用户名: 密码: 验证码:
聚合物驱后剩余油识别方法及其分布规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
截至2007年底,大庆油田聚合物驱油区块已达30多个,其中有14个区块已完成注聚过程,今后将有更多区块应用聚合物驱油技术并陆续面临聚驱后挖潜问题。为了高效开采比例高达40%以上的聚驱后剩余原油储量,本文开展了聚驱后剩余油识别方法及其分布规律的研究。
     建立了一套集室内驱油实验、核磁共振、岩心磨片荧光分析、密闭取心分析、测井解释和快速数值模拟于一体的聚驱后剩余油潜力和分布规律的评价和识别方法;对大庆油田已完成注聚区块开发现状进行了评价,包括含水率、采出程度、剩余油潜力等;分析了渗透率变异系数、聚合物分子量、聚合物溶液浓度、注入聚合物溶液段塞大小等因素对聚合物驱效果和剩余油潜力的影响规律;研究了聚合物驱提高采收率的机理;对现有相对渗透率曲线进行了分类,定义了I型、II型、III型三种相对渗透率曲线;提出了相对渗透率特征曲线,并给出了其方程;建立了一种计算单个网格块相对渗透率曲线的方法;对北一二排西进行了数值模拟研究;给出了聚驱后微观和宏观剩余油的类型以及分布规律;对不同的剩余油,提出了适宜的继续挖潜措施。
     研究表明,大庆油田14个已完成注聚区块的采出程度为52.8%,地下仍然存在大量剩余油,聚驱后继续挖潜十分必要。岩心渗透率变异系数越大、聚合物分子量越大、聚合物溶液浓度越大、聚合物溶液段塞尺寸越大,聚驱采收率就越大,剩余油饱和度就越低。聚合物驱既可以提高驱油效率,又能够提高波及系数。建立的计算网格块相对渗透率曲线的方法,可实现在数值模拟中对每个网格块计算得到一条相对渗透率曲线,从而提高数值模拟的水平和效率。聚驱后微观剩余油主要包括簇状、盲端、角隅和膜状剩余油;宏观剩余油类型主要包括韵律段上部、连通差型、注采不完善型、分流线部位、采出井端、二线受效型、射孔不完善型、断层附近、成片分布差油层和无效驱替等剩余油。对聚驱后不同单元、不同部位、不同微相、不同类型的剩余油,应采用不同的挖潜措施,有效地进行聚驱后继续提高采收率工作。宏观剩余油主要以综合调整措施挖潜为主,微观剩余油以二元驱、三元驱、泡沫复合驱等化学驱提高采收率技术挖潜为主。
     本文研究成果具有一定理论意义和较高实用推广价值。
By the end of 2007, there are already more than 30 polymer flooding areas in Daqing oilfield, 14 of which have completed polymer injection. In the future, there will more and more areas adopting polymer flood and then facing the problem of potential tapping. There is more than 40% of OOIP still remained in reservoir after polymer displacement. In order to effectively recover this amount of remaining oil, this paper demonstrated a study on the identifying method and distribution rule of the remaining oil after polymer flooding.
     This paper developed a set of method for identifying and evaluating potential and distribution rule of the remaining oil after polymer flooding, which incorporates laboratory experiment, nuclear magnetic resonance, fluorescence of slice of core, natural core analysis, log interpretation and numerical simulation as a whole and capable system. For the second, current situation of areas completed polymer flooding was evaluated, including water cut, recovery percent and remaining potential, etc.. For the third, this paper investigated influence of permeability variation coefficient, molecular weight of polymer, concentration of polymer solution and polymer slug size on flooding effect and remaining potential. For the fourth, mechanism of polymer enhancing recovery was studied. For the fifth, this paper defined 3 types of relative permeability curve, i.e., I-, II- and III-type, constructed eigen curve and corresponding equation and proposed a method for calculating relative permeability curve for every grid block in reservoir simulation. For the sixth, numerical simulation of remaining oil distribution after polymer flooding was made for western Beiyierpai area. For the last, this paper concluded microscopic and macroscopic distribution rule of remaining oil and proposed suitable potential tapping measures for different type of remaining oil.
