Qiangtang basin is still unclear. On the basis of the completion of seismic data acquisition and processing tests, a 2D seismic data acquisition and processing techniques in the Qiangtang basin has been obtained:
     1) Data Acquisition: Exploding in the single well and more than 15 m well-depth must be adopted, the combination of wells is avoided to be used in exploding. The optional explosive is about 16-18kg; The explosive and well depth are guaranteed as the premise, the spread length of more than 7000 m and record length of more than 10s can ensure the effective reflection of basement; Reasonable big explosive (100 kg ) can increase downward energy and improve resolution, and can obtain effectively the basement reflection. At the mean time, the reflection energy of a relatively stable layer can be enhanced to provide standard stratum for residual static correction in the processing. To track changes of the structure of the same area in different directions and interpret the structure stratum of the area, the cross section is needed to emplace.
     2) Equipment: Drilling is the most important. The high power and vehicle-mounted rig must be equipped. Two MN rigs with 300 horsepower, made in German used in 2004 and a rig with 260 horsepower was used in 2006.They can work in a variety of geological conditions. Where vehicle can’t arrive, the portable diesel rigs were available. The advanced acquisition equipment is a guarantee in acquiring a high quality seismic data. The 408 seismograph has many advantages to ensure the good effect in the Qiangtang area, such as light cables, multiple receivers, acquisitions of higher resolution;
     3) Field Monitoring:Outfitting the field monitoring equipment with high-performance. Processing raw data and provide monitoring profiles in time are helpful to guiding next work, which is a necessary measure to ensure quality.
     4) Data processing: The seismic data needs fine processing and special processing. Fine static correction procedure must focus on the effective static correction method. Comprehensive application technique of the three surface static correction method and non-ray tomography static correction are fairly effective on the processing of seismic data from the Qiangtang basin; Carefully analyzing signals and noises is helpful to avoid the loss of useful signals during removing noises. The tests showed that the adaptive noise suppression and the various noise removal means used for different noises can greatly improve the fine resolution of the profile; Explaining the velocity spectrum, combining with constant-velocity scanning, scanning velocity and the layer velocity analysis can identify effectively the velocity changes. Though creating more accurate velocity model and using an automated residual static correction, the precision of conventional velocity is enhanced.
     Through processing of the new and the old seismic data, we obtained the profile for the structure explanation. Some new understandings to the tectonic framework of the Qiangtang basin are obtained after analyzing and explaining the seismic profiles:
     The reflection seismic profile from the Qiangtang basin may divide into three sections in ordinate direction, the upper Mesozoic strata from 0 to 2.0 s (TWT) appears the intensive fold deformation. The reflections from 4.5s to 6s may represent the basement of basin. The flat Paleozoic stratum lies on the basement and Proterozoic stratum is under the basement; the central uplift divides the basin into the south Qiangtang basin and the north Qiangtang basin. There are 9 faults in the basin distributing in NWW or NW direction, which control the tectonic framework of the Qiangtang Basin; the central uplift extends eastward at least to 89°42 '. The span of the central uplift from west to east gradually decreases from 61km to 40km.
     The basement of central uplift is shallower and become deeper gradually to both sides. The deformation of the basement control the basal outlook of the shallow stratum in the basin, the shallow arcuate dome and the basement uplift have the continuity to some extent.
     The third part: How the deep structure influence on the basement and covers is discussed in the part. In the northern Bangong - Nujiang suture zone, the basement of the basin is affected obviously by northward movement of lithosphere of the Indian plate, the upper basement appears a discontinuous arc-shaped reflection caused by the subduction; The tectonic deformation in the northern Qiangtang basin is weaker than that in the southern Qiangtang basin according to the seismic reflection profiles. The Qiangtang basin suffered from the tectonic compression in the north-south direction, resulting in the structural deformation with various degrees and forms. The deformation of the north Qiangtang basin is weak because of the obstruction or absorption of the central uplift, and thus benefit to the preservation of oil and gas.
     The fourth part: The author gives a preliminary discussion on the oil and gas prospects in the Qiangtang basin on the basis of the above work:
     The obvious thermal feature occurs in the deep crust, indicated by the thermal activity and the magmatic distribution in the shallow level in the Qiangtang basin. This is the necessary temperature conditions for the formation and evolution of oil and gas fields. The deformation of Mesozoic strata is intensive, the Paleozoic strata with the relatively weak deformation can be regarded as another important layer for oil and gas exploration; The half-graben structures developed in the Qiangtang basin have the strategic value for oil and gas survey; Contrasting the south Qiangtang and the north Qiangtang basin, oil and gas prospects in the north Qiangtang is better than that in the south Qiangtang. There is a possibility that oil and gas may exist in the deep Qiangtang basin. Because of the collision of the Indian plate with Eurasian plate, the lithosphere of the Qiangtang basin has developed the intensive deformations, and has formed a series of fault-fracture system. They provide a good channel for migration of non-biogenic gas from the deep in the high temperature and pressure conditions to the upper low temperature and pressure conditions.
