用户名: 密码: 验证码:
基于第一性原理金属磁记忆力磁耦合模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业技术的迅猛发展,铁磁性金属材料在建筑、航空航天、能源、运输等领域得到了广泛的应用。金属构件在使用过程中,局部区域的应力集中使其机械强度大幅度下降,容易引起突发性事故。因此应力检测对金属构件的安全运行有着重要的意义。金属磁记忆检测技术作为一种新兴的无损检测技术已经在很多领域得到了较为成功的应用,其可以有效地检测铁磁性金属构件的微观损伤,具有诊断速度快、操作简单、价格低廉等优势。但是,由于缺乏深层次的理论支持和系统的实验研究,磁记忆现象的物理机理至今还没有定论,磁记忆信号的可靠性和真实性很难让人信服。传统力学和磁学很难建立起磁力学关系来说明磁记忆效应的产生机理,本文从量子力学微观理论出发对磁记忆效应产生的微观机制展开研究,采用基于密度泛函理论的第一性原理研究方法,研究了力对铁磁材料磁性能的影响,对磁记忆自发漏磁信号的产生机理以及应力集中与磁记忆信号的定量变化关系进行了深入的研究。
     研究了铁磁材料的磁性来源,首次运用量子力学理论解释磁记忆效应的力磁对应关系。在自旋极化体系中,采用第一性原理的计算方法计算了铁磁材料的晶格常数、电子结构、电子自旋态密度、分波态密度、原子磁矩与材料磁特性的定量变化关系;研究了布里渊区划分、交换关联能近似算法、平面波截止能量对计算结果的影响;研究不同的晶体结构下磁记忆效应的力磁关系。
     研究了外力和外界磁场作用对材料磁特性的影响。体系磁矩随应力集中状态的变化与微观结构的改变密切相关,体系的磁矩会随着最近邻原子间距的变化近似成线性变化,研究了拉应力与压应力作用下,材料磁特性的变化特征。
     研究了晶格畸变与掺杂元素对材料磁特性的影响。铁磁构件中C、Si、Mn等元素通常以替位式和间隙式的形式掺杂在系统中,研究掺杂前后体系的磁特性。同时,磁记忆效应的产生与晶格结构的改变密切相关,应力集中可能导致材料晶格结构发生各项同性畸变和各项异性畸变,根据应力作用形式确定晶格畸变形式,研究晶格各项同性畸变与各项异性畸变对材料磁特性的影响。
     理论研究结果表明应力集中导致晶格畸变是磁记忆信号产生的主要原因,即,拉伸作用导致原子磁矩增加,材料的磁性增强;压缩作用导致原子磁矩减小,材料的磁性减弱。钢铁构件中,掺杂元素可以改善材料的机械性能,同时会对材料的磁性产生影响,掺杂前后材料的磁性特性相似。基于第一性原理的研究方法从微观角度解释了金属磁记忆效应的力磁耦合关系,首次对磁记忆现象给出了一种定量计算的方法,同时,为磁记忆效应的物理机理研究提出一种新的研究思路。
     选取石油天然气长输管道使用的X70钢管进行水压爆破实验,研究磁记忆信号与应力的变化关系。X70号钢主要成分是Fe,其中含有微量C、Si、Mn掺杂元素。磁记忆信号随水压的增加发生变化,实验现象证明了金属磁记忆检测技术在管道应力在线检测领域的应用是可行的。
With the rapid development of modern industrial technology, the ferromagnetic metalmaterials have been widely used in construction, aerospace, energy, transportation andother fields. In use process, the mechanical strength will be reduced on stress concentrationlocal of metal components, which is easy to cause sudden accident. So stress testing iscritical to the safe operation of pipelines. Compared with the traditional technique ofnondestructive testing, metal magnetic memory testing technique can effectively detectmicroscopic damage of ferromagnetic components, which advantages are fast diagnosis,simple operation, and low price. However, due to the lack of theoretical support andsystematical experimental study, the physical mechanism of magnetic memoryphenomenon is still not settled yet, reliability and authenticity of the magnetic memorysignal is difficult to be convinced. Traditional mechanical and magnetism are difficult toestablish a magnetic relationship to illustrate the mechanism of magnetic memory effect.The microcosmic mechanism of magnetic memory effect is studied based on firstprinciples calculation, and then the magnetic-force effect of ferromagnetic materials, themechanism of spontaneous magnetic flux leakage signals of magnetic memory andrelationship between stress concentration and magnetic memory signal are analysed.
