用户名: 密码: 验证码:
高等级厚规格含铌抗大变形管线钢组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗大变形管线钢是一种针对基于应变设计而开发的新型管线钢,主要用于冻土、泥石流和地震频发等地质条件恶劣地带,要求具有高强、韧性的同时,还必须具有低屈强比、高加工硬化指数和高均匀延伸率等纵向变形性能。多边形铁素体-贝氏体(“PF-B”)双相管线钢具有良好的应变性能和组织可控性好成为抗大变形管线钢研发的焦点。对于“PF-B”双相管线钢中的多边形铁素体,既要保证一定数量,还要求晶粒细小,才能获得高强、韧、塑匹配性能。通过不同于传统管线钢的生产工艺结合成分优化,就解决了控制和细化铁素体加快铁素体相变动力学,“组织-力学性能”关系以及强、韧、塑机理,焊接性能,加工硬化和应变时效后性能变化等“PF-B”抗大变形管线钢生产、应用和推广过程中的重点和难点,并从可动位错的角度提出提高强、韧、塑的方法。
     根据“控制轧制-缓冷弛豫-加速冷却”工艺,采用铸坯再加热、热变形和控制冷却、实验室控轧控冷、工业试制、焊接热模拟、thermo-calc热力学计算、OM、 SEM.EDAX.EBSD.TEM.HV等系统地研究了不同Nb含量实验钢奥氏体细化控制,Nb含量、变形参数、弛豫制度和铁素体相变动力学之间的耦合关系,厚规格钢板“开冷温度-铁素体-力学性能”以及“板-管(时效前后)”性能关系,焊接热影响区软化、脆化及其改善措施。
     实验温度范围内,奥氏体晶粒随温度升高明显长大,Nb含量≤0.051%时,晶粒尺寸与温度符合Arrhenius方程-lnD=A-Q/RT,Nb含量提高到0.08%时,由于(Ti,Nb)(C,N)对奥氏体晶界强烈钉扎作用,导致二者不符合Arrhenius方程;晶粒尺寸与保温时间遵循指数关系一D=ktn,指数<0.1,超过20分钟时,晶粒尺寸增加不明显;提高Nb含量能有效抑制奥氏体晶粒长大,≥1150℃时,Nb含量提高到0.08%能将晶粒尺寸控制在100μm以内:当钢中钛含量约为0.01%时,未固溶Nb含量≥0.0047%时能将奥氏体晶粒尺寸控制在100μm以内。高温变形后保温,再结晶完全时晶粒尺寸达到最小,能够细化到40μm以内,最小尺寸不随变形温度和保温时间变化;提高Nb含量能有效细化晶粒并维持细化效果,Nb含量提高到0.08%时再结晶晶粒能够控制在30μm以内。
     奥氏体未再结晶区,变形温度≤800℃,变形量≥50%,能够加快铁素体析出动力学,细化晶粒尺寸;缓冷速率≤1.0℃·s-1、开冷温度≤690℃时,铁素体转变量和尺寸明显增加;Nb含量≤0.051%时,增加Nb含量对应变诱导铁素体转变量影响不大,Nb含量提高到0.08%时,明显抑制了应变诱导铁素体相变,其转变量不超过10%;弛豫过程中,增加Nb含量,有效抑制铁素体相变,其转变量及尺寸明显减小,Nb含量提高到0.08%时,铁素体转变量小于15%,但其尺寸有效控制在3μm以内。
     降低开冷温度,铁素体转变量增加,但是开冷温度过低,铁素体晶粒会明显粗化;Nb含量提高至0.080%时,铁素体相变动力学明显减慢,但能将铁素体晶粒控制在4μm以内。钢中铁素体含量和尺寸分别为30%-75%、5.5μm以内时能满足抗大变形性能要求:建立了26.4mm"PF-B"抗大变形管线钢板开冷温度-铁素体含量-力学性能关系及“板-管”性能变化关系经验关系式,随铁素体含量增加,钢板的抗拉强度变化不明显、屈服强度明显降低、均匀延伸率增加、冲击性能降低,铁素体内较高的可动位错密度是降低屈强比和增加均匀延伸率的关键,铁素体晶内业结构极少,依靠铁素体晶界提高冲击性能:铁素体含量越多,加工硬化和应变时效现象越明显,加工硬化会增加屈服强度、应变时效会损失均匀延伸率,“PF-B”抗大变形管线钢管性能对铁索体体积分数不敏感,提高其力学性能的关键在十细化铁素体晶粒尺寸。
     t8/3小于某一值时,粗晶区的冲击性能与母材基本一致,但是当t8/3延长至出现较多MA组元时,冲击性能迅速降低;峰值温度约800℃时,由于铁素体含量较多而出现软化现象,750℃时,由于Nb等微合金元素的二次析出和出现大量大尺寸MA组元,冲击性能最差;组织粗化和MA组元是降低焊接HAZ韧性的关键因素,提高Nb含量,仃利于减少MA组元和细化组织,提高焊接热输入量,明显改善热影响区软化现象和冲击性能。
     要进一步提高强、韧、塑性,将铁素体含量和尺寸分别控制在30%左右、5μm以内,增加铁素体/板条贝氏体两相的接触面积及铁素体内可动位错密度。在保证铁素体较快析出动力学的基础上细化晶粒,钢中适宜的Nb含量约为0.05%,合理的工艺参数如下:铸坯再加热至1150-1200℃保温2-4小时、奥氏体再结晶区变形温度1000~960℃、变形量≥25%、道次间隔时间≤30s,奥氏体未再结晶区变形温度800~760℃、变形量≥50%,开冷温度700~660℃。
High deformability pipeline steel is a new pipeline steel developed for strain-based design. It is applied mainly in geologies conditions scurviness areas with earthquakes and landslides et al., and requires having lower yield ratio, higher work hardening index and better uniform elongation et al. as well as high strength and toughness. Polygonal ferrite-bainite ("PF-B") dual phase pipeline steel has been the focus of research because of excellent strain capacity and better microstructures controllability. For "PF-B" dual phase pipeline steel, only should polygonal ferrite balance a certain volume fraction and fine size could get higher strength-toughness-ductility. The emphases and difficulties in production, adhibition and generalization as follows:How to control and refine ferrite grains and make the fine ferrite rapid precipitation, relationship of technical microstructures-mechanical properties, mechanism of strength-toughness-ductility, weldability, properties chang after work hardening and strain ageing all have been solved by technology different from traditional X80pipeline steel and composition optimization, and proposed solutions to improve strength, toughness and plasticity.