     (2) Main results A feasible program valid in prophase of the seismic exploration was brought forward in the article, by detail gathering tests on the 2D seismic reflection data completed in Qiantang basin. Using new and reprocessed seismic data, the author made out a long seismic profile across the Qiangtang basin body, which is the first time in the seismic exploration history of this area. On the basis of the above works, the author gives some main results:
     1) Lithosphere structure of Qitangtang basin: North-South compression、Moho break-off under sutures、thinned crust and obvious thermal action are main lithospheric characters of Qiangtang basin.
     2)Structure of basement and covers of Qiangtang basin: It behaves three parts in depth on the seismic reflection profiles. The upper Mesozoic strata from 0 to 2.0 s (TWT) appear the intensive fold deformation. The reflections from 4.5 s to 6 s may represent the basement of basin. The flat Paleozoic stratum lies on the basement and Proterozoic stratum is under the basement. 9 faults in the basin distributing in NWW or NW direction control the tectonic framework of the Qiangtang basin.
     3) Study on the 2-D reflection seismic acquisition method in the Qiangtang basin: Exploding in the single well with more than 15 m well-depth, 16-18kg optional explosive; more than 7000 m spread length and more than 10s record length; reasonable big explosive (100 kg) and the cross section are effective acquisition technique for prophase exploration in Qiangtang basin.
     4) Oil and gas prospects for the Qiangtang basin: The obvious thermal actions occurring in the deep crust afford the necessary temperature conditions for the formation and evolution of oil and gas fields; With the relatively weak deformation, the Paleozoic strata can be regarded as another important layer for oil and gas exploration; The half-graben structures developed in the Qiangtang basin have the strategic value for oil and gas survey; Contrasting the south Qiangtang and the north Qiangtang basin, oil and gas prospects in the north Qiangtang are better than that in the south Qiangtang for weak deformation.
引文
常承法 , 潘裕生 , 郑锡谰等 . 青藏高原地质构造 . 北京:科学出版社 . 1982
    陈兰 , 伊海生 , 胡瑞忠 . 藏北羌塘地区侏罗纪颗石藻化石的发现及其意义. 地学前缘,2003,10(4):613~618
     陈国英 , 曾融生 . 用地震面波频散研究喜马拉雅山与西藏高原岩石圈构造的差异. 地球物理学报 , 1985 , 28(Suppl.) : 161~173
    程顶胜 , 李永铁 , 雷振宇 , 郭祖军 , 王桂宏 . 青藏高原羌塘盆地油气生成特征. 地质科学, 2000: 35(4):474~481
    崔作舟 , 李秋生 , 吴朝东等. 格尔木-额济纳旗地学断面的地壳结构与深部构造. 地球物理学报, 1995, 38(增刊Ⅱ): 15~28
    崔作舟 , 陈纪平 , 吴苓. 1996 . 花石峡-绍阳深部地壳的结构和构造 . 北京 : 地质出版社 .
     崔作舟 , 尹周勋 , 高恩元等. 青藏高原地壳结构构造及其与地震的关系 . 中国地质科学院院报 , 1990 , 21 : 215~226
     崔作舟, 尹周勋,高恩元,卢德源,付维洲. 1992,青藏高原速度结构和深部构造.中华人民共和国地质矿产部地质专报,第 15 号.