     The magnetic source of ferromagnetic materials is studied. The lattice constants,electronic structure, electron spin state density, partial wave state density and thequantitative relationship between atomic magnetic moment and the magnetic properties ofmaterials are calculated by using the basic theory of quantum mechanics, Which providetheoretical basis for the power-magnetic coupling of metal magnetic memory effect. Inspin system, the brillouin zone division, exchange connection, plane wave energy andapproximation algorithm are studied. The ground state of magnetic memory effectproperties are researched under the different crystal structures.
     The influence of the external forces and external magnetic field on magneticproperties of materials, the test model of magnetic memory effect is established. With thechange of the stress concentration state, magnetic moment is closely related to the microstructure change, and magnetic moment of system will change as the most close tothe atomic spacing approximation into linear change, the characteristics of magnetismunder the action of tensile stress and compressive stress is studied.
     The influence of the lattice distortion and the doping elements on the materialmagnetism is studied. C, Si, Mn and other elements generally are doped in theferromagnetic component in bit or clearance. The magnetic properties of the doping systemare studied. At the same time, the magnetic memory effect is closely related to the changeof lattice structure, the stress concentration may result in isotropy and anisotropy latticestructure distortion distortion, so the flunence of the lattice distortion on the materialsmagnetism is studied.
     Thesis theoretical research results show that the lattice distortion which is caused bystress concentration is the primary cause of magnetic memory signal, i.e., under tensileeffect, atomic magnetic moment increases, material's magnetic largens; under compressioneffect, atomic magnetic moment decreases, material's magnetic abates. And theoreticalcalculation shows that the trace elements which are doped in the steel component will nothave major influence on the material magnetic. A new method is put forward to study thethe physical mechanism of the magnetic memory effect.
     The X70steel pipe is used for water pressure blasting experiments, and then therelationship between magnetic memory signal and stress is analysed. The main ingredientof X70steel is Fe, and the trace elements such as C, Si, Mn are doped. The trend is thatmagnetic memory signals change with the increase of water pressure, and the experimentphenomenon shows that the application of metal magnetic memory testing technology inon-line detection of pipe stress is feasible.
引文
[1]李生田,刘志远.焊接结构现代无损检测技术.北京:机械工业出版社,2000.
    [2]李午申,董建明,张炳范.焊接裂纹预测及诊断专家系统.中国机械工程,1994,5(2):38~40.
    [3] R. Christen etal, Three-Dimensional Localization of Defects in Stay Cables Using Magnetic Flux L--eakage Methods. Journal of Nondestructive Evaluation,2003, V22(3):45~49.
    [4] Pradeep Ramuhalli et al, Neural network-based inversion algorithms in magnetic flux leakage non--destructive evaluation. Journal of Applied Phsics,2003, V33(5):12~19.
    [5]帅健.我国输气管道应力腐蚀开裂的调查与研究.油气储运,2006,25(4):1~7.
    [6] Wang QY, Berard J Y, Rathery S. High cycle fatigue crack initiation and propagation behaviour o--f high strength spring steel wires. Fatigue Fract Eng Mater Struct,1999,22(3):673~677.
    [7] Buck Otto. Fatigue damage and its non-destructive evaluation: an overview. Rev Prog QNDE,1998,11(6):835~838.
    [8] Si-Chaib MO, Djelouah H, Boutkedjirt T. Propagation of ultrasonic waves in materials under ben--ding forces. NDT&E International,2005,38(8):3~9.
    [9] Tian G Y, Rangarajan S, Sophian A. Stress measurement using novel Eddy current probe. In: Pro--ceedings of the BINDT annual conference, Torquay, UK,2004.
    [10] Ida N, Lord W.3-D finite element predictions of magnetostatic leakage fields. IEEE Trans Magn1983,19(5):2260~5.
    [11] Mendibide C, Steyer P, Esnouf C, Goudeau P, Thiaudi’ere D, Gailhanou M, et al. X-ray diffractionanalysis of the residual stress state in PVD TiN/CrN multilayer coatings deposited on tool steel.Surf Coat Technol,2005,20(10):5~9.
