用户名: 密码: 验证码:
东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球动力学演化过程与成矿作用是当今矿床学研究的前沿,而有关幔源岩浆活动及有关岩浆混合作用与大陆形成演化、大规模成矿作用的关系受到越来越广泛的重视。祁漫塔格作为青藏高原北部的重要组成部分,地处阿尔金、东昆仑、柴达木地块相互交织的“构造结”,大致经历了太古宙-古元古代古陆核形成、新元古代古大陆裂解与超大陆汇聚、早古生代-晚古生代早期洋陆转换、晚古生代-早中生代洋陆转换及中新生代陆内叠覆造山等不同阶段,与古生代-早中生代岩浆活动有关的内生金属矿产资源十分丰富,研究程度较低。本文以板块构造演化和造山作用研究为基础,选择区内典型中酸性侵入岩及其相关矿床为研究对象,开展祁漫塔格地区中酸性侵入岩浆活动与成矿作用研究,揭示成矿系统发育机制、成矿物质聚集过程和成矿机理,初步建立以壳-幔相互作用为主的区域构造-岩浆-成矿模型,总结不同类型矿床找矿标志,根据地质及地球物理、地球化学信息,提出找矿远景地区。取得以下主要进展和成果:
     1.长城纪小庙岩组为矽卡岩-云英岩-石英脉型钨锡矿床的主要赋矿层位,也是其重要的矿源层;蓟县纪狼牙山组为层控矽卡岩型铅锌矿床的赋矿层位,为成矿提供了部分成矿物质,层间碳酸盐岩也是铅锌富集成矿的关键因素;奥陶纪祁漫塔格群(滩间山群)和石炭纪缔敖苏组等是区内矽卡岩型铁多金属矿床的主要赋矿层位,其中祁漫塔格群(滩间山群)可能为成矿提供了部分成矿物质。
     2.区内与中酸性侵入岩浆活动有关的主要矿床类型包括矽卡岩-云英岩-石英脉型钨锡矿床、斑岩型铜钼矿床、矽卡岩型铁铜铅锌多金属矿床、层控矽卡岩型铅锌矿床及与碱性花岗岩有关稀有矿床等,成矿时代主要为早古生代、晚古生代早期、早中生代,与早古生代-晚古生代构造-岩浆旋回、晚古生代-早中生代构造-岩浆旋回密切相关。
     3.志留纪(429~430Ma)北东向分布的英云闪长岩-二长花岗岩类以A型花岗岩为主,与矽卡岩-云英岩-石英脉型钨锡成矿(白干湖、戛勒赛等)密切相关,成矿时代为(427±13)Ma,成矿物质主要来源于地壳,成矿流体具岩浆水特征,为中高温、中盐度、低密度的NaC1-H2O-CO2体系,流体的不混溶作用是石英脉型矿体形成的主要因素。
     4.早-中泥盆世(385~410Ma)花岗闪长岩-石英闪长岩-二长花岗岩类与区内的矽卡岩型铁多金属成矿(野马泉北带等)密切相关,以I型花岗岩为主。成矿物质及成矿流体主要来源于区内岩浆活动。
     5.与斑岩型铜钼(卡而却卡等)、矽卡岩型铁多金属(尕林格等)、层控矽卡岩型铅锌(维宝、虎头崖等)成矿密切相关的主要为中-晚三叠世(212~242Ma)花岗闪长岩-石英闪长岩-二长花岗岩-花岗岩类,以I+A型花岗岩为主,碰撞-后碰撞阶段的地幔底侵、古老陆壳重熔是其主要成因。卡而却卡矿区花岗闪长岩、暗色包体、似斑状二长花岗岩岩石学、地球化学、Sr-Nd-Hf同位素及锆石U-Pb年龄均较为相似,εNd(t)为-5.3~-4.2,εHf(t)为-8.6~-1.6,具有壳幔物质混合的特征,可能是由于壳幔岩浆混合均一化作用而成。
     卡而却卡斑岩型矿床辉钼矿Re-Os模式年龄为(245.5±1.6)Ma,成矿物质具有壳幔混合来源,成矿流体主要来源于岩浆热液,具高温、高盐度的特征,流体的沸腾作用对成矿具有一定的贡献。矽卡岩型矿床(尕林格)成矿物质也具有壳幔混合来源,中高温岩浆热液与地层的水岩反应是矽卡岩型铁多金属成矿的主要因素。层控矽卡岩型铅锌矿床(维宝、虎头崖)成矿流体为岩浆流体体系,富含CO2、CH4,具中温、高盐度的特征,局部地区加入大气降水(如虎头崖),成矿物质也具有壳幔混源特征。
     6.晚三叠纪末(~210Ma)形成于碰撞后环境的碱性花岗岩与稀有矿化(于沟子)关系密切,为A型花岗岩,烧绿石、褐帘石等是稀有、稀土元素的主要含矿矿物。
     7.对祁漫塔格地区构造-岩浆-成矿作用进行了梳理,并总结了不同类型矿床的找矿标志,在此基础上,综合地球物理、地球化学信息,提出白干湖-戛勒赛W、Sn找矿远景区,滩北雪峰-乌兰乌珠尔Cu、Fe多金属找矿远景区,维宝-野马泉-哈西亚图Fe、Cu、Pb、Zn多金属找矿远景区,卡而却卡一带Cu、Fe、Mo找矿远景区,野牛沟-土窑洞Fe、稀有找矿远景区等5个找矿远景区。
Geodynamic evolution process and metallogeny is an essential research field all over theworld. Meanwhile it has been drawn more attentions to the relationship betweenmantle-derived magmatism, magma mixing and continental evolution, large-scale metallageny.Qimantag region, as an important part of northern Tibetan Plateau, is located in the structuralknot of Altyn, East Kunlun, Qadam block, and has experienced five tectonic evolutionarystages: craton formation in Archean-Palaenproterozoic era, palaeocontinental break-up andsupercontinent coverging in new Proterozoic era, ocean-continent transition in earlyPaleozoic-early late Paleozoic era and late Paleozoic-early Mesozoic era, incontinentaloverprinted orogeny in Meso-Cenozoic era. The metallic ore deposits in this aera are relatedwith magmatism, especially Paleozoic-early Mesozoic magmatism. The degree of research onmagmatism and mineralization is very low. Regarding typical intermediate-acid intrusiverocks and related deposits as research objects, the paper studies on relationship betweenintermediate-acid intrusive magmatism and metallageny in Qimantag area, revealsmetallagenic system developmental mechanism, metallogenic material aggregation processand metallogenic mechanism on the basis of theory of plate tectonic evolution. After buildingregional structure-magma-metallogenic model mainly with crust-mantle interaction andconcluding prospecting criteria of different types of deposits according to geological,geophysical and geochemical information, the paper presents prospective areas. Mainprogresses and achievements are as follows:
     1. The main ore-bearing strata of skarn-greisen-quartz vein type tungsten-tin deposits isXiaomiao Formation in Changcheng Period which is important source bed of W, Sn.Liangyashan Formation in Jixianian Period provides parts of mineralizing materials, and isthe ore-bearing horizon of layered skarn type Pb-Zn deposits. And interlayer carbonate is alsothe key factor of Pb-Zn enrichment. The skarn-type iron-polymetallic deposit often occurs inQimatag Group (Tanjianshan Group) in Ordovician and Di’aosu Group in Carboniferous, andQimatag Group (Tanjianshan Group) probably provided parts of mineralizing materials.