     According to the "controlled rolling-slow cooling relaxation-accelerate cooling" technology, ca-st billet reheat and hot deformation and controlled cooling simulation, pilot controlled rolling an-d cooling, industrial trial, welding thermal simulation, Thermo-Calc thermodynamic computing, optical metallographic, scanning electron microscope with EDAX and EBSD, transmission ele-ctron microscopy were employed to research austenitizing and recrystallization dynamics of dif-ferent Nb bearing experimental steels, relationship among Nb content-strain parameter-relaxati-on parameter-ferrite transformation dynamics, relationship among start cooling temperature-fer-rite-mechanical properties of steel plate and mechanical properties relationship of plate-pipe-pi-pe after strain aging, microstructur-es' and the reasons of softening and embrittlement of HAZ and the solutions.
     At the tested temperature range, austenitic grains grow up as reheat temperature increases obvio-usly. When Nb content is less than0.051%, the austenitic grain size and reheat temperature foll-ow Arrhenius equation-In D=A-Q/RT, but it didn't when Nb content is increased to0.080%be-cause of the pinning effect of (Ti, Nb)(C, N). The austenitic grain size and soaking time follow exponential relationship-D=ktn, and the index is less than0.1, its does not significantly inc- rease when the soaking time is more than20minutes. Increasing Nb content can repress growth of austenite grain in the reheating process. Reheat temperature>1150℃, the average size of aus-tenitic grain could be controlled within100μm when Nb content increased to0.08%. If the Ti element percent in the tested steels is around0.01%, the average size of austenitic grain can be repressed within100μm when undissolved Nb is more than about0.0047%. Deformation and holding process at high temperature, austenitic grain size reach minimum when happen comple-tely static recrystallization, it is controlled within40μm, the minimum size does not change wi-th the strain temperature and holding time. Increasing Nb content can reduce the austenite recry-stallization grain size, and maintain refining effect effectively, the austenite recrystallization gra-in can be controlled within30μm in0.08%-Nb steel.
     Deformation in austenite non-recrystallization region, as strain temperature<800℃and deform-ation>50%, it could speed up ferrite nucleation rate and refine polygonal ferrite grain. A lot of ferrite crystal nucleus can grow up when slow cooling rate<1℃·s-1and start cooling temperature≤690℃, the volume fraction and grain size of ferrite increased significantly. The ferrite transfor-mation can be restrained and refined when Nb content increases. The strain induced ferrite trans-formation is inhibited obviously when Nb increases to0.08%during the deformation process, its volume fraction is less than10%. And ferrite fraction and grain size decrease significantly when the Nb increased from0.031%to0.08%during the slow cooling relaxation process, the volume fraction only is15%, but the average grain size can be controlled within3μm.