    丁志峰 , 曾融生 . 青藏高原横波分裂的观测研究. 地球物理学报, 1996, 39(2) : 211~220
     董英君 , 薛光琦 , 马开义 . 阿尔金断裂系及邻区剪切波各向异性研究. 地球物理学进展, 1999, 14(4) : 58~65
     范文科 , 袁学诚 . 羊八井至洛扎南北向剖面磁大地电流测深初步成果. 见:李光岑, Mercier J L编. 中法喜马拉雅考察成果 1980. 北京: 地质出版社, 1984, 413~419
     付孝悦 , 张修富. 西藏高原石油地质. 2005. 北京:石油工业出版社
     黄立言 , 卢德源 , 李小鹏等. 藏北色林湖—蓬错—雅安多地带的深部地震测深. 西藏地球物理文集, 北京 : 地质出版社 , 1990 , 25~37
     高恩源 , 徐中信 , 王香泾等. 喜马拉雅山北麓—雅鲁藏布江地区人工爆炸地震测深地壳结构. 西藏地球物理文集, 北京 : 地质出版社 , 1990 , 1~14
     高锐 . 青藏高原岩石圈变形与陆壳运动 . 中国地球物理学会年刊 , 北京 : 地震出版社 , 1990 , 121
    高锐, 吴功建. 青藏高原亚东-格尔木地学断面地球物理综合解释模型与现今地球动力学过程.长春地质学院学报,1995a, 25(3):241~250
     高锐 , 成湘洲 , 丁谦 . 格尔木-额济纳旗地学断面地球动力学模型初探 . 地球物理学报 , 1995b, 38(Suppl.) : 3~14
     高锐 . 青藏高原岩石圈结构与地球动力学的 30 个为什么 . 地质论评 , 1997 , 43(5) : 460~464
    高锐 , 黄东定 , 卢德源等 . 横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面. 科学通报, 2000, 45(17) : 1874~1879
    高锐 , 肖序常 , 刘训等 . 新疆地学断面深地震反射剖面揭示的西昆仑-塔里木结合带岩石圈细结构. 地球学报. 2001a, 22(6): 547~552
    高锐 , 李朋武 , 李秋生等 . 青藏高原北缘碰撞变形的深部过程-深地震探测成果之启示. 中国科学(D 辑), 2001b, 31(增刊) : 66~71
    管烨 , 高弘 , 高锐等 . 新疆塔里木-西昆仑宽频地震观测实验研究 . 地球学报, 2001, 22(6) : 559~562
     郭 飚 , 刘启元 , 陈九辉等 . 青藏高原东北缘—鄂尔多斯地壳上地幔地震层析成像研究. 地球物理学报, 2004, 47(5) : 790~797
     郭新峰 , 张元丑 , 程庆云等. 青藏高原亚东-格尔木地学断面岩石圈电性研究. 中国地质科学院院报, 1990, 21 : 191~202
    贺日政 , 青藏高原近南北向裂谷的岩石圈结构及其动力学过程,中国地质科学院博士论文2003,
    和钟铧 , 杨德明 , 李才. 藏北羌塘盆地褶皱形变研究. 中国地质, 2003, 30(4):357~360
    黄继钧 , 伊海生, 林金辉. 羌塘盆地构造特征及油气远景初步分析. 地质科学, 2003,39(1):1~10
    姜 枚 , 吕庆田 , 薛光琦 . 中、法两国联合进行青藏高原天然地震探测地壳结构的研究. 地球物理学报, 1994, 37(3) : 412~413
     姜 枚 , 吕庆田 , 史大年 . 用天然地震探测青藏高原中部地壳、上地幔结构. 地球物理学报. 1996, 39(4) : 470~482
     姜枚 , 许志琴 , Hirn A 等. 青藏高原及其部分邻区地震各向异性和上地幔特征 . 地球学报 , 2001 , 22(2) : 111~116
    孔祥儒 , 王谦身 , 熊绍柏. 青藏高原西部综合地球物理剖面和岩石圈结构与动力学.科学通报, 1999 ,44(12) : 1257~1265
    赖晓玲 , 李松林 , 张先康 . 玛沁—兰州—靖边剖面壳幔复杂性的研究, 地球物理学进展. 2001, 16(2) : 65~72
    李立 , 金国元 . 西藏岩石圈电性和热状态. 地质矿产部地球物理地球化学勘查研究所所刊 , 1986 , 2 : 121~128
    李庆忠. 打破思想禁锢, 重新审视生油理论—关于生油理论的争鸣. 新疆石油地质,2003,24(1): 75~83
    李秋生 , 卢德源 , 高 锐等. 新疆地学断面(泉水沟—独山子)深地震测深成果综合研究. 地球学报, 2001, 22(6) : 534~540
    李秋生 , 彭苏萍 , 高锐 , 等. 青藏高原北部巴颜喀拉构造带基底隆起的地震学证据. 地质通报, 2003,22(10): 782~788
     李秋生 , 彭苏萍 , 高锐 . 青藏高原莫霍面的研究进展. 地质论评 , 2004 , 50(6) : 598~612
     李秋生 , 彭苏萍 , 高锐等. 东昆仑大地震的深部构造. 地球学报, 2004, 25(1) : 11~16