     2. Main types related with intermediate-acid intrusive magmatism includeskarn-greisen-quartz vein type tungsten-tin deposits, porphyry Cu-Mo deposits, skarn type Fe-Cu-Pb-Zn polymetallic deposits, layered skarn type Pb-Zn deposits and some rare-elementand REE deposits with alkali granites. The metallogenic epochs are early Paleozoic, latePaleozoic, early Mesozoic eras, which are closely related to the early Paleozoic-late Paleozoictectonomagmatic cycle and the late Paleozoic-early Mesozoic tectonomagmatic cycle.
     3. The tonalites and monzogranites are A-type granites forming in Silurian (429~430Ma),and are closely related to the skarn-greisen-quartz vein type W-Sn mineralization.Metallogenic epoch was427±13Ma. The main ore forming materials were derived ultimatelyfrom the crust. Ore-forming fluid shows some characteristics of magma water and belongs toNaC1-H2O-CO2system with medium-high temperature, middle salinity and low density. Theimmiscibility of fluids is the main factor to form quartz-vein type ore bodies.
     4. The Early-Middle Devonian granodiorites, quartz diorite, and monzogranites,dominating by I type granite, are related with skarn-type iron-polymetallic deposits. The mainore forming materials and fluid are derived from magmatic activity.
     5. Porphyry type Cu-Mo deposits, skarn type Fe polymetallic and layered skarn typePb-Zn deposits are closely associated with the granodiorites, quartz diorites, monzogranites,which belong to I+A type granites. The chief genesis is mantle underplating and remelting ofancient continental crust. The petrology, geochemistry, Sr-Nd-Hf isotope and Zircon U-Pb ageof granodiorite, dark enclaves, porphyaceous monzogranites are similar in Kaerqueka oredistrict, with εNd(t)(-5.3~-4.2) and εHf(t)(-8.6~-1.6). These features indicate that there maybe homogenization magma mixing during the process of crustal and mantle materials mixing.
     The Re-Os model age of porphyry type Cu-Mo deposits in Kaerqueka is245.5±1.6Ma.And the ore forming materials of porphyry type Cu-Mo deposits in Kaerqueka origins fromcrust and mantle. The ore-forming fluid is derived from magmatic hydrothermal activityfeatured by high-temperature and high salinity. The boiling of ore-forming fluid contributes tomineralization. The ore-forming materials of skarn type deposits, such as Galinge, have themixing sources of crust and mantle. The mineralization is related with the reaction betweenmid-high temperature magmatic hydrothermal liquid and wall-rocks. The ore-forming fluid oflayered skarn type Pb-Zn deposits is magma fluid system enriching in CO2and CH4, withcharacteristics of middle-temperature, high salinity. The meteoric water is partly mixed inlocal areas, such as Hutouya. The ore forming materials are also from both of crust and mantle.
     6. The alkali granites, A-type granite, is formed in post-collisional extensionalenviorment at the end of late Triassic era (~210Ma), and is closely related with rare elementsand REE mineralization, whose major ore minerals are pyrochlore and allanite.
     7. After organizing the tectonic-magmatic-mineralization model and concludingprospecting criteria of different types of deposits, the paper proposes five prospecting areassynthesizing geophysical and geochemical informations: Baiganhu-Galesai W-Sn prospectingarea, Tanbeixuefeng-Wulanwuzhuer Cu-Fe polymetallic prospecting area,Weibao-Yemaquan-Haxiyatu Fe-Cu-Pb-Zn polymetallic prospecting area, KaerquekaCu-Fe-Mo prospecting area and Yeniugou-Tuyaodong Fe, rare elements and REE prospectingarea.
引文
[1]毛景文,谢桂青,张作衡,等.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,2005,21(1):169-188.
    [2] Sillitoe, R.H. A plate tectonic model for the origin of porphyry copper deposits[J].Economic Geology,1972,67(2):184-197.
    [3] Hofstra, A.H., Cline, J.S. Characteristics and models for Carlin-type gold deposits[J].Reviews in Economic Geology,2000,13:163-220.
    [4]毛景文,谢桂青,李晓峰,等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J].地学前缘,2004,11(1):45-55.
    [5]侯增谦,宋玉财,李政,等.青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型[J].矿床地质,2008,27(2):123-144.
    [6] Jahn, B., Wu, F., Chen, B. Massive granitoid generation in Central Asia: Nd isotopeevidence and implication for continental growth in the Phanerozoic[J]. Episodes,2000,23(2):82-92.
    [7]肖庆辉,邢作云,张昱,等.当代花岗岩研究的几个重要前沿[J].地学前缘,2003,10(3):221-229.
    [8]莫宣学,赵志丹,周肃,等.印度-亚洲大陆碰撞的时限[J].地质通报,2007,26(10):1240-1244.
    [9]任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘,1999,(3):85.
    [10]肖庆辉,邱瑞照,邓晋福,等.中国花岗岩与大陆地壳生长方式初步研究[J].中国地质,2005,32(3):343-352.
    [11]潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化[J].岩石学报,2006,22(3):521-533.
    [12]朱弟成,莫宣学,牛耀龄,等.新元古代—早古生代的拉萨地块是澳大利亚大陆北缘的一部分吗?:2009年全国岩石学与地球动力学研讨会论文集,长春,2009:288.
    [13]李荣社,计文化,杨永成.昆仑山及邻区地质[M].北京:地质出版社,2008.
    [14]莫宣学,罗照华,邓晋福,等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报,2007,13(3):403-414.
    [15]李文渊.祁漫塔格找矿远景区地质组成及勘查潜力[J].西北地质,2010,43(4):1-9.
    [16]洪大卫.花岗岩研究的最新进展及发展趋势[J].地学前缘,1994,1(Z1):79-86.
    [17]洪大卫.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,(2):441.
    [18] Soesoo, A. Fractional crystallization of mantle‐derived melts as a mechanism for someI‐type granite petrogenesis: an example from Lachlan Fold Belt, Australia[J]. Journal ofthe Geological Society,2000,157(1):135-149.
    [19] Mushkin, A., Navon, O., Halicz, L., et al. The petrogenesis of A-type magmas from theAmram Massif, southern Israel[J]. Journal of Petrology,2003,44(5):815-832.
    [20] Peccerillo, A., Barberio, M., Yirgu, G., et al. Relationship between mafic and peralkalinesilicic magmatism in continental rift setting: a petrological, geochemical and isotopicstudy of the Gedemsa volcano, central Ethiopian rift[J]. J. Petrol,44:2003-2032.
