用户名: 密码: 验证码:
长大铁路隧道多源数据管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国铁路隧道工程以及地下工程技术的迅猛发展,铁路工程建设中长度大于3千米的铁路隧道越来越多,其长大、深埋的特点日趋明显。目前我国铁路隧道地质勘察信息的集成管理水平还较低,传统的采用MIS系统与图形文件关联的数据管理方式已经无法满足长大铁路隧道多源数据管理的需求,常规关系数据库技术已无法实现铁路隧道地学数据在铁路隧道工程中的进一步应用,而地理信息系统空间技术的不断发展促使了长大铁路隧道多源数据管理的革新。运用现代空间数据无缝集成技术、三维技术及数据库挖掘技术是长大铁路隧道多源数据管理平台的主要研究内容。长大铁路隧道地质勘察涉及的数据信息种类繁多、形式多样,且包含的信息量巨大,其数据有地质、地形、遥感、物探等多方位图形及地学数字信息,与之相应的还有大量的地质文本资料和大幅面地质图件。如何能将这些多源数据有效地存储、管理、集成以及用于分析、评价、建模则是当前现代信息技术在铁路地质勘察中研究和应用的重点。
     本文从铁路部门对铁路隧道地理空间信息整合、共享与交换的需求出发,提出了建设长大铁路隧道多源地理空间信息共享交换平台的基本方法。然后基于统一的铁路工程勘察、施工、及地理空间信息标准和规范,在一个公用的硬件和网络基础设施平台上,建立长大铁路隧道多源数据管理基础地理空间数据库。并在此基础上搭建统一管理和整合公共基础性地理信息资源的地理空间信息基础平台,通过地理空间信息共享交换平台,实现长大铁路隧道其它分析决策系统之间的数据的整合。本文研究内容及创新成果如下:
     1.长大铁路隧道多源数据管理平台设计开发。利用GIS强大的空间数据组织和分析功能,实现基础地理、基础地质和工程勘察数据的高度共享、图文一体化集成管理和可视化分析等综合应用,并为长大铁路隧道其它系统提供数据服务,实现地质信息科学高效管理与应用。
     2.长大铁路隧道多源数据信息提取。长大铁隧道多源数据管理系统数据主要包括:基础地理数据,基础地质数据,野外采集数据及文档多媒体数据。数据格式多样,本文设计了以空间信息技术为基础一整套的数据处理流程。
     长大铁路隧道资料复杂多样,利用空间数据无缝集成技术、三维技术、数据库挖掘及GIS组件技术,实现了长大铁路隧道多源数据存储、管理、集成、分析、评价、建模等可视化管理,对长大铁路隧道工程建设具有重要意义。
Technology for tunnel construction and substructure construction develops so fast that more and more rail tunnels longer than 3km appear with obvious feature of long, large and deep. Traditional method (MIS system connecting with graph files) cannot meet the requirements of multisource data management of long & large rail tunnels till developing GIS space technology provides a great renovation for it. Study of multisource data management platform for long & large rail tunnel is mainly on how to use data seamless integration technology, 3-D technology and data mining technology. Geological reconnaissance for rail tunnel involves various kinds of information including graphic and geological data from multi-aspects such as geology, topography, remote control and geophysical prospecting, with massive documentations and pictures corresponding. And how to store, manage and integrate those data efficiently concerns much to the study and application of modern GIS technology in rail geological reconnaissance.
     This thesis, on requirements of information integration, share and exchange from Ministry of Railways, raises a basic way to construct a geological space information share & exchange platform. On the base of universal rail engineering investigation & construction and standards & specifications of geological space, an information platform, used for centralizing and managing basic geo-data, as well as a multisource database can be established on a public hardware and network facilities, through which data integration of analysis & strategy systems could be realized. Here follows the details:
     1. Collecting multisource data of rail tunnel. Multisource data of rail tunnel mainly consists of basic geographic data, basic geological data, field-collecting data and multimedia data. Formats are various and a whole data handling & controlling procedure based on spatial information technology is designed.