    [12] Mukhopadhyay S, Srivastava G P. Characterisation of metal loss defects from magnetic flux lea--kage signals with discrete wavelet transform.NDT&E International,2000,33(8):57~65.
    [13] George L, Anthony J M.Demonstration of new method for magnetic flux measurement in theinterior of magnetic material. Sensors and actuators,2003,10(6):104~107.
    [14]高炜欣,胡玉衡,穆向阳等.埋弧焊X射线焊缝图像缺陷分割检测技术.仪器仪表学报,2011,32(6):1215~1224.
    [15]陈芙蓉,霍立兴.非破坏性测量焊接残余应力方法的应用现状.金属结构焊接,2001,30(3):37~39.
    [16]南俊马,徐可为.X射线无损应力测试技术的研究现状.无损检测,1999,21(8):350-353.
    [17] Ruud CO. X-ray and advances in portable field in-strumentation. Metals,1979, V31(6):10~15.
    [18]王威,王社良,徐金兰.磁测残余应力方法及特点对比.建筑技术开发,2005,32(2):18~20.
    [19] J. Gauthier, T. W. Krause. D. L. Atherton. Measurement of residual stress in steel using themagnetic Barkhausen noise technique. NDT&E International.1998,31(1):23~31.
    [20]徐虹,藤宏春.残余应力非破坏性测量技术的发展现状简介.理化检验—物理分册,2003,39(11):595~597.
    [21]祁欣,于石生,李波.巴克豪森效应在材料检测中的应用和展望.材料科学与工艺,1994,2(2):107~112.
    [22]马咸尧,孙大千.巴克豪森应力效应的研究.华中理工大学学报,1994,22(9):29~33.
    [23]纪洪广,沙海飞,陈海峰等.巴克豪森效应在金属锚杆荷载检测中的实验.煤炭科学技术,2005,33(6):40~42.
    [24]冯升波.磁测残余应力法的基本理论和实验研究:(博士学位论文).北京:清华大学,1997.
    [25]文西芹,刘成文.基于逆磁致伸缩效应的残余应力检测方法.传感器技术,2002,21(3):42~44.
    [26]倪春生,陈国明.交流电磁场检测探头激励线圈的数值仿真及优化.无损检测,2007,31(2):100~104.
    [27]林俊明.电磁无损检测技术的发展与新成果.工程与试验,2011,51(1):1~5.
    [28] T. David, Y. Japha, V. Dikovsky. Magnetic interactions of cold atoms with anisotropic conductors.The European Physical Jounal D,2008, V48(4):321~332.
    [29] I. V. Ovchinnikov, Yu. G. Galyametdinov. Metallomesogen with a large magnetic anisotropy.Russian Chemical Bulletin,1995, V44(4):768~769.
    [30] A. G. Tanasienko, S. I. Suntsov, A. A. Dubov. Monitoring chemical plant by a magnetic memorymethod. Chemical and Petroleum Engineering,2002, V38(9-10):624~629.
    [31] Langman R. Measurement of the mechanical stress in mild steel by means of rotation of ma--gneticfield strength. NDT&E International,1981,14(5):255~262.
    [32] Langman R. Measurement of the mechanical stress in mild steel by means of rotation of magneticfield strength, Part2: Biaxial stress. NDT&E International,1982,15(2):91~97.
    [33] Langman R. Measurement of the mechanical stress in mild steel by means of rotation of magneticfield strength, Part3: Practical applications. NDT&E International,1983,16(2):59~65.
    [34]唐莺.管道腐蚀检测中的脉冲漏磁检测技术.计算机测量与控制,2010,18(1):12~15.
    [35]黄松龄.油气管道变形涡流线圈探头的有限元分析.清华大学学报,2011,51(3):25~28.
    [36]罗健豪.无损残余应力测量及其新技术.力学与实践,2003,25(4):7~11.
    [37] DOUBOV A A.Express method of quality control of a spot resistance welding with usage of metalmagnetic memory. Welding in the World,2002,46(S):317~320.