    [21] Hawkesworth, C., Kemp, A. Using hafnium and oxygen isotopes in zircons to unravelthe record of crustal evolution[J]. Chemical Geology,2006,226(3):144-162.
    [22] Kemp, A., Hawkesworth, C., Foster, G., et al. Magmatic and crustal differentiationhistory of granitic rocks from Hf-O isotopes in zircon[J]. Science,2007,315(5814):980-983.
    [23] Kemp, A., Hawkesworth, C., Paterson, B., et al. Episodic growth of the Gondwanasupercontinent from hafnium and oxygen isotopes in zircon[J]. Nature,2006,439(7076):580-583.
    [24] Condie, K.C., Beyer, E., Belousova, E., et al. U–Pb isotopic ages and Hf isotopiccomposition of single zircons: the search for juvenile Precambrian continental crust[J].Precambrian Research,2005,139(1):42-100.
    [25] Eiler, J.M.“Clumped-isotope” geochemistry—The study of naturally-occurring,multiply-substituted isotopologues[J]. Earth and Planetary Science Letters,2007,262(3):309-327.
    [26] Chappell, B. Two contrasting granite types[J]. Pacific geology,1974,8:173-174.
    [27] Loiselle, M., Wones, D. Characteristics and origin of anorogenic granites[A].proceedings of the Geological Society of America Abstracts with Programs[C],1979.
    [28] Whalen, J.B., Currie, K.L., Chappell, B.W. A-type granites: geochemical characteristics,discrimination and petrogenesis[J]. Contributions to mineralogy and petrology,1987,95(4):407-419.
    [29] Collins, W., Beams, S., White, A., et al. Nature and origin of A-type granites withparticular reference to southeastern Australia[J]. Contributions to mineralogy andpetrology,1982,80(2):189-200.
    [30] Gerlach, D.C., Avélallemant, H.G., Leeman, W.P. An island arc origin for the CanyonMountain ophiolite complex, eastern Oregon, USA[J]. Earth and Planetary ScienceLetters,1981,53(2):255-265.
    [31]吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217-1238.
    [32] Pitcher, W. Granite type and tectonic environment [M]. Mountain building processes.1983:40.
    [33] Harris, N., Marzouki, F., Ali, S. The Jabel Sayid complex, Arabian Shield: geochemicalconstraints on the origin of peralkaline and related granites[J]. Journal of the GeologicalSociety,1986,143(2):287-295.
    [34] Maniar, P.D., Piccoli, P.M. Tectonic discrimination of granitoids[J]. Geological societyof America bulletin,1989,101(5):635-643.
    [35] Barbarin, B. Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids ofthe Sierra Nevada batholith, California[J]. Journal of Geophysical Research: Solid Earth(1978–2012),1990,95(B11):17747-17756.
    [36] Pearce, J.A., Harris, N.B., Tindle, A.G. Trace element discrimination diagrams for thetectonic interpretation of granitic rocks[J]. Journal of Petrology,1984,25(4):956-983.
    [37] Pearce, J.A., Lippard, S., Roberts, S. Characteristics and tectonic significance ofsupra-subduction zone ophiolites[J]. Geological Society, London, Special Publications,1984,16(1):77-94.
    [38]吴福元.中国北方造山带地壳形成时间的Nd同位素制约[J].地球学报(第18卷增刊),1997:123-125.
    [39]韩宝福,何国琦,王式.后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质[J].中国科学(D辑),1999,29(1):16-21.
    [40] Kay, R.W., Mahlburg Kay, S. Delamination and delamination magmatism[J].Tectonophysics,1993,219(1):177-189.
    [41] Harris, N., Ayres, M., Massey, J. Geochemistry of granitic melts produced during theincongruent melting of muscovite: implications for the extraction of Himalayanleucogranite magmas[J]. Journal of Geophysical Research: Solid Earth (1978–2012),1995,100(B8):15767-15777.
    [42] Johannes, W., Holtz, F. Petrogenesis and experimental petrology of granitic rocks[M].Springer Berlin,1996.
    [43] Pidgeon, R., Nemchin, A., Hitchen, G. Internal structures of zircons from Archaeangranites from the Darling Range batholith: implications for zircon stability and theinterpretation of zircon U-Pb ages[J]. Contributions to mineralogy and petrology,1998,132(3):288-299.
    [44] Johnston, A.D., Wyllie, P.J. Constraints on the origin of Archean trondhjemites based onphase relationships of Nuk gneiss with H2O at15kbar[J]. Contributions to mineralogyand petrology,1988,100(1):35-46.
    [45] Miller, C., Schuster, R., Kl tzli, U., et al. Post-collisional potassic and ultrapotassicmagmatism in SW Tibet: geochemical and Sr–Nd–Pb–O isotopic constraints formantle source characteristics and petrogenesis[J]. Journal of Petrology,1999,40(9):1399-1424.
    [46] Hoskin, P., Black, L. Metamorphic zircon formation by solid‐state recrystallization ofprotolith igneous zircon[J]. Journal of metamorphic Geology,2000,18(4):423-439.
    [47] Ding, L., Kapp, P., Zhong, D., et al. Cenozoic volcanism in Tibet: Evidence for atransition from oceanic to continental subduction[J]. Journal of Petrology,2003,44(10):1833-1865.
    [48] Rollinson, H.R., Tarney, J. Adakites—the key to understanding LILE depletion ingranulites[J]. Lithos,2005,79(1):61-81.
    [49]张旗,王焰,潘国强,等.花岗岩源岩问题——关于花岗岩研究的思考之四[J].岩石学报,2008,24(6):1193-1204.
    [50]肖庆辉,邱瑞照,邢作云,等.花岗岩成因研究前沿的认识[J].地质论评,2007,10(3):221-230.
    [51]王涛.花岗岩混合成因研究及大陆动力学意义[J].岩石学报,2000,16(2):161-168.
    [52] Castro, A., Douce, A.E.P., Corretgé, L.G., et al. Origin of peraluminous granites andgranodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis[J].Contributions to mineralogy and petrology,1999,135(2-3):255-276.
    [53]李昌年.岩浆混合作用及其研究评述[J].地质科技情报,2002,21(4):49-54.
    [54]邓晋福, F.J.Flower, M.,苏尚国,等.地中海地区明显反差的岩石圈变形与岩浆活动的共存:陆-陆碰撞过程中地幔流的响应与表现[J].现代地质,2004,18(4):435-442.
    [55]王德滋,谢磊.岩浆混合作用:来自岩石包体的证据[J].高校地质学报,2008,14(1):16-21.
    [56] Cong, F., Lin, S., Zou, G., et al. Magma mixing of granites at Lianghe: In-situ zirconanalysis for trace elements, U-Pb ages and Hf isotopes[J]. Science China Earth Sciences,2011,54(9):1346-1359.
    [57]邓晋福,吴宗絮,赵国春,等.华北地台前寒武花岗岩类、陆壳演化与克拉通形成[J].岩石学报,1999,15(2):190-198.