     Reducing the start cooling temperature can improve ferrite transformation, but the ferrite grain would be excessively coarse as the start cooling temperature lowest. The ferrite grain can be refined under4μm, and ferrite transformation dynamics slow down evident when Nb increased to0.080%. The larger strain resistance capability performance requirement can be satisfied as the ferrite volume fraction is controlled in the range from30%to75%and its average size is repressed within5.5μm.The relational expression of start cooling temperature-ferrite fraction-mechanical properties, plate-pipe mechanical properties for26.4mm "PF-B" pipeline steel have been established. For steeel plate, the tensile strength changes is not obvious, the yield strength decreases significantly, the uniform elongation increases, and the impact toughness decreases as the volume fraction of ferrite increases, respectively. High movable dislocation density in ferrite grain is the key point to reduce yield ratio and increase uniform elongation, there is a little substructure in ferrite grain, and improving impact property depend on ferrite grain boundary. The more the ferrite fraction, the more obvious the work hardening and strain ageing phenomenons, the yield strength could be increased because of work hardening, and the uniform elongation could be lost caused by strain ageing, lead to properties of "PF-B" high deformability linepipe no sensitive to ferrite fraction. The key point to improve strength and toughness is refining ferrite grain.
     The impact toughness of coarse grain HAZ same as base metal when t8/3is less than some value, but the impact value will decrease sharply because of a lot of MA island as t8/3is too long. The softening phenomenon will appear because of a lot of fine ferrite as the peak temperature is about800℃. The impact toughness is the worst at750℃because of precipitation of alloying elements such as Nb and a lot of larger size MA components. The key factors to reduce impact toughness of HAZ include coarseness of microstructures and MA components. Increasing Nb can reduce MA island and refine microstructures, increase welding heat input, ease softening and improve impact toughness obviously of HAZ.
     For "PF-B" high strength and deformability pipeline steel, the ferrite fraction and average size could be controlled about30%and within5μm especially, and increasing the ferrite/bath bainite interfacial area to further improve the strength, toughness, ductility. To get finer ferrite grain as well as guarantee faster ferrite transformation dynamic, the suitable Nb content is about0.05%in steel and the appropriate technological parameters as follows:cast billet reheat to1150~1200℃for2-4hours; austenite recrystallization and strain temperature of1000~960℃, deformation≥25%, rolling pass interval time≥30s; austenite non-recrystallization region, strain temperature of800~760℃, deformation≥50%; start cooling temperature of700~660℃.
引文
[1]贺信莱,尚成嘉,杨善武等.高性能低碳贝氏体钢一成分、工艺、组织、性能与应用[M].北京:冶金工业出版社,2008.
    [2]Feng Lianyong, Li Junchen, Pang Xiongqi, etal. Peak oil models forecast China's oil supply, demand [J]. Oil & Gas Journal,2008,14:43-47.
    [3]Maugeri Leonardo. Oil:never cry wolf-why the petroleum age is far from over [J]. Science,2004,304 (5674):1114-1115.
    [4]Williams Bob. Debate grows over US gas supply crisis as harbinger of global gas product on peak [J]. Oil & Gas Journal,2003,101(28):20-31.
    [5]Williams Bob. Heavy hydrocarbons playing key role in peakoil debate, future energy supply [J]. Oil & Gas Journal,2003,101(29):20-27.
    [6]Williams Bob. Peak-oil, global warming concerns opening new window of opportunity for alternative energy sources [J]. Oil&Gas Journal,2003,101 (32):18-28.
    [7]Hulka K. Pipeline Projects and Steel Technology[C]. In:Summary of the First Day, CBMM-TMS International Symposium Microalloyed Steels for the Oil & Gas Industry. Araxa, Brazil,2006.
    [8]Douglas G Stalheim, Steven G The role of niobium in high strength oil and gas transformation linepipe steels[C]. In:Proceedings of IPC 2006 6th International Pipeline Conference. Canada:IPC,2006.
    [9]李鹤林,李霄,吉玲康等.油气管道基于应变的设计及抗大变形管线钢的开发与应用[J].焊管,2007,30(5):5-11.