     Evaluation shows that recovery percent of the 14 areas is 52.8%, a great deal of oil remained underground, and so continuous potential tapping is very necessary. The greater variation coefficient, molecular weight, concentration and polymer slug size, the larger recovery efficient and the lower remaining oil saturation. Polymer flooding can increase both displacing and sweeping efficiency and thus enhance oil recovery. Method for calculating relative permeability curve for every grid block can help increase the art and efficiency of numerical simulation. Microscopic remaining oil after polymer flooding mainly includes cluster, dead-end, cant and film type. Macroscopic remaining oil includes the upper part of rhythmic interval, poor connection, imperfect injection-production, branch stream line, near producing well, the second row of producing wells, imperfect perforation, near fault, large area of poor layer and ineffective displacement, etc.. For remaining oil in different layer unit, location, facies and of type, we should take different suitable measures to tap potential and futher enhance recovery after polymer flooding. Macroscopic remaining oil should be tapped mainly by globally optimized adjustment and microscopic oil by chemical processes such as polymer/surfactant, polymer/surfactant/alkaline and foam combination flooding.
     This study is of certain theoretical significance and value of field-scale application.
引文
[1]王德民,程杰成,吴军政.聚合物驱油技术在大庆油田的应用[J].石油学报,2005, 26(1):74-78.
    [2]孙建英,方艳君.聚驱后剩余油分布及挖潜技术研究[J].大庆石油地质与开发.2005,24(4): 37-39.
    [3]张莉.胜利油田聚合物驱油技术经济潜力分析[J].石油勘探与开发,2007,34(1):79-82.
    [4]王德辰,周辉,刘津桂,等.玉门石油沟油田M油藏生物聚合物驱油技术研究[J].油田化学,1996,13(2):238-242.
    [5]张伯英,孙景民,康恒.黄原胶驱油现场试验效果分析[J].钻采工艺,1999,22(2):70-71.
    [6]孙景民,王喜臣,张成玉.黄原胶在大港枣园油田的应用[J].石油勘探与开发,2000, 27(5):90-92.
    [7]牛金刚.大庆油田聚合物驱提高采收率技术的实践与认识[J].大庆石油地质与开发,2004,23 (05):91-93.
    [8]孔祥亭,付百舟,刘春林.油田聚合物驱潜力评估方法[J].大庆石油地质与开发,2004,(06).
    [9]牛金刚.聚合物驱研究和应用范围进一步拓宽[J].大庆石油地质与开发,2001,(02).
    [10]王德民,发展新理论,搞好有战略意义的技术创新,确保大庆持续稳定发展[C],王德民院士报告论文集,石油工业出版社,2001:403-420.
    [11]徐伟,冯庆忠,马秀峰.利用矿场资料预测剩余油分布[J].西南石油学院学报.2004,26(4):41-43
    [12]李敬功.用产出剖面资料求剩余油饱和度的方法[J].油气井测试.2004,13(4):10-12.
    [13]史小平.特高含水期剩余油分布的定量描述技术[J].内蒙古石油化工.30:124-125.
    [14]王启民,冀宝发,隋军,等,大庆油田三次采油技术的实践与认识[J],大庆石油地质与开发,2001年4月,1-8,16.
    [15]陈鹏,陈福明,李伟.大庆油田特高含水井区聚合物驱潜力分析及布井方案优选[J].油气采收率技术,1999,(02).
    [16]Wang Demin, Liu Heng, Niu Jingang, Chen Fuming. Application results andunderstanding of several problems of industrial scale polymer flooding in Daqing oil field[J]. SPE 50928, 1998.