    [58] Wiebe, R., Smith, D., Sturm, M., et al. Enclaves in the Cadillac Mountain granite(coastal Maine): samples of hybrid magma from the base of the chamber[J]. Journal ofPetrology,1997,38(3):393-423.
    [59] Wilcox, R.E. The idea of magma mixing: history of a struggle for acceptance[J]. TheJournal of geology,1999,107(4):421-432.
    [60] Sklyarov, E., Fedorovskii, V. Magma mingling: Tectonic and geodynamicimplications[J]. Geotectonics,2006,40(2):120-134.
    [61] Perugini, D., De Campos, C.P., Dingwell, D.B., et al. Trace element mobility duringmagma mixing: preliminary experimental results[J]. Chemical Geology,2008,256(3):146-157.
    [62] Wyllie, P., Cox, K., Biggar, G. The habit of apatite in synthetic systems and igneousrocks[J]. Journal of Petrology,1962,3(2):238-243.
    [63]周珣若.花岗岩混合作用[J].地学前缘,1994,1(1-2):87-97.
    [64]莫宣学.岩浆与岩浆岩:地球深部“探针”与演化记录[J].自然杂志,2011,33(5):255-259.
    [65] Hibbard, M. Textural anatomy of twelve magma-mixed granitoid systems[J]. Enclavesand granite petrology. Developments in petrology,1991,13:431-444.
    [66] Barbarin, B. A review of the relationships between granitoid types, their origins and theirgeodynamic environments[J]. Lithos,1999,46(3):605-626.
    [67] Pitcher, W. Granite type and tectonic environment[M]. London: Mountain buildingprocesses,1983.
    [68]齐有强,胡瑞忠,刘燊,等.岩浆混合作用研究综述[J].矿物岩石地球化学通报,2008,27(4):409-416.
    [69] Grasset, O., Albarède, F. Hybridization of mingling magmas with different densities[J].Earth and Planetary Science Letters,1994,121(3):327-332.
    [70] Poli, G., Tommasini, S., Halliday, A. Trace element and isotopic exchange duringacid-basic magma interaction processes[J]. Transactions of the Royal Society ofEdinburgh-Earth Sciences,1996,87(1):225-232.
    [71] Perugini, D., Poli, G. Analysis and numerical simulation of chaotic advection andchemical diffusion during magma mixing: petrological implications[J]. Lithos,2004,78(1):43-66.
    [72] Petrelli, M., Perugini, D., Poli, G. Transition to chaos and implications for time-scales ofmagma hybridization during mixing processes in magma chambers[J]. Lithos,2011,125(1):211-220.
    [73] Anderson, A. Magma mixing: petrological process and volcanological tool[J]. Journal ofVolcanology and Geothermal Research,1976,1(1):3-33.
    [74] Andrews, B.J., Gardner, J.E., Housh, T.B. Repeated recharge, assimilation, andhybridization in magmas erupted from El Chichón as recorded by plagioclase andamphibole phenocrysts[J]. Journal of Volcanology and Geothermal Research,2008,175(4):415-426.
    [75] Sato, E., Sato, H. Study of effect of magma pocket on mixing of two magmas withdifferent viscosities and densities by analogue experiments[J]. Journal of Volcanologyand Geothermal Research,2009,181(1):115-123.
    [76] Perugini, D., Poli, G. The mixing of magmas in plutonic and volcanic environments:Analogies and differences[J]. Lithos,2012,153:261-277.
    [77] Janou ek, V., Braithwaite, C.J., Bowes, D., et al. Magma-mixing in the genesis ofHercynian calc-alkaline granitoids: an integrated petrographic and geochemical study ofthe Sázava intrusion, Central Bohemian Pluton, Czech Republic[J]. Lithos,2004,78(1):67-99.
    [78]李昌年,廖群安.赣东北前寒武纪港边杂岩体的岩浆混合作用及其地质意义[J].岩石矿物学杂志,2006,25(5):357-376.
    [79]李武显,董传万,周新民.平潭和漳州深成杂岩中斜长石捕虏晶与岩浆混合作用[J].岩石学报,1999,15(2):286-290.
    [80]康磊,李永军,张兵,等.新疆西准噶尔夏尔莆岩体岩浆混合的岩相学证据[J].岩石矿物学杂志,2009,28(5):423-432.
    [81]李胜荣,孙丽,张华锋.西藏曲水碰撞花岗岩的混合成因:来自成因矿物学证据[J].岩石学报,2006,22(4):884-894.
    [82]王禄彬,王汝成,朱金初.广西姑婆山里松岩体及暗色包体的副矿物研究:含锡矿物特征与岩浆混合的矿物指示[J].高校地质学报,2011,17(3):423-435.
    [83] Wallace, G.S., Bergantz, G.W. Wavelet-based correlation (WBC) of zoned crystalpopulations and magma mixing[J]. Earth and Planetary Science Letters,2002,202(1):133-145.
    [84]莫宣学.岩浆作用与青藏高原演化[J].高校地质学报,2011,17(3):351-367.
    [85] Kaygusuz, A., Ayd n ak r, E. Mineralogy, whole-rock and Sr–Nd isotope geochemistryof mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NETurkey: evidence of magma mixing, mingling and chemical equilibration[J]. Chemie derErde-Geochemistry,2009,69(3):247-277.
    [86] Turner, S., Platt, J., George, R., et al. Magmatism associated with orogenic collapse ofthe Betic–Alboran domain, SE Spain[J]. Journal of Petrology,1999,40(6):1011-1036.
    [87] Wang, K.-L., Chung, S.-L., O'reilly, S.Y., et al. Geochemical constraints for the genesisof post-collisional magmatism and the geodynamic evolution of the northern Taiwanregion[J]. Journal of Petrology,2004,45(5):975-1011.
    [88] Wang, Q., Wyman, D.A., Xu, J., et al. Early Cretaceous adakitic granites in the NorthernDabie Complex, central China: implications for partial melting and delamination ofthickened lower crust[J]. Geochimica et Cosmochimica Acta,2007,71(10):2609-2636.
    [89]董申保,洪大卫,许保良.花岗岩拓扑学的研究展望[J].地质论评,2001,47(4):356-360.
    [90] Defant, M.J., Drummond, M.S. Derivation of some modern arc magmas by melting ofyoung subducted lithosphere[J]. Nature,1990,347(6294):662-665.
    [91] Defant, M.J., Kepezhinskas, P. Evidence suggests slab melting in arc magmas[J]. Eos,Transactions American Geophysical Union,2001,82(6):65-69.
    [92]张旗,王焰,刘伟,等.埃达克岩的特征及其意义[J].地质通报,2002,21(7):431-435.
    [93] Cailai, W., Wooden, J.L., Jingsui, Y., et al. Granitic magmatism in the North Qaidamearly Paleozoic ultrahigh-pressure metamorphic belt, Northwest China[J]. InternationalGeology Review,2006,48(3):223-240.