    [10]Suzuki N, Toyoda M. Seismie Loading on Buried Pipelines and Deformability of High Strength Line pipes [C]. In:Proeeedings of International Conference on the Application and Evalustion of High-Grade Linepipes in Hostile Environments. Yokohama, Japan:Seientifie SurveysLtd.,2002.
    [11]邱松年,邱蓓蓓.利用应变基础理论研制X80-X100双相管线钢[J].世界金属导报,2009.8.25:1-6.
    [12]SUZUKI Nobuhisa, IGI Satoshi, MASAMURA Katsumi. Seismic Integrity of High-strength Pipelines [J].JFE技报,2007(17):14-19.
    [13]齐殿威.X80高强度管线钢管整体抗震安全性研究[J].焊管,2010,33(1):65-70.
    [14]Surn E, Shinohara H A. Strain capacity of line pipe with yield point elongation [C]. In:ASME2005. Seoul:ASME,2005.
    [15]黄开文,王颖,庄传晶.从2006年国际管道会议看高钢级管道建设[J].焊管,2007,30(3):11-15.
    [16]Fujibayashi, A., Omata, K. JFE Technical Report [J].2005,5:10-15.
    [17]王国栋.以超快速冷却为核心的新一代TMCP技术[J].上海金属,2008(02):1-5.
    [18]Schwinn V, Fluess P and Bauer J. Production and Progress Work on Plates for Pipes with Strength Level of X80 and Above [C]. In:Proceeding of the International Pipe Dreamer's Conference. Yokohama, Japan:EUROPIPE,2002.
    [19]H.W.Jin, J.Y.Koo, N.V.bangach. High Strain Capacity X60 Linepipe Steels with Superior Strain Aging Resistance [J]. International Journal of Offshore and Polar Engineers.2008,18(3):171-175.
    [20]Y.E.Smith, A.P. Coldren, R.L. Cryderman.Toward Improved Ductility and Toughness [M]. Tokyo: Climax Molybdennum Company (Japan) Ltd,1972.
    [21]Mangonon P L. Effect of alloying elements on the microstructure and properties of a hot-rolled low-carbon low-alloy bainitic steel [J]. Metallurgical Transactions A,1976,7(9):1389-1400.
    [22]Wang S, Kao P W. Effect of alloying elements on the structure and mechanical properties of ultra-low carbon bainitic steels [J]. Journal of Material Science,1993,28:5169-5175.
    [23]贺信莱.21世纪新钢种-超低碳贝氏体钢[J].金属世界,1996,68:3.
    [24]Takuya HARA, Yoshio TERADA, Yasuhiro SHINOHARA. METALLURGICAL DESIGN AND DEVELOPMENT OF HIGH DEFORMABLE X100 LINE PIPE STEELS SUITABLE FOR STRAIN-BASED DESIGN[C]. In:IPC2008. Calgary, Alberta, Canada:IPC,2008.
    [25]肖福仁.针状铁素体管线钢的组织控制与细化工艺研究[博士论文].秦皇岛:燕山大学,2003.
    [26]钟勇,王钟军,单一银等.热变形对超纯净竹线钢组织的影响[J].材料研究学报,2003,17(3):304-309.
    [27]郑磊,付俊岩.高等级竹线钢的发展现状[J].钢铁,2006,41(10):1-10.
    [28]王李涛,李正邦,张乔英.高钢级管线钢的性能要求与元素控制[J].钢铁研究,2004,4:13-17.
    [29]Naishi A, Yoshio T, Takuya H, etal高强度管线钢及其焊管的性能研究[J].焊管,2005,28(2):50-60.
    [30]Kermani M. B, Morshed A. Carbon dioxide corrosion in oil and gas production-a compendium [J]. Corrosion,2003,59(8):559-683.
    [31]周琦,贾建刚,赵红顺等.X60管线钢在含H2S及高温高压CO2酸性溶液中的腐蚀特征[J].金属热处理,2008,33(5):91-94.
    [32]李记科,张鸿博,马秋荣.石油工业技术监督[J].2005,3:3-39.
    [33]K.T.corbett, R.R.Bowen, C. W. Petersen. High Strength Steel Pipeline Economics[J]. International journal of Offshore And polar Engineering,2004,14(1):75-80.
    [34]李鹤林.油气输送钢管的发展动向与展望[J].焊管,2004,27(6):1-12.
    [35]陈妍,毛艳丽.日本高强度管线钢生产概述[J].焊管,2009,32(3):64-68.