    [17]Wang Demin,Hao Yuexing,et al., Result of two polymer flooding pilots inthe central area of Daqing oil field[J], SPE 17632,1993.
    [18]Sorbie K S, Parker A and Clifford P J., Experimental and Theoretical Study ofPolymer Flow in Porous Media[J], SPE Reservoir Engineering, 1987, 281-304.
    [19]Wang Demin, Cheng Jiecheng, Li qun, et al. Experience of IOR practices from large-scale implementation in layered sandstones[J]. SPE Asia Paci-fic Oil and Gas Conference and Exhibition held in Brisbane, Australia, 16-18 October 2000, SPE 64287.
    [20]S. Rodriguez, C. Romero, M. L. Sargenti, et al. Flow of Polymer Solutions throu-gh Porous Media[J]. Journal of Non-Newtonian Fluid Mechanics, 1993, 49:63-85.
    [21]张景存,提高采收率方法研究[M],石油工业出版社,1991年12月,123-127.
    [22]高树棠,苏树林,张景纯,等编译.聚合物驱提高石油采收率[M].北京:石油工业出版社,1996.
    [23]王新海,韩人匡,郭尚平.聚合物驱油机理和应用[J].石油学报,1994,15(1):83-91.
    [24]L G.Savins.Non--Newtonian flow through porousmedia[M].Industrial and Engineer Chemistry.1969,(10):18-47.
    [25]张玉亮,张云祥,李俊刚,等.平面模型铬交联聚合物调剂物理模拟[J].油气采收率技术,1995, 2(4);21-25.
    [26]David J.Pye.Improved Secondary Recovery by Control of Water Mobility[J]. JPT,1964,911-916.
    [27] N . Mungan,FW.Smith,J.L.Thompson . Some Aspects of Polymer Floods[J].JPT,1966,1143-1150
    [28]王启民,廖广志,牛金刚.聚合物驱油技术的实践与认识[J].大庆石油地质与开发,1999,(04).
    [29]吴文祥,饶永久,侯吉瑞,等.聚合物的相对分子质量分布对驱油效率的影响[J].大庆石油学院学报,2000,24(4):18-20.
    [30]张宏方,王德民,王立军.聚合物溶液在多孔介质中的渗流规律及其提高驱油效率的机理[J].大庆石油地质与开发,2002,21(4):57-60.
    [31]王克亮,廖广志,杨振宇,等.三元复合和聚合物驱油液粘度对驱油效果影响实验研究[J].油田化学, 2001,18(04):354-357.
    [32]夏惠芬,王德民,刘中春,等.粘弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,22(4):60-65.
    [33]Smith J. E. Transition Pressure: A Quick Method for Quantifying Polyacr-lamide GelStrength[C]. SPE 18793.
    [34]Mack J C and Duvall M L.Performance and Economics of Minnelusa Polymer Floods[C].SPE 12929.
    [35]Davison Paul and Mentzer Eric. Polymer Flooding in North Sea Reservoirs[C]. SPE 9300
    [36]Needham Riley B. and Doe Peter H. Polymer Flooding Review[C].SPE 17140.
    [37]周志军,宋考平,闫亚茹,等.聚合物驱驱替特征模型的建立及其应用[J].大庆石油学院学报. 2002,26(1):101-104.
    [38]元福卿.驱替特征曲线预测聚合物驱效果研究[J].断块油气田.2005,12(4):51-53.
    [39]宋考平,宋洪才,吴文祥.油藏数值模拟理论基础[M].北京:石油工业出版社,1996:57.
    [40]卢祥国,高振环,陈静惠,等,聚合物驱油过程中聚合物滞留及残余油分布的数值模拟研究[J].油田化学,1994年9月25日,230-233.
    [41]戴秀梅.聚合物段塞的数值模拟研究[J].油气地质与采收率.2002,9(3):19-20.
    [42]Yuan Shiyi, Han Dong and Wang Qiang etc.Numerical Simulator for the Co-mbination Process of Profile Control and Polymer Flooding[C].SPE 64792.