    [94] Wu, C., Yang, J., Wooden, J., et al. Zircon SHRIMP dating of granite from Qaidamshan,NW China[J]. Chinese Science Bulletin,2002,47(5):418-422.
    [95] Winther, K.T., Newton, R.C. Experimental melting of hydrous low-K tholeiite: evidenceon the origin of Archaean cratons[J]. Bulletin of the Geological Society of Denmark,1991,39:213-228.
    [96] Williamson, B., Shaw, A., Downes, H., et al. Geochemical constraints on the genesis ofHercynian two-mica leucogranites from the Massif Central, France[J]. Chemical Geology,1996,127(1):25-42.
    [97] Watson, E., Harrison, T. Zircon thermometer reveals minimum melting conditions onearliest Earth[J]. Science,2005,308(5723):841-844.
    [98] Jingsui, Y., Zhiqin, X., Jianxin, Z., et al. Early Palaeozoic North Qaidam UHPmetamorphic belt on the north‐eastern Tibetan plateau and a paired subduction model[J].Terra Nova,2002,14(5):397-404.
    [99] Bonin, B. A-type granites and related rocks: evolution of a concept, problems andprospects[J]. Lithos,2007,97(1):1-29.
    [100] Selleck, B.W., Mclelland, J.M., Bickford, M. Granite emplacement during tectonicexhumation: The Adirondack example[J]. Geology,2005,33(10):781-784.
    [101] Maas, R., Nicholls, I.A., Legg, C. Igneous and metamorphic enclaves in the S-typeDeddick Granodiorite, Lachlan Fold Belt, SE Australia: petrographic, geochemical andNd-Sr isotopic evidence for crustal melting and magma mixing[J]. Journal of Petrology,1997,38(7):815-841.
    [102] Robb, L., Armstrong, R., Waters, D. The history of granulite-facies metamorphism andcrustal growth from single zircon U–Pb geochronology: Namaqualand, South Africa[J].Journal of Petrology,1999,40(12):1747-1770.
    [103]刘红涛,翟明国,刘建明,等.华北克拉通北缘中生代花岗岩:从碰撞后到非造山[J].岩石学报,2002,18(4):433-448.
    [104]张宏飞, Harris, N., Parrish, R.,等.北喜马拉雅萨迦穹窿中苦堆和萨迦淡色花岗岩的U-Pb年龄及其地质意义[J].科学通报,2004,49(20):2090-2094.
    [105] Hawkins, D.P., Wiebe, R.A. Discrete stoping events in granite plutons: A signature oferuptions from silicic magma chambers?[J]. Geology,2004,32(12):1021-1024.
    [106] Castillo, P.R. An overview of adakite petrogenesis[J]. Chinese Science Bulletin,2006,51(3):257-268.
    [107]肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].北京:地质出版社,2001:1-294.
    [108]任继舜,姜春发,张正坤.中国大地构造及其演化[M].北京:科学出牍社,1985.
    [109]殷鸿福,张克信.中央造山带的演化及其特点[J].地球科学,1998,23(5):437-442.
    [110]袁万明,莫宣学,喻学惠,等.东昆仑印支期区域构造背景的花岗岩记录[J].地质论评,2000,46(2):203-211.
    [111]罗照华,邓晋福.青海省东昆仑地区晚古生代——早中生代火山活动与区域构造演化[J].现代地质,1999,13(1):51-56.
    [112]罗照华,莫宣学,卢欣祥,等.透岩浆流体成矿作用——理论分析与野外证据[J].地学前缘,2007,14(3):165-183.
    [113]王秉璋,罗照华,潘彤,等.青藏高原祁漫塔格地区早古生代火山岩岩石构造组合和LA-ICP-MS锆石U-Pb年龄[J].地质通报,2012,31(6):860-874.
    [114]崔美慧,孟繁聪,吴祥珂.东昆仑祁漫塔格早奥陶世岛弧:中基性火成岩地球化学、Sm-Nd同位素及年代学证据[J].岩石学报,2011,27(11):3365-3379.
    [115]刘彬,马昌前,张金阳,等.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示[J].岩石学报,2012,(6):1785-1807.
    [116]赵振明,马华东,王秉璋,等.东昆仑早泥盆世碰撞造山的侵入岩证据[J].地质论评,2008,54(1):47-56.
    [117]谌宏伟,罗照华,莫宣学,等.东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义[J].岩石矿物学杂志,2006,25(1):25-32.
    [118]莫宣学,罗照华.东昆仑造山带岩浆混合花岗岩及其填图方法基础研究[R],2002.
    [119]刘成东,张文秦,莫宣学,等.东昆仑约格鲁岩体暗色微粒包体特征及成因[J].地质通报,2002,21(11):739-744.
    [120]刘成东,莫宣学,罗照华,等.东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征[J].地球学报,2003,24(6):584-588.
    [121]刘成东,莫宣学,罗照华,等.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据[J].科学通报,2004,49(6):596-602.
    [122]郭正府,邓晋福.青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J].现代地质,1998,12(3):344-352.
    [123]丰成友,王松,李国臣,等.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义[J].岩石学报,2012,28(2):665-678.
    [124]高永宝,李文渊,马晓光,等.东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J].兰州大学学报(自然科学版),2012,(2):36-47.
    [125]陈丹玲,刘良,车自成,等.祁漫塔格印支期铝质A型花岗岩的确定及初步研究[J].地球化学,2001,30(6):540-546.
    [126]罗照华,柯珊,曹永清,等.东昆仑印支晚期幔源岩浆活动[J].地质通报,2002,21(6):292-297.
    [127]吴祥珂,孟繁聪,许虹,等.青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及Nd-Hf同位素组成[J].岩石学报,2011,27(11):2280-3394.
    [128]邢延安,陈殿义.新疆白干湖钨锡矿床简介[J].吉林地质,2004,23(3):64-66.
    [129]李洪茂,刘忠,时友东,等.新疆东昆仑白干湖钨锡矿床地质特征[J].地质与资源,2005,14(1):33-36.
    [130]李洪茂,时友东,刘忠,等.东昆仑山若羌地区白干湖钨锡矿床地质特征及成因[J].地质通报,2006,25(1):277-281.
    [131]潘维良,刘春涌,景宝盛.新疆维宝铅锌矿床地质特征及成因[J].新疆有色金属,2005, S1:2-4.
    [132]潘维良,李爱民,闫军武.维宝铅锌矿床地质和地球化学特征[D],2008.
    [133]李世金,孙丰月,丰成友,等.青海东昆仑鸭子沟多金属矿的成矿年代学研究[J].地质学报,2008,82(7):949-955.
    [134]伊有昌,焦革军,张芬英.青海东昆仑肯德可克铁钴多金属矿床特征[J].地质与勘探,2006,42(3):30-35.
    [135]丰成友,王雪萍,舒晓峰,等.青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J].吉林大学学报(地球科学版),2011,41(6):1806-1817.
    [136]丰成友,李东生,吴正寿,等.东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J].西北地质,2010,43(4):10-17.