    李松林 , 张先康 , 张成科 . 玛沁—兰州—靖边地震测深剖面地壳速度结构的初步研究. 地球物理学报, 2002, 45(2) : 210~217
     李廷栋 . 青藏高原隆升的过程和机制 . 地球学报 , 1995, (1) : 1~9
     李亚林 , 黄继钧, 王成善等. 羌塘盆地构造改造强度划分与油气远景区分析. 沉积与特提斯地质, 2005, 25(4):11~16
     刘宏兵 , 孔祥儒 , 马晓冰等. 青藏高原东南地区地壳物性结构特征. 中国科学(D 辑), 2001, 31(增刊) : 61~71
    罗建宁 , 谢渊 , 王小龙 , 朱忠 , 童箴言 , 叶和飞 , 李永铁. 羌塘盆地石油地质条件与初步评价. 沉积与特提斯地质, 2003, 23(1):1~15
    鲁兵 ,徐可强 , 刘池阳. 藏北羌塘地区的地壳电性结构及其意义. 地学前缘, 2003,10(Suppl.):153~159
    卢德源 , 黄立言 , 陈纪平等. 青藏高原北部沱沱河-格尔木地区地壳和上地幔的结构模型和速度分布特征. 见: 西藏地球物理文集. 北京: 地质出版社.1990, 51~62
     吕庆田 , 姜枚 , 马开义 . 三维走时反演与青藏高原南部深部构造. 地震学报, 1996, 18(4) : 451~459
    马晓冰 , 孔祥儒 ,于晟 .青藏高原西部大地电磁测深探测结果. 科学通报 , 1997,42(11): 1185~1187
     马晓冰 , 孔祥儒 , 刘宏兵等.青藏高原东部大地电磁测深探测结果 . 中国科学(D 辑) , 2001, 31(增刊): 72~76
     孟令顺 , 申江胜 , 齐立等. 西藏羊八井一聂拉木地区的重力工作及其初步解释. 石油物探 , 1984, 23(2) : 1~21
     孟令顺 , 高锐 , 周富祥等. 利用重力异常研究亚东-格尔木地壳构造. 中国地质科学院院报 , 1990a, 21: 149~161
     孟令顺 , 姜喜荣 , 张风华等. 新疆叶城-西藏狮泉河重力剖面与地壳结构 . 地球物理学报 , 1990b, 33(6): 670~677
     孟令顺 , 管烨 , 齐立等. 格尔木-额济纳旗地学断面及其邻区重力场与深部地壳构造. 地球物理学报, 1995, 38(增刊Ⅱ): 36~45
     孟令顺 , 齐立 , 高锐等. 横过阿尔金山的重力测量及初步解释. 长春科技大学学报, 1998, 28(3) : 345~350
     莫宣学 , 赵志丹 , 邓晋福等. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 2003, 10(3):135~148
     潘裕生 . 青藏高原的形成和隆升. 地学前缘, 1999 , 6(3) : 153~163
     钱辉 , 姜枚 , 薛光琦等. 天然地震接收函数揭示的青藏高原东部地壳结构. 地震学报, 2001, 23(1): 103~108
     秦国卿 , 陈九辉 , 刘大建等. 昆仑山脉和喀喇昆仑山脉地区的地壳上地慢电性结构特征 . 地球物理学报 , 1994 , 37(2) : 193~199
    邵学钟, 张家茹, 殷秀华. 油气勘探与地壳深部构造研究. 石油勘探与开发, 1999,26(2):11~14
     沈显杰 , 张文仁 , 杨淑贞等. 青藏高原南北地体壳幔热结构差异的大地热流证据. 中国地质科学院院报, 1990, 21 : 203~214
     沈显杰 , 杨淑贞 , 沈继英 . 格尔木-额济纳旗地学断面热流研究与分析. 地球物理学报, 1995, 38(增刊Ⅱ) : 86~97
     宋仲和 , 安昌强 , 王椿镛等. 青藏高原及南北带上地幔 P 波速度结构. 地球物理学报, 1985, 28(增刊) : 148~160
     史大年 , 姜枚 , 马开义等 . 阿尔金断裂带地壳和上地慢结构的 P 波层析成像. 地球物理学报,1999, 42(3) : 341~350
     孙鸿烈, 郑度主编. 青藏高原形成、演化与发展. 广州: 广东科技出版社, 1998. 21~23
     孙洁 , 晋光文 , 白登海等. 青藏高原东缘地壳、上地慢电性结构探测及其构造意义.中国科学(D辑), 2003 ,33(增刊) : 173~180
     谭捍东 , 魏文博 , Martyn Unsworth 等. 西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究. 地球物理学报 , 2004 , 47(4) : 685~690
    滕吉文 , 熊绍柏 , 尹周勋等. 喜马拉雅山北部地区的地壳结构模型和速度分布特征. 地球物理学报 , 1983 , 26(6) : 525~540
    滕吉文 , 尹周勋 , 熊绍柏. 西藏高原北部地区色林错-蓬错-那曲-索县地带地壳结构与速度分布. 地球物理学报 , 1985,28(增刊Ⅰ) : 28~42