    [43]薛家锋,宋考平,程百利,等.聚合物驱替提高采收率值的模型[J].大庆石油学院学报.2003, 27(3): 105-107.
    [44]张继成,宋考平,邓庆军.聚驱开发指标计算数学模型的建立与应用[J].钻采工艺.2003,26(1): 27-29.
    [45]宋考平,陈锐,邓庆军,等.聚合物驱产量和含水率变化规律的预测[J].大庆石油学院学报.2002, 26(1):97-100.
    [46]刘丽,王立军,隋新光,等.大庆油田萨中典型注聚合物区块开发效果评价与分析[C].三次采油技术论文集.北京:石油工业出版社.2005:16-22.
    [47]Khokhar R W and Johson W M. A Deep Iaterlog for Ultra thin Formation Ev-aluation[C].The SPWLA 30th Annual Logging Symposium, June 11-14, 1989.
    [48]Gogarty W B and Fox V G. Viscoelastic Effects in Polymer Flow Through Porous Media[C]. SPE 4025.
    [49]Wang Demin, Xia Huifen and Liu Zhongchun etc. Study of the Mechanism ofPolymer Solution With Visco-Elastic Behavior Increasing Microscopic OilDisplacement Efficiency and the Forming of Steady“Oil Thread”Flow Ch-annels[C]. SPE 68723.
    [50]Wang Demin, Cheng Jiecheng and Yang Qingyan etc.Viscous-Elastic PolymerCan Increase Microscale Displacement Efficiency in Cores[C].SPE 63227.
    [51]Sorbie KS and Walker DJ. A Study of Mechanism of Oil DisplacementUsing Water and Polymer in Stratified Laboratory Core Systems[C].SPE 17397.
    [52]夏惠芬,孔凡顺,吴军政,等.聚合物溶液的弹性效应对驱油效率的作用[J].大庆石油学院学报,2004,28(6):29-31.
    [53]王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率[J].石油学报,2000,21(5):45-50.
    [54]张宏方.衰竭层效应和粘弹性效应对聚合物波及系数的作用研究[D].大庆石油学院, 2003.
    [55]杨付林.聚合物驱油机理及高质量浓度聚合物驱油方法研究[D].大庆石油学院,2004.
    [56]岳湘安,张立娟,刘中春,等.聚合物溶液在油藏孔隙中的流动及微观驱油机理[J].油气地质与采收率, 2002,9(03):4-6.
    [57]李春英,尹文军,马洪飞,等.聚合物调驱特征影响因素分析[J].油气地质与采收率, 2004,11(02):59-61.
    [58]赵永胜,魏国章,陆会民,等.聚合物驱能否提高驱油效率的几点认识[J].石油学报.2001, 22(3):43-46.
    [59]王德民.王德民院士报告论文集[C].北京:石油工业出版社,2001:403-420.
    [60]王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率[J].石油学报,2000,21(5):45-50.87.
    [61]夏惠芬,王德民,关庆杰,等.聚合物溶液的粘弹性实验[J].大庆石油学院学报,2002,26(2):105-108.
    [62]汪伟英.利用聚合物粘弹效应提高驱油效率[J].断块油气田,1995,2(5):27-29.
    [63]宋考平,杨二龙,王锦梅,等.聚合物驱提高驱油效率机理及驱油效果分析[J].石油学报,2004,25(03):71-74.
    [64]付德奎,冯振雨,曲金明.剩余油分布研究现状及展望[J].断块油气田,2007,14(2).
    [65]林承焰.剩余油形成与分布[C].东营:石油大学出版社,2000:111.
    [66]Patton JT., Coats KH and Colegrove G.T etc.Prediction of Polymer Flood Performance[C]. SPE 2546.
    [67]Ali A.Garrouch.A Viscoelastic Model for Polymer Flow in Reservoir Rocks[C]. SPE 54379.