    [137]丰成友,于淼,李大新,等.新疆祁漫塔格巴什尔希钨锡矿床流体包裹体地球化学研究[J].矿床地质,2013,32(1):20-36.
    [138]高永宝,李文渊.东昆仑造山带祁漫塔格地区白干湖含钨锡矿花岗岩:岩石学、年代学、地球化学及岩石成因[J].地球化学,2011,(4):324-336.
    [139]高永宝,李文渊,张照伟.祁漫塔格地区成矿地质特征及潜力分析[J].矿物学报,2009,29(z1):393-394.
    [140]高永宝,李文渊,李侃,等.阿尔金和东昆仑造山带中酸性侵入岩地质、地球化学特征及地质意义[J].新疆地质,2011,29(4):359-366.
    [141]王松,丰成友,李世金,等.青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义[J].中国地质,2009,36(1):74-84.
    [142] Sláma, J., Ko ler, J., Condon, D.J., et al. Ple ovice zircon—a new natural referencematerial for U–Pb and Hf isotopic microanalysis[J]. Chemical Geology,2008,249(1):1-35.
    [143] Liu, Y., Gao, S., Hu, Z., et al. Continental and oceanic crust recycling-inducedmelt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopesand trace elements in zircons from mantle xenoliths[J]. Journal of Petrology,2010,51(1-2):537-571.
    [144]侯可军,李延河,邹天人,等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2595-2604.
    [145] Elhlou, S., Belousova, E., Griffin, W., et al. Trace element and isotopic composition ofGJ-red zircon standard by laser ablation[J]. Geochimica et Cosmochimica Acta,2006,70(18): A158.
    [146] Yuan, S., Peng, J., Hao, S., et al. In situ LA-MC-ICP-MS and ID-TIMS U–Pbgeochronology of cassiterite in the giant Furong tin deposit, Hunan Province, SouthChina: New constraints on the timing of tin–polymetallic mineralization[J]. OreGeology Reviews,2011,43(1):235-242.
    [147]宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作,年龄测定及有关现象讨论[J].地质论评,2002,48(S1):26-30.
    [148] Studley, S., Ripley, E., Elswick, E., et al. Analysis of sulfides in whole rock matrices byelemental analyzer–continuous flow isotope ratio mass spectrometry[J]. ChemicalGeology,2002,192(1):141-148.
    [149]彭建堂,胡瑞忠,蒋国豪.贵州晴隆锑矿床中萤石的Sr同位素地球化学[J].高校地质学报,2003,9(2):244-251.
    [150]杜安道,屈文俊,李超,等.铼-锇同位素定年方法及分析测试技术的进展[J].岩矿测试,2009,28(3):288-304.
    [151]杜安道,赵敦敏,王淑贤,等. Carius管溶样-负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄[J].岩矿测试,2001,20(4):247-252.
    [152]张宗清,杜安道,唐索寒,等.金川铜镍矿床年龄和源区同位素地球化学特征[J].地质学报,2004,78(3):359-365.
    [153]张作衡,柴凤梅,杜安道,等.新疆喀拉通克铜镍硫化物矿床Re-Os同位素测年及成矿物质来源示踪[J].岩石矿物学杂志,2005,24(4):285-293.
    [154] Taylor, S.R., Mclennan, S.M. The continental crust: its composition and evolution[J].1985.
    [155]于文杰,薛连明.略论祁漫塔格地质构造特征[J].西北地质,1986,3:003.
    [156]西安地质调查中心.阿尔金-东昆仑西段成矿带基础地质综合研究报告[R].2012.
    [157]黎存林,王雪萍.青海地勘工作的机遇与核工业地质局面临的挑战[J].青海国土经略,2011,3:012.
    [158]王国灿,王青海,简平,等.东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义[J].地学前缘,2004,11(4):481-490.
    [159]黎敦朋,王向利.阿牙克库木湖幅1/25万区域地质调查报告[R].陕西省地质调查院.2003.
    [160]高晓峰,校培喜,谢从瑞,等.东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义[J].地质通报,2010,29(007):1001-1008.
    [161]陈有炘,裴先治,李瑞保,等.东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄[J].现代地质,2011,25(3):510-521.
    [162]殷鸿福,张克信,王国灿.1:25万冬给措纳湖幅(I47C001002)区域地质调查报告[R].武汉:中国地质大学出版社.2003.
    [163]高晓峰,校培喜,贾群子.滩间山群的重新厘定——来自柴达木盆地周缘玄武岩年代学和地球化学证据[J].地质学报,2011,85(9):1452-1463.
    [164]黎敦朋,李静,张汉军,等.东昆仑祁漫塔格山志留系白干湖组浊积岩特征[J].陕西地质,2003,21(2):39-44.
    [165]陈守建,赵振明,计文化,等.西昆仑及邻区早-中二叠世构造-岩相古地理特征[J].地质科学,2013,48(4):1015-1032.
    [166]张德全,丰成友,李大新,等.柴北缘-东昆仑地区的造山型金矿床[J].矿床地质,2001,20(2):137-146.
    [167]袁桂邦,王惠初,李惠民,等.柴北缘绿梁山地区辉长岩的锆石U-Pb年龄及意义[J].前寒武纪研究进展,2002,25(1):36-40.
    [168]王惠初,陆松年,袁桂邦,等.柴达木盆地北缘滩间山群的构造属性及形成时代[J].地质通报,2003,22(7):487-493.
    [169]孟繁聪,张建新,相振群,等.塔里木盆地东北缘敦煌群的形成和演化:锆石U-Pb年代学和Lu-Hf同位素证据[J].岩石学报,2011,(1):59-76.
    [170]王向利,高小平,刘幼骐,等.东昆仑西段祁漫塔格群的重新厘定[J].西北地质,2010,43(4):168-178.
    [171]何书跃,祁兰英,舒树兰,等.青海祁漫塔格地区斑岩铜矿的成矿条件和远景[J].地质与勘探,2008,44(2):14-22.
    [172]陈隽璐,黎敦朋,李新林,等.东昆仑祁漫塔格山南缘黑山蛇绿岩的发现及其特征[J].陕西地质,2004,22(2):35-46.
    [173]郝杰,刘小汉,桑海清.新疆东昆仑阿牙克岩体地球化学与40Ar/39Ar年代学研究及其大地构造意义[J].岩石学报,2003,19(3):517-522.
    [174]高永宝,李文渊,张照伟.祁漫塔格白干湖-戛勒赛钨锡矿带石英脉型矿石流体包裹体及氢氧同位素研究[J].岩石学报,2011,27(6):1829-1839.
    [175]时友东,尹占军,孙兴友.新疆东昆仑白干湖钨锡矿床Ⅲ矿段地质特征[J].吉林地质,2004,23(4):44-48.
    [176]吉林地质调查院.新疆东昆仑西段黑山-祁曼塔格成矿带钨锡资源调查评价成果报告[R].2008.
    [177]李大新,丰成友,周安顺,等.东昆仑祁漫塔格西段白干湖超大型钨锡矿田地质特征及其矿化交代岩分类[J].矿床地质,2013,32(1):37-54.