     滕吉文等. 柴达木东盆地的深层地震反射波和地壳构造. 地球物理学报 , 1974, 17(2) : 121~134
    滕吉文, 张中杰, 杨顶辉, 等. 青藏高原地体划分的地球物理标志研究. 地球物理学报, 1996,39(5):629~641
     滕吉文 , 张中杰 , 王光杰等 . 喜马拉雅碰撞造山带的深层动力过程与陆-陆碰撞新模型 . 地球物理学报 , 1999, 42(4) : 481~494
    王成善, 伊海生, 李勇, 等.羌塘盆地地质演化与油气远景评价. 北京:地质出版社,2001
    王成善,伊海生, 刘池阳, 等. 西藏羌塘盆地古油藏发现及其意义. 石油天然气地质, 2004,25(2):139~143
    王成善, 李亚林, 李永铁. 青藏高原油气资源远景评价中的十个问题 . 石油学报, 2006,27(4)
    王椿镛 , 吴建平 , 楼海 . 川西藏东地区的地壳P波速度结构. 中国科学(D辑), 2003a, 33(增刊) : 181~189
     王椿镛 , 韩渭宾 , 吴建平等. 松潘—甘孜造山带地壳速度结构 . 地震学报 , 2003b, 25(3) : 229~241
     王剑 , 谭富文 , 李亚林等. 青藏高原重点沉积盆地油气资源潜力分析. 2004. 北京:地质出版社
     王谦身 , 武传真 , 江为为 . 青藏高原西部吉隆-鲁谷地区的重力场与地壳构造. 科学通报, 1997, 42(8) : 858~862
     王谦身 , 安玉林 . 青藏高原东部玛多—沙马地区的重力场与深部构造. 地球物理学进展, 2001, 16(4): 4~10
     王式 , 卢德源 , 黄立言等 . 西藏高原南北走向的地壳结构模型和速度分布特征 .西藏地球物理文集, 北京 : 地质出版社 , 1990 , 38~47
    王有学 , 钱辉 . 青海东部地壳速度结构特征研究. 地学前缘, 2000, 7(4) : 568~579
     吴功建 , 高锐 , 余钦范等. 青藏高原“亚东-格尔木地学断面”综合地球物理调查与研究. 地球物理学报, 1991 , 34(5) : 552~562
     吴建平 , 明跃红 , 叶太兰等 . 体波波形反演对青藏高原上地幔速度结构的研究 . 地球物理学报 , 1998 , 41(增刊) : 15~25
     吴庆举 , 曾融生 . 用宽频带远震接收函数研究青藏高原的地壳结构 . 地球物理学报 , 1998, 41(5) : 669~679
     吴庆举 , 曾融生 , 赵文津 . 喜马拉雅-青藏高原的上地幔倾斜构造与陆-陆碰撞过程. 中国科学(D 辑) , 2004 , 34(10) : 919~925
    吴宣志 , 吴春玲 , 卢杰等 . 利用深地震反射剖面研究北祁连-河西走廊地壳细结构.地球物理学报, 1995,38(Suppl.Ⅱ): 29~35
    伍新和,王成善,伊海生,等. 西藏羌塘盆地烃源岩古油气藏带及其油气勘探远景. 石油学报, 2005,26(1):13~17
    熊绍柏 , 滕吉文 , 尹周勋. 西藏高原地区的地壳厚度和莫霍界面的起伏. 地球物理学报 , 1985, 28(增刊Ⅰ) : 16~27
    熊绍柏 , 刘宏兵 . 青藏高原西部的地壳结构 . 科学通报, 1997, 42(12) : 1309~1312
    熊盛青,周伏洪,姚正熙,等.青藏高原中西部航磁调查.2001.北京: 地质出版社
     薛光琦 , 姜枚 , 宿和平 . 利用层析成像研究青藏高原叶城-狮泉河地区深部构造. 中国科学(D 辑) ,2004 ,34(4) : 329~334
    徐新忠 , 齐雄飞 , 杨长来等. 青海花石峡-甘肃阿克赛人工爆破地震测深成果. 见:中国地球物理学会编, 中国地球物理学会年刊. 北京: 地震出版社. 1993,80
    许志琴 , 杨经绥 , 姜枚 . 青藏高原北部的碰撞造山及深部动力学—中法地学合作研究新进展. 地球学报 , 2001 , 22(1) : 5~10
     许志琴 , 姜枚 , 杨经绥等 . 青藏高原的地幔结构 : 地幔羽、地幔剪切带及岩石圈俯冲板片的拆沉 . 地学前缘 , 2004, 11(4) : 329~343 尹安.喜马拉雅-青藏高原造山带地质演化. 地球学报, 2001,22(3):193~230
     余钦范 , 孙运生 , 楼海等. 亚东格尔木地学断面的磁结构 . 中国地质科学院院报, 1990, 21: 183~190
     余钦范 , 楼海 , 胡中栋. 格尔木-额济纳旗地学断面岩石圈结构的磁场分析. 地球物理学报, 1995, 38(增刊Ⅱ): 58~70
     袁学诚 , 李立 , 金国元等 . 西藏洛扎-那曲一带地壳和上地幔的磁大地电流测深研究 . 见: 西藏地球物理文集 , 北京: 地质出版社, 1990, 63~71
    袁学诚. 论中国西部岩石圈三维结构及其对寻找油气资源的启示. 中国地质, 2005,32(1): 1~12