    [68]Yue XiangAn,Xia Huifen and Zhang Yunxiang etc.Calculation of IPR Curvesof Oil Wells for Polymer Flooding Reservoirs[C].SPE 38936.
    [69]王青青,尹文军.胜一区沙二1-3单元聚合物驱见效规律认识[J].断块油气田,2004,11 (4): 60-62.
    [70]赵国忠,孟曙光.聚合物驱含水率的神经网络预测方法[J].石油学报,2004,25(1):70-73.
    [71]孔祥亭,唐莉.聚合物驱开发规划指标预测方法研究[J].大庆石油地质与开发,2001,20(5): 46-49.
    [72]Malcolm J. Pitts, Tom A.Campbell and Harry Surkalo.Polymer Flood of theRapdan Pool[C]. SPE 27820.
    [73]Maldal T., Gilje E., and Kristensen R. Planning and Development of Poly-mer Assisted Flooding for the Gullfaks Field Norway[C]. SPE 35378.
    [74]李中锋.何顺利.非均质三维模型水驱剩余油试验研究[J].石油钻采工艺. 2005,27(4):41-44.
    [75]孙梦茹.基于模糊综合评判的剩余油分布定量描述[J].油气地质与采收率.2005,12(2):52-54
    [76]商胜花.辛37断块油藏高含水期剩余油分布研究[J].特种油气藏.2006,13(1):56-57.
    [77]陈亮,张一伟,熊琦华.严重非均质油藏高含水期剩余油分布研究进展[J].石油大学学报:自然科学版.1996,20(6):101-106.
    [78]袁娜,陈全知.利用井壁取芯资料评价剩余油分布[J].油气田地面工程.2005,24(8).
    [79]Whitebay L E.Improved coring and core-handling procedures for the unco-nsolidated sands of the preen canyon area, Gulf of Mexico[C].SPE 15385.
    [80]冯太少,常士奘.国外剩余油饱和度的测量技术[J].断块油气田.1994,1(1):58-66.
    [81]袁绍建,明柱平.剩余油饱和度测量与监测技术在中原油田的应用[J].钻采工艺.2004, 27(6):104-106.
    [82]Charles M K,Abner J G. A recipe for residual Oil Saturation determinati-on[C]. SPE 8451
    [83]谭廷栋.水驱油田剩余油测井技术[J].中国海上油气(地质).1995,9(6):421-427.
    [84]何素文,张才元,胡斌.利用常规测井资料确定油田注水开发剩余油分布[J].江汉石油职工大学学报.2004,17(2):42-45.
    [85]王立新,张兰江.利用生产测井资料确定剩余油饱和度[J].断块油气田.2002,9(4):86-88.
    [86]Wyatt Jr D F, Storozhenko K K. Cased-Hole C/O Logs Replace Open-Hole Logging in Alberta's Heavy Oil Sands[C]. SPE 38700.
    [87]李兴训,张彤等.井间示踪剂监测聚合物驱效果及剩余油分布研究[J].石油规划设计.2005, 16(2):17-19.
    [88]袁伯琰,陈代伟.碳氧比能谱技术在岩心录井中的应用探讨[J].大庆石油地质与开发.2005, 24(S1):101-102.
    [89]李敬功,李宏魁,高淑娟.能谱测井在油藏剩余油分布研究中应用[J].同位素.2005,18(1-2): 15-20.
    [90]文淑敏,李凤清,董文华.碳氧比能谱测井技术在高含水后期寻找剩余油方面的应用[J].国外油田工程.2005,21(1):38-41.
    [91]戴长林.利用中子寿命测井进行剩余油饱和度评价[J].江汉石油职工大学学报.2005,18(2): 22-23,26.
    [92]陈学周,庞佳春.用井下重力计确定剩余油饱和度[J].国外油田工程.1994,6:19-21.
    [93]王协生,凌寿培.由径向电阻率求含水饱和度的方法及其应用[J].地球物理测井,1990,14(6).