     2. Designing and developing multisource data management platform and database. A geological reconnaissance database shall be set up on theoretical foundation of advanced GIS technology for dynamically managing, tracking, searching and spatially analyzing multisource data during the primary reconnaissance, comprehensive reconnaissance and final construction reconnaissance. Powerful GIS function of data organizing and analyzing can achieve complete share of basic geographical data & basic geological data & engineering investigation data, and integrated management of documents & pictures, as well as comprehensive application of visual analysis. It can also provide data service for other systems, through which can we realize efficient management and application of geological information science.
     The data of long large railway tunnel is complex and diverse ; seamless integration of spatial data technology, 3D technology, database mining and GIS component technology are used to achieve the large, long railway tunnel’s multi-source data storage, management, integration, analysis, evaluation, modeling, visual management, etc. It’s of major significance to the long large railway tunnel construction.
引文
[1].郭侠云.关于我国家铁路隧道建设的刍议[J].铁路工程学报.2005: 58-61.
    [2].何华武.中国铁路隧道建设技术的发展[J].铁道经济研究.2006: 8-16.
    [3].杜欣,曾亚武,岳全贵.铁路隧道建设与水环境关系分析[J].铁道工程学报. 2009: 82-85,110.
    [4].叶伟站.铁路隧道建设中的技术措施探析[J].科技咨询导报.2007.
    [5].王效良.中国铁路隧道史[J].铁道建筑.2004: 76.
    [6].解福奇,叶永庚,周维.数字化隧道工程及其在海底隧道工程中的应用[J].山西建筑.2006: 5-6.
    [7].龚健雅.地理信息系统[M].科学出版社,北京.2001.
    [8].朱莹,刘学军,陈锁忠.基于GIS的地质剖面图自动绘制软件的研究[J].南京师大学报(自然科学版). 2007: 104-108.
    [9].王浩.地下工程监测中的数据分析和信息管理、预测预报系统[D].中国科学院,武汉, 2007.博士学位论文.
    [10]. Choi, Y., Yoon, S.-Y.,Park, H.-D. Tunneling Analyst: A 3D GIS extension for rock mass classification and fault zone analysis in tunneling[J]. Computers & Geosciences. 2009.35(6): 1322-1333.
    [11].王铁军,麻玺琳,卜昭铭.从CAD到GIS的数据转换[J].东北测绘1999: 12-13.
    [12].张洁茹.基于GIS的隧道设备管理与维护系统的设计与实现[D].西南交通大学.成都. 2006.硕士学位论文
    [13]. Lipponen, A. Applying GIS to assess the vulnerability of the Paijanne water-conveyance tunnel in Finland[J]. Environmental Geology. 2007 .53(3): 493-499.
    [14]. Bistacchi, A., et al. 3D fold and fault reconstruction with an uncertainty model: An example from an Alpine tunnel case study[J]. Computers and Geosciences. 2008.34(4): 351-372.
    [15]. Tonini, A., Guastaldi, E., Massa, G.,Conti, P. 3D geo-mapping based on surface data for preliminary study of underground works: A case study in Val Topina (Central Italy)[J]. Engineering Geology. 2008.99(1): 61-69.
    [16]. Yoo, C.,Kim, J.-M. Tunneling performance prediction using an integrated GIS and neural network[J]. Computers and Geotechnics. 2007.34(1): 19-30.
    [17].付琛,樊维.国外GIS在隧道工程维护中的现状与发展趋势[J].长江工程职业技术学院学报. 2006: 25-27.
    [18].黄杏元.地理信息系统概论[M].高等教育出版社.北京. 1990.
    [19].陈肖磊,陈大克,李景文,董星星,王乔俊. GIS技术的研究现状及未来发展趋势[J].国土资源信息化. 2007: 2-5,25.
    [20].汪珏.浙江公路隧道信息管理系统的设计与实现[D].华东师范大学.2006.硕士学位论文.
    [21].鲍虎军等863-13主题专家组.我国GIS技术与应用的现状和对策[R]. 2005.