    [36]Zheng Lei, Gao shan. The devolopment of high performance pipeline steel in china[C]. In:Proceeding of the international pipeline steel forum. Beijing, China,19-20 March,2008.
    [37]Wei Wang, Shan yiyin, Yang ke. TMCP process of ultra-high strength pipeline steel[C]. In:Proceeding of the international pipeline steel forum, Beijing, China,19-20 March,2008.
    [38]谢淑霞.首钢研制成功世界最高强度管线钢[J].焊管,34(2):69.
    [39]G. Buzzichelli (CSM, Rome), L. Scopesi (SNAM, Milan). Fracture propagation control in very high strength gas pipelines[C]. In:The 1999 ATS International Steelmaking Conference. Paris, Novembre, 2000.
    [40]Ishikawa Nobuyuki, Okatsu Mitsuhiro, Endo Shigeru, et al. Material Design Concept and Production of High Strength Linepipe for Strain-Based Design Applications[C].见:长输管道应变设计技术研习会论文集.北京,2007.
    [41]Bing Liu, Hong Zhang. Strain Based Design Criteria of Pipelines [J]. Journal of loss Prevention in the Process Industries,2009,22:884-888.
    [42]佐藤邦彦.溶接构造要览[M].大阪:黑木出版社,1988.
    [43]OKATSU Mitsuhiro, SHIKANAI Nobuo, KONDO Joe. Development of a High-Deformab-ility Linepipe with Resistance to Strain-aged Hardening by HOP (Heat-treatment On-line Process)[J]. JFE GIHO,2007,17:20-25.
    [44]ISHIKAWA Nobuyuki, SHIKANAI Nobuo, KONDO Joe. Development of Ultra-High Strength Linepipes with Dual-Phase Microstructure for High Strain Application [J]. JFE TECHNICAL REPORT, 2008,12:15-19.
    [45]史维,高惠临,张骁勇等.(B+F)双相管线钢的延迟加速冷却方法研究[J].热加工工艺,2011,40(10):178-180.
    [46]侯华兴,于功利,张鹏远等.冷却工艺对超低碳贝氏体钢强韧性影响的研究[J].钢铁,2006,41(3):44-50.
    [47]熊祥江,吴清明,陈奇明等.工艺制度对X80级抗大变形管线钢组织和性能的影响[J].宽厚板,2011,17(1):18-21.
    [48]焦多田,蔡庆伍,武会宾.轧后冷却制度对X80级抗大变形管线钢组织和屈强比的影响[J].金属学报,2009,45(9):1111-1116.
    [49]王伟,严伟,胡平等.抗大变形管线钢的研究进展[J].钢铁研究学报,2011,23(2):1-6.
    [50]王伟.高性能管线钢的组织及强韧化机理研究[硕士学位论文].沈阳:中国科学院金属研究所,2009.
    [51]北京科技大学.一种生产X80级抗大变形管线钢中厚板的方法.中国,CN200910076066.8[P]. 2009-6-17.
    [52]Hansen S S, Pradhan R R. Structure Property Relationships and Continuous Yielding Behavior in Dual-pase Steels Fundamentals of Dual-Phase Steels [M]. New York:AIME,1981.
    [53]狄国标,陈连生,刘振宇等.低成本热轧双相钢组织性能研究[J].轧钢,2007,24(5):17-20.
    [54]胡学文,刘雅政,周乐育等.回火温度对热轧双相钢组织和力学性能影响研究[J].钢铁,2010,45(3):78-80.
    [55]Nobuyuki ISHIKAWA, Mitsuhiro OKATSU, Shigeru ENDO, et al. DESIGN CONCEPT AND PRODUCTION OF HIGH DEFORMABILITY LINEPIPE [C]. In:Proceedings of IPC2006 6th International Pipeline Conference. Canada,2006:IPC2006-10240.
    [56]I. Olivares, M. Alanis, R. Mendoza, et al.Development of microalloyed steel for pipeline applications[J]. Ironmaking and Steelmaking,2008,35 (6):452-457.
    [57]李晓红,樊玉光,徐学利等.X80高屈强比管线钢性能分析与管道安全性预测[J].机械科学与技术,2005,24(9):1074-1077.
    [58]辛希贤,姚婷珍,张刊林等.高屈强比管线钢的安全性分析[J].焊管,2006,29(4):36-40.
    [59]DNV 2000, DNV-OS-F101 Submarine Pipeline Systems, det Norske Veritas (2000).
    [60]YU Qingbo, SUN Ying, HUANG Chuanhui.Research of yield-strength ratio on the plasticity[J]. JOURNAL OF PLASTICITYEN GINEERING,2009,16(1):153-155.