    曾融生 , 阚荣举 . 柴达木盆地西部地壳深界面的反射波. 地球物理学报, 1961, 10(1) : 120~125
     曾融生 , 丁志峰 , 吴庆举 . 青藏高原岩石圈构造及动力学过程研究. 地球物理学报, 1994, 37(增刊) : 99~116
     曾融生 , 丁志峰 , 吴庆举 . 喜马拉雅-祁连山地壳构造与大陆-大陆碰撞过程. 地球物理学报, 1998 ,41(1) : 49~60
     曾融生 , 丁志峰 , 吴庆举等. 喜马拉雅及南藏的地壳俯冲带—地震学证据. 地球物理学报, 2000 , 43(6) : 780~797
     曾融生 , 吴庆举 , 丁志峰等. 印度-欧亚碰撞与洋-陆碰撞的差异,2006,地震学报,(待刊)
    赵俊猛 , 张先康 , 王尚旭等 . 准噶尔盆地、天山造山带、塔里木盆地、阿尔金造山带、柴达木盆地和昆仑造山带(北缘)岩石圈结构及其动力学研究. 见:中国地球物理学会编, 中国地球物理学会年刊. 昆明: 云南科技出版社, 2001,13
    赵俊猛 , 张先康 , 邓宏钊等 . 拜城—大柴旦剖面的上地壳Q值结构. 地球物理学报. 2003, 46(4) : 503~509
    赵文津 , 刘葵 , 蒋忠惕 , 等 . 西藏班公湖-怒江缝合带—深部地球物理结构给出的启示. 地质通报, 2004, 23(7): 623~635
    赵政璋 , 李永铁 , 叶和飞 , 等.青藏高原羌塘盆地石油地质. 北京:科学出版社.2001
    赵政璋 , 李永铁 , 叶和飞 ,等.青藏高原海相烃源层的油气生成. 北京:科学出版社.2001
    赵政璋 , 李永铁 , 叶和飞 , 等. 2001,青藏高原中生界沉积相及油气储盖层特征. 北京:科学出版社
    赵志丹, 莫宣学 , 罗照华 , 等. 印度-亚洲俯冲带结构——岩浆作用证据. 地学前缘, 2003,10(3):149-157
    张恺. 油气成因二元论与油气勘探新准则. 新疆石油地质, 1996,17(4):303~308
    张恺. 论油气壳-幔非生物成因的物质基础及运移动力. 新疆石油地质, 1998,19(1):1~6
    张景廉 ,冯有奎 , 李相博. 无机生油理论与 21 世纪中国油气勘探战略. 新疆石油地质,2002,23(3):248~251
     张中杰 , 李英康 , 王光杰等 . 藏北地壳东西向结构与“下凹”莫霍面-来自宽角反射剖面的启示. 中国科学(D 辑), 2001, 31(11):881~888
    张中杰 , 滕吉文 , 李英康等. 藏南地壳速度结构与地壳物质东西向“逃逸”—以佩枯错—普莫雍错宽角反射剖面为例. 中国科学(D 辑) , 2002 ,32(10) : 793~798
    郑洪伟. 青藏高原地壳上地幔三维速度结构及其地球动力学意义. 2006. 中国地质科学院博士论文
     朱仁学 , 胡祥云 . 格尔木-额济纳旗地学断面岩石圈电性结构的研究. 地球物理学报, 1995, 38(增刊Ⅱ) : 46~57
     庄真 , 傅竹武 , 吕梓玲等 . 青藏高原及邻近地区地壳与上地幔剪切波三维速度结构. 地球物理学报, 1992, 35(6) : 694~709
     钟大赉 , 丁 林 . 青藏高原的隆起过程及其机制探讨. 中国科学(D 辑), 1996 , 26(4) : 289~295
     中国地质科学院岩石圈研究中心. 青藏高原岩石圈结构构造和形成演化 .中华人民共和国地质矿产部地质专报 , 第 20 号, 北京: 地质出版社, 1996,83~93
    中国科学院地球物理研究所 . 西藏高原当雄-亚东地带地壳与上地幔结构和速度分布的爆炸地震研究 . 地球物理学报 ,1981, 24(2) : 155~170
    周华伟, Michael A, Murphy L, et al. 西藏极其周围地壳、地幔地震层析成像—印度板块大规模俯冲于西藏高原之下的证据.地学前缘, 2002, 9(4):285~292
    Bird, P., 1978, Initiation of intracontinental subduction in the Himalayas: J. Geophys. Res., 83: :4975~4987.
    Chen, L.S., Booker, J.R., Jones, A.G., Wu, N., Unsworth, M.J., Wei, W.B. and Tan, H.D., 1996, Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying: Science, 274:1694~1696.
    Chung, S.L., Chu, M.F., Zhang, Y.Q. et al.Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Science Reviews.2005, 68:173-196