    [22].周维.时态GIS及其在数字化隧道工程中的应用[D].同济大学.上海. 2007.博士学位论文
    [23]. Elkadi, A.S.,Huisman, M. 3D-GSIS geotechnical modelling of tunnel intersection in soft ground: the Second Heinenoord Tunnel, Netherlands[J]. Tunnelling and Underground Space Technology. 2002.17(4): 363-369.
    [24].李德仁.对地观测技术的新进展[R].中国科学院2003高技术发展报告.北京. 2003.
    [25].胡斌,牛永斌,李明章,周艳兵,林文玉.基于GIS的勘探钻孔信息管理自动化研究[J].河南理工大学学报(自然科学版). 2007 (26): 21-26.
    [26].张海军,赵雍,王周.基于WEBGIS的青藏公路钻孔数据管理系统设计[J].四川地质学报. 2005 (25): 160-163.
    [27].朱合华,张芳,叶勇庚.基于钻孔数据重构地层周围表面模型算法[J].计算机工程与应用. 2006 (42): 213-316.
    [28]. Van Der Schaaf, F., Bouyer, R.,Strunz, S. Geographic information system application for the geotechnical instrumentation program on the central artery/tunnel project[J]. Civil Engineering Practice. 1996 .11(2): 63-78.
    [29].李波.八字岭隧道施工技术[J].隧道/地下工程. 2007: 115-117.
    [30].王梦恕.客运专线长大隧道设计施工的讨论[J].铁道工程学报2005: 10-16.
    [31].李晔,姚祖康.基于地理信息系统的公路设施空间数据库概念模型[J].中国公路学报2000 (13): 9-11.
    [32].武俊红,汪云甲,谢义林.矿山地理信息系统中的钻孔信息管理[J].矿业工程2007 (5): 60-63.
    [33].詹骞.基于Ajax/REST的GIS WEB服务研究与实现[D].中国地质大学.北京. 2008.博士学位论文
    [34]. Eric Allen,Geoffrey Edwards,Yvan Bedard. Qualitative causal modeling in temporal GIS[M]. Spatial Information Theory A Theoretical Basis for GIS. Springer-Verlag GmbH & Company KG, Semmering, Austria. 1995:397-412.
    [35]. Chen, S., Tan, J., Claramunt, C.,Ray, C. Multi-scale and multi-modal GIS-T data model[J]. Journal of Transport Geography(2009),doi:10.1016/j.jtrangeo.2009.09006
    [36]. Wenzhong, S.,Minwen, Z. Development of a GIS data model with spatial, temporal and attribute components based on object-oriented approach[J]. Geo-Spatial Information Science. 2000.3(11): 17-23.
    [37].陈雷,张在明,沈小克.地理信息系统(GIS)在工程勘察中的应用[J].工程勘察. 1998:10-12.
    [38]. Koch, A.,Heipke, C. Semantically correct 2.5D GIS data -- The integration of a DTM and topographic vector data[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2006.61(1): 23-32.
    [39]. Peachavanish, R., Karimi, H.A., Akinci, B.,Boukamp, F. An ontological engineering approach for integrating CAD and GIS in support of infrastructure management[J]. Advanced Engineering Informatics. 2006.20(1): 71-88.
    [40].高山,冯光胜.三维遥感铁路工程地质勘察技术应用研究[J].铁道勘察2009: 36-39.
    [41].孙修乾.遥感地质在丹东——本溪高速公司工程地质勘察中的应用[J].民营科技. 2009: 14.
    [42]. Leu, S.-S.,Chang, S.-L. Digital image processing based approach for tunnel excavation faces[J]. Automation in Construction. 2005.14(2): 750-765.
    [43].袁金国.遥感图像数字处理[M].北京.中国环境科学出版社.2006.
    [44].闫清卫,李志军,向亮.大柱山隧道地质调查研究[J].四川建筑.2009.29(4):73-75.
    [45].宋关福,钟耳顺.组件式地理信息系统研究与开发[J].中国图象图形学报.1998.3(4):313-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700