    [61]余永宁.金属学原理[M].北京:冶金工业出版社,2000.
    [62]Nobuhisa S, Shigeru E, Masski Y, et al. Effects of a Strain Hardening Exponent on Inelastic Local Buckling Strength and Mechanical Properties of Linepipe [C]. In:Proceedings of OMAE01,20th International Conference on Offshore Mechanics and Arctic Engineering. Brazil:OMAE,2001.
    [63]Thomas H, Shigru E, Noboyuki I, et al. Effect of Volume Fraction of Constituent Phases on the Stress-Strain Relationship of Dual Phase Steels [J]. ISIJ International,1999,39(3):288-294.
    [64]Tsuru E, Shinohara H A. Strain Capacity of Line Pipe with Yield Point Elongation [C]. In:Proceedings of the Fifteenth (2005) International Offshore and Polar Engineering Conference. Seoul:ASME,2005.
    [65]王远琦.抗大变形管线钢X80HD2的组织性能研究[硕士学位论文].北京:钢铁研究总院,2009.
    [66]郝瑞辉,高惠临,丛晖等.合金元素在管线钢中的作用与控制[J].上海金属,2006,28(1):58-62.
    [67]孔君华,郑琳,郭斌等.钼在高钢级管线钢中的作用研究[J].钢铁,2005,40(1):66-68.
    [68]谢志翔,刘清友,杨景红等.微量钼对微合金钢动态再结晶的影响[J].钢铁研究学报,2009,21(1):33-36.
    [69]史维.基于不同加速冷却法的大变形管线钢组织控制及性能优化[硕士学位论文].西安:西安石油大学,2011.
    [70]冉旭,蔡庆伍,焦多田等.工艺制度对X70抗大变形管线钢组织性能的影响[J].热加工工艺,2009,38(2):38-41.
    [71]北京科技大学.一种X100抗大变形管线钢及其制造工艺:中国,CN201010541219.4[P].2010-11-11.
    [72]中国石油天然气集团公司.一种X70或X80抗大变形钢管生产方法.201010550557.4[P].2010-11-18.
    [73]杨艳.基于临界区加速冷却法的大变形管线钢组织一性能研究[硕士学位论文].西安:西安石油大学,2010.
    [74]王振伟.X70抗大变形管线钢组织与性能研究[硕士学位论文].郑州:郑州大学,2011.
    [75]OKATSU Mitsuhiro, SHIKANAI Nobuo, KONDO Joe. Development of a High-Deformability Linepipe with Resistance to Strain-aged Hardening by HOP (Heat-treatment On-line Process)[J]. JFE TECHNICAL REPORT,2008,12:8-14.
    [76]ISHIKAWA Nobuyuki, ENDO Shigeru, KONDO Joe. High Performance UOE Linepipes [J]. JFE TECHNICAL REPORT,2006,7:20-26.
    [77]郑晓飞,康永林,孟德亮等.终轧温度对X80抗大变形管线钢组织性能的影响[J].北京科技大学学报,2011,33(5):557-562.
    [78]北京科技大学.一种低成本、高韧性X80抗大变形管线钢及生产方法:中国,CN201010530202.9[P].2010-10-29.
    [79]曹建春,刘清友,雍岐龙等.铌对高强度低合金钢的组织和强化机制的影响[J].钢铁,2006,4(8):60-63.
    [80]Heisterkamp F, Carneiro T. Niobium:Future Possibilities-T echnology and the Market Place[C]. In: Niobium-Science and Technology. Indianapolis:TMS,2001.
    [81]杨景红.低碳高铌管线钢组织细化的控制研究[博士学位论文].北京:北京科技大学,2009.
    [82]谭峰亮,刘清友,贾书君等.含铌抗大变形管线钢奥氏体的连续冷却转变[J].钢铁研究学报,2012,24(7):35-39.
    [83]Hrivnak Ivan. Weldability of Modern Steel Material [J]. ISIJ International,1995,35 (10),1148-1156.
    [84]于群.车用双相钢DP780的激光焊接接头组织性能研究[硕士学位论文].北京,北京工业大学,2010.
    [85]周振丰,张文钺.焊接冶金与金属焊接性[M].北京:机械工业出版社,1988.
    [86]张文钺.焊接冶金学[M].北京:机械工业出版社,1993.
    [87]Zhuang Yizhou, Jin Weiliang. Aseismic reliability analysis approach for offshore jachket platform structures [J]. China Ocean Engineering,1998,12 (4):375-382.