    [178] Anderson, I.C., Frost, C.D., Frost, B.R. Petrogenesis of the Red Mountain pluton,Laramie anorthosite complex, Wyoming: implications for the origin of A-type granite[J].Precambrian Research,2003,124(2):243-267.
    [179] Sun, S.S., Mcdonough, W.F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London,Special Publications,1989,42(1):313-345.
    [180]吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185-220.
    [181] Yokart, B., Barr, S., Williams-Jones, A., et al. Late-stage alteration and tin–tungstenmineralization in the Khuntan Batholith, northern Thailand[J]. Journal of Asian EarthSciences,2003,21(9):999-1018.
    [182] Eby, G.N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonicimplications[J]. Geology,1992,20(7):641-644.
    [183] Skjerlie, K.P., Johnston, A.D. Vapor-absent melting at10kbar of a biotite-andamphibole-bearing tonalitic gneiss: implications for the generation of A-type granites[J].Geology,1992,20(3):263-266.
    [184] Douce, A.E.P., Johnston, A.D. Phase equilibria and melt productivity in the peliticsystem: implications for the origin of peraluminous granitoids and aluminousgranulites[J]. Contributions to mineralogy and petrology,1991,107(2):202-218.
    [185] Turner, G., Bannon, M. Argon isotope geochemistry of inclusion fluids fromgranite-associated mineral veins in southwest and northeast England[J]. Geochimica etCosmochimica Acta,1992,56(1):227-243.
    [186] Katzir, Y., Eyal, M., Litvinovsky, B., et al. Petrogenesis of A-type granites and originof vertical zoning in the Katharina pluton, Gebel Mussa (Mt. Moses) area, Sinai, Egypt[J].Lithos,2007,95(3):208-228.
    [187]潘裕生.西昆仑山构造特征与演化[J].地质科学,1990,25(3):224-232.
    [188] Seng r, A. Late Paleozoic and Mesozoic tectonic evolution of the Middle EasternTethysides: implication for the Paleozoic geodynamics of the Tethyan realm[J]. IGCPProject,1991,276:111-149.
    [189]姜耀辉,郭坤一,贺菊瑞,等.青藏高原库地北岩体地球化学特征及其地球动力学机制[J].岩石矿物学杂志,1999,18(3):207-216.
    [190]袁超,周辉,孙敏,等.西昆仑山库地北岩体的地球化学特征及构造意义[J].地球化学,2000,29(2):101-107.
    [191]周辉,李继亮.西昆仑库地煌斑岩的年代学及地球化学特征[J].岩石学报,2000,16(3):380-384.
    [192]张玉学,刘义茂,高思登,等.钨矿物的稀土地球化学特征——矿床成因类型的判别标志[J].地球化学,1990,19(1):11-20.
    [193]彭建堂,胡瑞忠,赵军红,等.湘西沃溪金锑钨矿床中白钨矿的稀土元素地球化学[J].地球化学,2005,34(2):115-122.
    [194]曾志刚.滇东南老君山锌锡钨多金属成矿体系地质地球化学解析[D]:中国科学院地球化学研究所,1997.
    [195]郑永飞,陈江峰.稳定同位素地球化学[M].科学出版社,2000.
    [196]张文淮,陈紫英.流体包裹体地质学[M].中国地质大学出版社,1993.
    [197] Shepherd, T.J., Rankin, A.H., Alderton, D.H. A practical guide to fluid inclusionstudies[M]. Blackie Glasgow,1985.
    [198] Naden, J., Shepherd, T.J. Role of methane and carbon dioxide in gold deposition[J].Nature,1989,342(6251):793-795.
    [199]任云生,雷恩,赵华雷,等.延边杨金沟大型白钨矿矿床流体包裹体特征及成因探讨[J].吉林大学学报:地球科学版,2010,40(4):764-772.
    [200] Tbrahim, M., Kyser, T. Fluid inclusion and isotope systematics of the high-TProterozoic Star Lake Lode gold deposit, Nothern Soskatchewan, Canada[J]. EconomicGeology,1991,86:1468-1490.
    [201]龚庆杰,於崇文,张荣华.柿竹园钨多金属矿床形成机制的物理化学分析[J].地学前缘,2004,4.
    [202]龚庆杰,韩东昱,王玉荣.4.0%NaCl水溶液临界区域内白钨矿溶解度实验测定[J].岩石学报,2006,22(12):3052-3058.
    [203]周宏.甘肃省小柳沟钨矿区成矿流体特征[J].地质找矿论丛,2004,19(2):110-113.
    [204]包亚范,刘延军,王鑫春.东昆仑西段巴什尔希花岗岩与白干湖钨锡矿床的关系[J].吉林地质,2008,27(3):56-67.
    [205] Ramboz, C., Pichavant, M., Weisbrod, A. Fluid immiscibility in natural processes: Useand misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms ofimmiscibility[J]. Chemical Geology,1982,37(1):29-48.
    [206]冯佳睿,周振华,程彦博.云南南秧田钨矿床流体包裹体特征及其意义[J].岩石矿物学杂志,2010,29(1):50-58.
    [207] Higgins, N. Wolframite deposition in a hydrothermal vein system; the Grey Rivertungsten prospect, Newfoundland, Canada[J]. Economic Geology,1985,80(5):1297-1327.
    [208] Seal, R.R., Clark, A.H., Morrissy, C.J. Stockwork tungsten (scheelite)-molybdenummineralization, Lake George, southwestern New Brunswick[J]. Economic Geology,1987,82(5):1259-1282.
    [209] Polya, D. Chemistry of the main-stage ore-forming fluids of the Panasqueira W-Cu(Ag)-Sn deposit, Portugal; implications for models of ore genesis[J]. Economic Geology,1989,84(5):1134-1152.
    [210]孙丰月.东昆仑成矿带重大疑难问题研究报告[R].2009.
    [211]青海省第三地质矿产勘查院.青海省格尔木市野马泉地区铁矿调查评价2011年度工作方案[R].2011.
    [212]吴锁平,王梅英,戚开静. A型花岗岩研究现状及其述评[J].岩石矿物学杂志,2007,26(1):57-66.
    [213] Chappell, B., White, A.J.R. Two contrasting granite types:25years later[J]. AustralianJournal of Earth Sciences,2001,48(4):489-499.
    [214]郭通珍,刘荣,陈发彬,等.青海祁漫塔格山乌兰乌珠尔斑状正长花岗岩LA-MC-ICPMS锆石U-Pb定年及地质意义[J].地质通报,2011,8:004.
    [215]青海省地质调查院.1:25万郎米其提幅区调报告[J].2004.
    [216] Nadoll, P., Mauk, J., Hayes, T., et al. Geochemistry of magnetite from hydrothermal oredeposits and their host rocks in the Proterozoic Belt Supergroup, USA[A]. Proceedings ofthe Smart science for exploration and mining[C], Proc10th Biennial Meeting, Townsville,2009.