    [94]申本科.用微分法定量判别水淹层级别的条件[J].测井技术.1996,20(1):37-40.
    [95]于兰兄,韩树柏,张玉贵.确定剩余油分布技术[J].西安地质学院学报.1997,19(4):69-75.
    [96]毕生,彭立.注聚开发对测井曲线的影响[J].石油仪器.2002,16(4):43-44.
    [97]刘之的,夏宏泉,陈平.脉冲氧活化测井新技术在油田注聚开发中的应用[J].油气井测试.2005, 14(3):57-58,61.
    [98]Smith J. E. Transition Pressure: A Quick Method for Quantifying Polyacr-lamide GelStrength[C]. SPE 18793.
    [99]Tomich JF, Dalton Jr RL, Deans HA, Shallenberger LK. Single-Well TracerMethod to Measure Residual Oil Measuring Residual Oil Saturation[J].JPT,1973(2): 211-218.
    [100]李淑霞,陈月明.利用井间示踪剂确定剩余油饱和度的方法[J].石油勘探与开发.2001, 28(2):73-75.
    [101]高小鹏,白鹏.用多种放射性同位素示踪剂确定井间剩余油饱和度[J].油气田地面工程.2004, 23(2):9-10.
    [102]俞启泰.水驱特征曲线研究(一)[J].新疆石油地质.1996,17(4):364-369.
    [103]俞启泰.水驱特征曲线研究(二)[J].新疆石油地质.1997,18(1):62-66.
    [104]俞启泰.水驱特征曲线研究(三)[J].新疆石油地质.1997,18(2):153-160.
    [105]俞启泰.水驱特征曲线研究(四)[J].新疆石油地质.1997,18(3):247-258.
    [106]俞启泰.水驱特征曲线研究(五)[J].新疆石油地质.1998,19(3):233-236.
    [107]俞启泰.水驱特征曲线研究(六)[J].新疆石油地质.1999,20(2):141-145.
    [108]俞启泰.水驱特征曲线研究(七)[J].新疆石油地质.1999,20(6):508-512.
    [109]俞启泰.水驱特征曲线研究(八)[J].新疆石油地质.2001,22(3):56-59.
    [110]田冷,何顺利.油藏数值模拟方法研究濮成油田特高含水期剩余油分布[J].内蒙古石油化工.2005,12:91-92.
    [111]佘庆东.化学驱数值模拟软件介绍[J].大庆石油地质与开发,2001,20(02):60.
    [112]岳鸿雁.喇嘛甸油田南中块西部葡Ⅰ1-2油层数模研究[D].大庆石油学院,2007.
    [113]安新明.萨中油田聚合物驱开发规律研究[D].大庆石油学院,2007.
    [114]杨二龙,宋考平,张勇.应用改进的POLYMER软件研究聚合物驱后剩余油分布[J].石油钻采工艺, 2006,(05).
    [115]侯健,李振泉,王玉斗,等.考虑扩散和吸附作用的聚合物驱替过程渗流数值模拟[J].计算物理, 2003,20(03):240-244.
    [116]徐罗滨,张伟,唐文峰,等.聚合物驱油数值模拟中的参数敏感性分析[J].大庆石油地质与开发, 2003,22(06):65-66.
    [117]陈鹏,陈福明,李伟.大庆油田特高含水井区聚合物驱潜力分析及布井方案优选[J].油气采收率技术,1999,6(02):9-14.
    [118]张衍军,毛卫荣,郭学民.七点法井网聚合物驱数值模拟及矿场试验[J].油气田地面工程.2002,21(2):47-48.
    [119]戴秀梅.聚合物段塞的数值模拟研究[J].油气地质与采收率.2002,9(3):19-20.
    [120]Yuan Shiyi, Han Dong and Wang Qiang etc., Numerical Simulator for the Combination Process of Profile Control and Polymer Flooding[C].SPE 64792.