    [88]张德元,刘元生,李一兵.油田地震信息监测研究与应用[M].北京:地震出版社,1995.
    [89]张志波,刘清友,张晓兵等.加热温度对管线钢奥氏体晶粒尺寸和铌固溶的影响[J].钢铁研究学报,2008,20(10):36-39.
    [90]杨秀亮.加热温度对管线钢第二相粒子固溶及晶粒长大的影响[J].钢铁钒钛,2002,23(2):11-14.
    [91]陈茂爱,唐逸民,楼松年等.Ti-V-Nb微合金管线钢中的第二相粒子分析[J].钢铁钒钛,2000,21(3):34-38.
    [92]彭杰,刘靖,张备等.不同加热温度对X80管线钢第二相粒子固溶及奥氏体晶粒长大的影响[C].见:第七届(2009)中国钢铁年会论文集.北京:冶金工业出版社,2009.
    [93]王远琦,陈小伟,李志华等.Nb-Ti微合金钢中的奥氏体晶粒长大行为研究[J].钢铁,2010,45(4):72-75.
    [94]W.J. Kaluba, T. Kaluba, R. Taillard. The austenitizing behaviour of high-nitrogen martensitic stainless steels [J]. Scripta Materialia,1999,41(12):1289-1293.
    [95]DUAN Linna, WANG Iiman, LIU Qingyou. Austenite Grain Growth Behavior of X80 Pipeline Steel in Heating Process [J]. JOURNAL OF IRON AND STEEL RESEARC-H, INTERNATIONAL.2010. 17(3):62-66.
    [96]LIU Qingyou, SUN Xinjun, JIA Shu.jun, et al. Austenitization Behaviors of X80 Pipeline Steel With High Nb and Trace Ti Treatment [J]. JOURNAL OF IRON AND STEEL RESEARCH. INTERNATIO-NAL.2009.16(6):58-62.
    [97]牛靖,刘迎来,齐丽华等.奥氏体化温度对X80管线钢组织和力学性能的影响[J].材料热处理学报.2010,31(5):96-101.
    [98]刘靖,彭杰,张备等.X80竹线钢第二相粒子溶解及奥氏体晶粒长大行为[J].机械工程材料.36(8):34-36.
    [99]苗华军,王岩,曾莉.高NbX80管线钢奥氏体晶粒长大规律[J].金属热处理.2012,37(9):64-66.
    [100]Siamak Serajzadeh. A study on kinetics of static and metadynamic recrystallization during hot rolling [J]. Materials Science and Engineering A,448 (2007):146-153.
    [101]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006.
    [l02]Hodgson P D, Gibbs R K.A Mat hematical Model to Predictt he Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels [J]. ISIJ International,1992,32(12):1329.
    [103]刘文斌,康水林,牛涛等.热连轧生产厚规格X80竹线钢的静态再结晶行为及工艺优化[J].北京科技大学学报,2010,32(4):445-450.
    [104]Sellars C M. Hot Working and Forming Process [M]. London:Metal Society,1980.
    [105]Kwon. A Technology for the Prediction and Control of Microstructural Changes and Mechanical Prop-erties in Steel [J]. ISIJ International,1992,32:350.
    [106]Elwazri A M, Essadiqi E, Yue S. The Kinetics of Static Recrystallization in Microalloyed Hypereutect-oid Steels [J]. ISIJ International,2004,44:162.
    [107]陈俊,周砚磊,唐帅等Nb-Ti微合金钢的静态再结晶行为[J],钢铁,2012,47(5):55-59.
    [108]濑户一洋,王冰,王萍等.动态再结晶超微细结晶化的高强度热轧钢板[J].国外金属加工,2003,24(2):43-48.
    [109]Siciliano F, Minami K, M ccagno T M, et al. Mathematical modeling of the mean flow stress fractional softening and grain size during the hot striprolling of C-Mn Steels [J]. IJSJ Int,1996,36:1500-1506.
    [110]蔺永诚,陈明松,钟掘,42CrMO钢静态再结晶晶粒尺寸模型[C].见:2008年中国机械工程学会年会暨甘肃省学术年会文集.甘肃兰州:2008年中国机械工程学会年会暨甘肃省学术年会,2008:413-416.
    [111]李壮,张平礼,周晓光等.热轧钢板奥氏体再结晶晶粒尺寸的预测模型[J].机械工程材料,2005,29(9):16-17.