     Frederik, T., Ni, J , INDEPTH-Ⅲ Seismic Team. Seismic imaging of the down-welling Indian lithosphere beneath central Tibet. Science, 2003, 300, 1424~1427
    Gao, R., Ma, Y. S., Zhu, X., et al. The Lithospheric structures of the Songpan block in the northeastern Tibetan plateau-revelation from investigation of the deep seismic profile, GEOLOGIE ALPINE, 20th Himalayan- Karakoruam- Tibet Workshop Special Extended Abstracts, Aussois,France, 2005, 44, 58
    Haines, S. S., Klemperer, S. L., Brown, L., Guo, J.R., Mechie, J., Meissner, R. , Ross A and Zhao Wenjin. INDETH-Ⅲ seismic data: From surface observations to deep crustal processes in Tibet. Tectonics , 2003,22(1):1~18
    Hirn, A., Lepine, J.C., Jobert, T.G., Sapin, M., Wittlinger, G., Xu, Z.X., Gao, E.Y., Wang, X.J., Teng, J.W., Xiong, S.B., Pandey, M.R. and Talte, J.M., 1984, Crust structure and variability of the Himalayan border of Tibet. Nature, 307(5946):23~25.
     Hirn, A., Jiang, M., Sapin, M., et al. Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet . Nature , 1995 , 375 :571~574
    Kao, H., Gao, R., Rau, R,J., Chen., R.Y, Shi, D.N., Chen, W.P., and Wu, F.T., 2001, Seismic image of the Tarim basin and its collision with Tibet: Geology, 29(7):575~578.
    Kosarev, G., Kind, R., Sobolev, S.V., Yuan, X., Hanka, W. and Oreshin, S., 1999, Seismic evidence for a detached Indian lithospheric mantle beneath Tibet: Science, 283:1306~1309.
    Kind, R., Ni, J., Zhao, W.J. Wu, J.X., Yuan, X.H., Zhao, L.H., Sandvol, E., Reese, C., Nabelek, J. and
    Hearn, T., 1996, Evidence from earthquake data for a partially molten crustal layer in Southern Tibet: Science, 274:1692~1694.
    Kind, R., Yuan, X., Saul, J., Nelson, D., Sobolev, S.V., Mechie, J., Zhao, W., Kosarev, G., Ni, J., Achauer, U. and Jiang, M. 2002, Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction: Science, 298: 1219~1221
     McNamara, D. E. , Owens, T. J. , Silver, P. G. , et al.. Shear wave anisotropy beneath the Tibetan plateau. Journal of Geophysical research, 1994 , 99(B7) : 13655~13665
    McNamara, D.E., Owens, T.J., and Walter, W.R., 1995, Observations of the regional phase propagation across the Tibetan Plateau: Journal of Geophysical Research, 100(22):22215~22229.