    [121]宋考平,吴玉树,计秉玉.水驱油藏剩余油饱和度分布预测的φ函数法[J].石油学报,2006, 27(3):91-95.
    [122]宋考平,王立军,何鲜,等.单层剩余油分布及动态指标预测动态劈分法[J].石油学报,2000, 21(6):122-126.
    [123]高兴军,于兴河.神经网络技术预测剩余油分布[J].石油学报.2005,26(3):60-63.
    [124]刘波,杜庆龙,王良书.利用神经网络方法确定薄差层剩余油的分布[J].高校地质学报. 2002, 8(2):199-205.
    [125]蔡明俊.碱/聚合物驱油藏剩余油饱和度定量监测技术[J].新疆石油地质.2005,23(4): 417-420.
    [126]Pedro, A. Diaz Correa. A Streamtube Model for Simulation of Fluidflow inPorous Media[D]. B. S. dissertation, U. of Kansas, 1980.
    [127]毕卓新,黄隆基.测井方法与水驱油动力学方法相结合确定水驱油藏剩余油的分布[J].测井技术.1995,19(4):235-243.
    [128]Khokhar RW and Johson WM. A Deep Iaterlog for Ultra thin Formation Evalua-tion[C]. In: The SPWLA 30th Annual Logging Symposium, June 11-14, 1989.
    [129]吕晓光,于洪文,田东辉.高含水后期油田细分单砂层地质研究[J].新疆石油地质, 1993,(04).
    [130]Haldorsen HH,Damsleth R. Stochastic modeling[J].JPT,1990,42(4):404-412.
    [131]武群虎,杨少春.断块油田储集层流动单元研究[J].断块油气田,2006,13(04):8-10.
    [132]靳彦欣,肖驰俊,杨景辉.流动单元约束的油藏数值模拟研究[J].石油天然气学报, 2005,27(6):895-897.
    [133]Guangming T, Ogbe DO, Hatzignation DG. Use of flow units as a tool for reservoir description: a case study [J]. SPE 26919, 1995, 122-128.
    [134]林博,戴俊生,冀国盛,等.胜坨油田二区沙2-(34)流动单元随机建模研究[J].油气田地面工程, 2006,25(11):13-14.
    [135]Scott Hamlin, Shirley P D, Robert J S, et al. Depositional controls on reservoir properties in a braid delta sandstone, tirrawarra oilfield, South Australia J. AAPG Bull, 1996, 80(2):139-156.
    [136]王延杰,王兆峰.巨厚砂泥互层储集体沉积模式及相控建模[C]. 2004第三届油气储层研讨会论文摘要集, 2004.
    [137]李少华,张昌民,张尚锋,等.沉积微相控制下的储层物性参数建模[J].江汉石油学院学报, 2003,25(01):24-26.
    [138]ZHANG Ji-cheng,LIU Li,SONG Kao-ping. Neural Approach for Calculating Permeability of Porous Medium[J]. Chinese Physics Letters,2006,23(4).
    [139]Jude O A, Mehmet A, Djebber T, et al. Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predictpermeability in uncored interval/wells[J]. SPE 26436, 1993:205-220.
    [140]于开春,张世峰,张文志.相控条件下剩余油的数值模拟[J].大庆石油学院学报,2004, 28(4):27-29.
    [141]袁新涛,彭仕宓,林承焰,等.分流动单元精确求取储层渗透率的方法[J].石油学报,2005, 26(6):78-81.
    [142]熊伟,石志良,高树生,等.碎屑岩储层流动单元模拟实验研究[J].石油学报,2005, 26(2):88-91.
    [143]王曙光,赵国忠,余碧君.大庆油田油水相对渗透率统计规律及其应用[J].石油学报,2005, 26(3):78-85.
    [144]张继成,宋考平.相对渗透率特征曲线及其应用[J].石油学报,2007, 28(4):104-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700