    [112]Dutta B, Sellars C M. Effect of composition and process variables on Nb(C, N) precipitation in niobium microalloyed austenite[J]. Mateials Science and Technology,1987,3(3):197-206.
    [113]雍岐龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金,机械工业出版社,1989.
    [114]Tamura I, Ouchi C, Tanaka T, et al. Thermomechanical processing of high strength low carbon steels [M]. London:Butterworth & Co.Ltd.,1988.
    [115]Dong H. Deformation induced ferrite transformation in microalloyed steels[C]. In:Workshop on new generation steel. Beijing:The Chinese Society for Metals,2001.
    [116]翁宇庆.超细晶钢—钢的组织细化理论与控制技术[M].北京:冶金工业出版社,2003.
    [117]Dong Han Seo, Jang Yong Yoo, Woo Hyun Song, et al. DEVELOPMENT OF X100 LINEPIPE STEEL WITH HIGH DEFORMATION CAPACITY [C]. In:Proceedings of IPC2008 7th International Pipeline Conference. Calgary, Alberta, Canada:IPC,2008, IPC2008-64220.
    [118]刘清友.Nb对变形诱导铁素体相变的影响[博士学位论文].北京:钢铁研究总院,2007.
    [119]LIU Qing you, DENG Su huai, SUN Xin jun, et al. Effect of Dissolved and Precipitated Niobium in Microalloyed Steel on Deformation Induced Ferrite Transformation (DIFT) [J]. JOURNAL OF IRON AND STEEL RESEARCH, INTERNATIONAL.2009,16 (4):67-71
    [120]Han Dong, Xinjun Sun. Deformation induced ferrite transformation in low carbon steels [J]. Current Opinionin Solid State and Materials Science,2005,9:269-276.
    [121]Yunbo XU, Yongmei YU, Xianghua LIU, et al. Computer simulation of ferrite transformation during hot working of low carbon steel [J]. J.Mater. Sci.Technol,2004,20(5):497-500.
    [122]潘金生,仝键民,田民波.材料科学基础[M].北京:清华大学出版社,1998:565.
    [123]尚成嘉,王学敏,周召槿等Mn-Mo-Nb-B低碳微合金钢中温转变组织的演变[J].金属学报,2008,44(3):287.
    [124]Mitauhiro OKATSU, Toyohisa SHINMIYA, Nobuyuki ISHIKAWA et al. DEVELOPMENT OF HIGH STRENGTH LINEPIPE WITH EXCELLENT DEFORMABILITY [C]. In:OMAE2005. Halkidiki, Greece:June 12.17,2005, OMAE2005-67149.
    [125]Byoungchul Hwang,Yang Gon Kim, Sunghak Lee,et al. Effective Grain Size and Charpy Impact Properties of High-Toughness X70 Pipeline Steels[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A.2005,36A:2107-2114.
    [126]张文钺.焊接冶金学(基本原理)[M].北京:机械工业出版社,1999.
    [127]Rutao Li, Xiurong Zuo, Yueyue Hu, et al. Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure[J]. MATERIALS CHARACTERIZATION,2011, 62:801-806.
    [128]M. SHOME, O.P. GUPTA, O.N. MOHANTY. Effect of Simulated Thermal Cycles on the Microstructure of the Heat-Affected Zone in HSLA-80 and HSLA-100 Steel Plates [J]. ME-TALLURGICAL AND MATERIALS TRANSACTIONS A, MARCH,2004,35:985-996.
    [129]吕向阳.X70管线钢焊接工艺研究[硕士学位论文].天津:天津大学,2006.
    [130]秦凤.X80管线钢焊接热影响区组织与性能研究[硕士学位论文].秦皇岛:燕山大学,2012.
    [131]陈楚,张月娥.焊接热模拟技术[M].北京:机械工业出版社,1985.
    [132]T Mura, EA Lautenschlager, JO Brittain. Segregation of sulute atoms during strain aging [J]. Acta Metallurgica,1961,9:453-458.
    [133]Bergstrom. A Dislocation Model for the Strain-Aging Behavior of steel [J]. Materials Science and Eng, 1972,9:101-110.
    [134]Wilson, DV, Russell, B. The Contribution of Atmosphere Locking to The Strain-Aging of Low Carbon Steels [J]. Acta Metallurgica,1960,8:36-45.
    [135]JZ Zhao, AK De, BC De Cooman. Kinetics of Cottrell Atmosphere Formation During Strain Aging of Ultra-Low Carbon Steels [J]. Materials Letters,2000,44:374-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700