    Murphy, M.A., Yin, A., Harrison, T.M., Dürr, S.B., Chen, Z., Ryerson, F.J., Kidd, W., Wang, X. and Zhou, X., 1997, Did the Indo-Asian collision alone create the Tibetan plateau: Geology, 25(8): 719~722.
    Nelson, K.D., Zhao, W.J., Brown, L.D., Kuo, J., Che, J.K., Liu, X.W., Klemperer, S.L., Marovsky, Y.,
    Meissner, R., Mechie, J., Kind, R., Wenzel, F., Ni, J., Nabelek, J., Chen, L.S., Tan, H.D., Wei, W.B., Jones, A.G., Booker, J., Unsworth, M., Kidd, W., Hauck, M., Alsdorf, D., Ross, A., Cogan, M.,Wu, C.D., Sandvol,
    E. and Edwards, M., 1996, Partially molten middle crust beneath Southern Tibet: Synthesis of project INDEPTH results: Science, 274:1684~1688.
    Owens ,T. J., Zandt G. 1997. Implications of crustal property variations for models of Tibetan plateau evolution. Nature 387: 37~43
    Pelkum, S., Monsalve, G., Sheehan, A., Pandey, M.R., Sapkota, S., Bilham, R. and Wu, F. 2005, Imaging the Indian subcontinent beneath the Himalaya: Nature, 435:122~1225.
    Ross, A., Brown, L., Passakorn, P., Nelson, K.D., Klemperer, S., Haines, S., Zhao, W.J. and Guo, J.R., 2004, Deep reflection surveying in central Tibet: lower-crustal layering and crustal flow: Geophysical Journal International, 156:115~128.
    Spratt, J.E., Jones A.G., Nelson, K.D., Unsworth, M.J. and INDEPTH-MT Team., 2005, Crustal structure of the India-Asia collision zone, southern Tibet, from INDEPTH MT investigations: Physics of the Earth and Planetary Interiors:1~11.
    Tilmann, F., Ni, J., and INDEPTH Seismic Team, 2003, Seismic imaging of the down-welling Indian lithosphere beneath central Tibet, Science, 300: 1424~1427.
    Wang, C.Y., Han, W.B., Wu, J.P., Lou, H. and Bai, Z.M., 2003b, Crustal structure beneath the Songpan-Garze orogenic belt: Acta Seimologica Sinica, 16(3): 237~250.
    Wei, W.B., Unsworth, M., Jones, A., Booker, J., Tan. H.D, Nelson, D., Chen, L.S., Li, S.H., Solon, K. and Bedrosian, P., 2001, Detection of widespread fluids in the Tibetan crust by magnetotelluric studies: Science, 292: 716~718.
    Wittlinger, G., Vergne, J., Tapponnier, P., Farra, V., Poupinet, G., Jiang, M., Su, H., Herquel, G. and Paul, A., 2004, Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet: Earth and Planetary Science Letter, 221: 117~130
     Yuan, X.C., Xu, X.Z. Global geoscience transect (GGT) across Eurasia-Chinese part (from Altay to Taiwan) , Abstracts of 30th international geological congress, 1996, 1:141
    Zhang, Z. J. , Wang, G. J. P-wave structure along 1100km long wide-angle seismic profile in the eastern Tibet. AGU, Japan. 2002.
     Zhang, Z. J., Klemperer S L. West-east variation in crustal thickness in northern Lhasa block, central Tibet, from deep seismic sounding data. J. Geophys. Res., 2005, 110(B9), Bo9403
    Zhao, W.J., Nelson, K.D., and Project INDEPTH Team, 1993, Deep seismic reflection evidence for continental underthrusting beneath southern Tibet, Nature, 366(9): 557~559
    Zhao, W.J., Nelson, K.D. and Meissner, R.,1997, Advances of INDEPTH—A deep profiling study in Tibet and the Himalayas: Episodes, 20(4): 266~272
    Zhao, W.J., Mechie, J., Brown, L.D., Guo, J., Haines, S., Hearn, T., Klemperer, S.L., Ma, Y. S., Meissner, R., Nelson, K.D., Ni, J.F., Pananont, P., Rapine, R., Ross, A. and Saul, J. 2001, Crustal structure of central Tibet as derived from INDEPTH wide-angle seismic data: Geophysical Journal International, 145: 486~498.
    Zhu, L.P., and Helmberger, D.V., 1998, Moho offset across the northern margin of the Tibetan plateau: Science, 281, 1170~1172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700