    [217]林师整.磁铁矿矿物化学,成因及演化的探讨[J].矿物学报,1982,2(3):166-174.
    [218]洪为,张作衡,蒋宗胜,等.新疆西天山查岗诺尔铁矿床磁铁矿和石榴石微量元素特征及其对矿床成因的制约[J].岩石学报,2012,28(7):2089-2102.
    [219]段超,李延河,袁顺达,等.宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约[J].岩石学报,2012,28(1):243-257.
    [220]王春龙,王义天,董连慧,等.新疆西天山松湖铁矿床稀土和微量元素地球化学特征及其意义[J].矿床地质,2012,31(5):1038-1050.
    [221]李文君,靳新娣,崔敏利,等. BIF微量稀土元素分析方法及其在冀东司家营铁矿中的应用[J].岩石学报,2012,28(11):3670-3678.
    [222] Nystr m, J.O., Billstr m, K., Henríquez, F., et al. Oxygen isotope composition ofmagnetite in iron ores of the Kiruna type in Chile and Sweden[J]. GFF,2008,130(4):177-188.
    [223]袁家铮,张峰.梅山铁矿矿浆成因的系统探讨[J].现代地质,1997,11(2):170-176.
    [224]韩发,葛朝华.马坑铁矿—一个海相火山热液-沉积型矿床[J].中国科学(B辑化学生物学农学医学地学),1983,5:006.
    [225]赵一鸣,林文蔚,毕承思,等.中国矽卡岩矿床[M].北京:地质出版社,2012:1-411.
    [226]李东生.青海省东昆仑成矿带斑岩型矿床成矿规律及找矿前景[D].北京:中国地质大学(北京),2012.
    [227] Hall, D.L., Sterner, S.M., Bodnar, R.J. Freezing point depression of NaCl-KCl-H2Osolutions[J]. Economic Geology,1988,83(1):197-202.
    [228]刘斌,矿物学,沈昆.流体包裹体热力学[M].地质出版社,1999.
    [229]卢焕章,范宏瑞,倪培.流体包裹体[M].科学出版社,2004.
    [230]芮宗瑶,李荫清,王龙生,等.从流体包裹体研究探讨金属矿床成矿条件[J].矿床地质,2003,22(1):13-23.
    [231]青海省有色地质矿产勘查局.青海省格尔木市尕林格地区铁矿普查2011年度工作方案[R].2011.
    [232]谌宏伟,罗照华,莫宣学,等.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制[J].中国地质,2005,32(3):386-395.
    [233] Dupuis, C., Beaudoin, G. Discriminant diagrams for iron oxide trace elementfingerprinting of mineral deposit types[J]. Mineralium Deposita,2011,46(4):319-335.
    [234]王奎仁.地球与宇宙成因矿物学[M].合肥:安徽教育出版社,1989:1-554.
    [235]徐国端.青海祁漫塔格多金属成矿带典型矿床地质地球化学研究[D].云南:昆明理工大学,2010.
    [236]吴庭祥,李宏录.青海尕林格地区铁多金属矿床的地质特征与地球化学特征[J].矿物岩石地球化学通报,2009,28(2):157-161.
    [237]陈世顺,付永侠,保广英,等.青海省东昆仑西段尕林格铁多金属矿床特征及成因[J].矿产与地质,2009,23(6):542-546.
    [238]韩照信.秦岭泥盆系铅锌成矿带中闪锌矿的标型特征[J].西安工程学院学报,1994,16(1):12-17.
    [239]徐国风,邵洁涟.方铅矿的元素混入物研究及标型特征[J].地质地球化学,1979,2:37-42.
    [240] Stacey, J.T., Kramers, J. Approximation of terrestrial lead isotope evolution by atwo-stage model[J]. Earth and Planetary Science Letters,1975,26(2):207-221.
    [241]黄磊.新疆若羌县维宝铅锌矿地质特征及矿床成因[D].北京:中国地质大学(北京),2010.
    [242]祝新友,王莉娟,朱谷昌,等.青海锡铁山铅锌矿床硫同位素地球化学研究--深源与海水硫的混合[J].岩石学报,2010,26(3):657-666.
    [243] Taylor, B., Beaudoin, G. Sulphur isotope stratigraphy of the Sullivan Pb–Zn–Agdeposit, BC: Evidence for hydrothermal sulphur, and bacterial and thermochemicalsulphate reduction[J]. Mineral Deposits Division, Special Publication,2000,1:696-719.
    [244]朱炳泉.地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化[M].科学出版社,1998.
    [245]刘云华,莫宣学,喻学惠,等.东昆仑野马泉地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义[J].岩石学报,2006,22(10):2457-2463.
    [246]张爱奎,刘光莲,丰成友,等.青海虎头崖多金属矿床地球化学特征及成矿-控矿因素研究[J].矿床地质,2013,32(1):94-108.
    [247]朱弟成,潘桂棠,王立全,等.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J].地质通报,2008,27(4):458-468.
    [248]苏松.柴达木盆地西南缘虎头崖铅锌矿矿化规律和经济价值分析[D].北京:中国地质大学(北京),2011.
    [249]马圣钞,丰成友,李国臣,等.青海虎头崖铜铅锌多金属矿床硫、铅同位素组成及成因意义[J].地质与勘探,2012,48(2):321-331.
    [250]丰成友,赵一鸣,李大新,等.青海西部祁漫塔格地区矽卡岩型铁铜多金属矿床的矽卡岩类型和矿物学特征[J].地质学报,2011,85(7):1108-1115.
    [251]吉林省地质调查院.新疆东昆仑西段白干湖成矿带金、铜多金属勘查于沟子铁多金属普查区、纳尔滚铜多金属预查区工作总结[R].2012.
    [252] Belousova, E., Griffin, W.L., O'reilly, S.Y., et al. Igneous zircon: trace elementcomposition as an indicator of source rock type[J]. Contributions to mineralogy andpetrology,2002,143(5):602-622.
    [253]洪大卫,韩宝福.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学: B辑,1995,25(4):418-426.
    [254]丰成友,李东生,吴正寿,等.青海东昆仑成矿带斑岩型矿床的确认及找矿前景分析[A].第四届全国成矿理论与找矿方法学术讨论会论文集[C],成都,2009:171-172.
    [255]佘宏全,张德全,景向阳,等.青海省乌兰乌珠尔斑岩铜矿床地质特征与成因[J].中国地质,2007,34(2):306-314.
    [256]李文渊,张照伟,高永宝,等.秦祁昆造山带重要成矿事件与构造响应[J].中国地质,2011,38(5):1135-1149.
    [257]雷永孝,王立社,李惠英,等.新疆若羌县长沙沟基性-超基性杂岩带找矿潜力分析[J].西北地质,2010,43(4):232-238.
    [258]西安地质调查中心.青藏高原前寒武纪地质综合研究报告[R].2012.
    [259]西安地质调查中心.青藏高原及邻区古生代构造-岩相古地理图说明书[R].2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700