    [38] DOUBOV A A, DEMIN E A, MILYAEV A I, et al. The experience of gas pipeline stress-strainstate control with usage of the metal magnetic memory method as compared with conventionalmethods and stress control means. Welding in the World,2002,46(9/10):29~33.
    [39] DUBOV A A Technique for monitoring the bends of boiler and steam-line tubes using the ma--gnetic memory of metal. Thermal Engineering,2001,48(4):289~295.
    [40]王朝霞,张卫民.弱磁场下管件表面磁场的分布特征.科研成果与学术交流,2007,29(8):437~439.
    [41] A. G. Tanasienko, S. I. Suntsov, A. A. Dubov. Monitoring chemical plant by a magnetic memorymethod. Chemical and Petroleum Engineering,2002, V38(9-10):624~629.
    [42] CHECHKO Π. Using the method of magnetic memory of metal to evaluate the service life of theitems of power equipment at the Konakovo District Power Station. Thermal Engineering,2002,49(12):1028~1031.
    [43] LI Lu-ming, HUANG Song-ling, WANG Lai-fu. Research on magnetic testing method of stressdistribution. Trans Nonferrous Met Soc China,2002,12(3):387~391.
    [44] Jiles D C, Devine, M K. Recent developments in modeling of the stress derivative of magnetizationin ferromagnetic materials. Journal of Applied Physics,1994,76(10):7015~7017.
    [45] Atherton D L, Barnes R, Donaldson M, et al. Effects of line pressure stress, magnetic propertiesand test conditions on magnetic flux leakage signals. NDT&E International,1994,27(2):16~20.
    [46] Lo C C H. Paulsen J A. Jiles D C. Quantitative evaluation of stress distribution in magneticmaterials by Barkhausen effect and magnetic hysteresis measurements. IEEE Transactions onMagnetics,2004,40(4):2173~2175.
    [47] Atherton D L, Szpunar J A. Effect of stress on magnetization and magnetostrication steel. IEEETransactions on Magnetics,1986,22(5):514~516.
    [48] Garikepeti P, Cheng T T, Jiles D C. Theory of ferromagnetic hysteresis: evaluation of stress fromhysteresis curves. IEEE Transactions on Magnetics,1988,24(6):2922~2924.
    [49] Jiles D C, Hariharan M K, Devine M K. Magnescope: a portable magnetic inspection system forevaluation of steel structures and components. IEEE Transactions on Magnetics,1990,26(5):2577~2579.
    [50] Dubov A A. The method of metal magnetic memory-The new trend in engineering diagnostics.Welding in the word,2005,49(9):314~319.
    [51] Dubov A A. A rapid method of inspecting welded joints utilizing the magnetic memory of metal.Welding International,1997,11(5):410~413.
    [52] Dubov A A, Gneushev A M, Veliyulin I I. Advanced diagnostics assists assessment of oil and gaspipeline remaining service life. Energetik,2005,2:18~20.
    [53] Dubov A A. Diagnostics of metal items and equipment by means of metalmagnetic memory. CH--SNDT7th Conference on NDT and International. Research Symposium,1999,34(6):181~187.
    [54] Dubov A A, Demin E A, Milyaev A I, et al. The experience of gas pipeline stress-strain state co--ntrol with usage of the metal magnetic memory method as compared with conventional methodsand stress control means. Welding in the World,2002,46(9):29~33.
    [55] Dubov A A.A rapid method of inspecting welded joints utilizing the magnetic memory of me--tal.Welding International,1997,11(5):410~413.
    [56] DOUBOV A A. A Study of metal properties using the method of magnetic memory. Metal Scienceand Heat Treatment,1997,39(9/10):401~402.
    [57] HUANG Song-ling, LI Lu-ming, SHI Ke-ren, et al. Magnetic field properties caused by stress con--centration. J Cent South Univ Technol,2004,11(1):23~26.
    [58] ZHANG Wei-ming, Doubov A A, SUN Hai-tao, et al. The metal magnetic memory phenomenonof high-strength steel in the process of gringding. Ordnance Transaction,2005,26(3):375~378.
    [59] Dubov A A. The method of metal magnetic memory-The new trend in engineering diagnostics.Welding in the word,2005,49(9):314~319.
    [60] Wilson J W, Tian G Y. Barrans S. Residual magnetic field sensing for stress measurement. SensActuators A: Phys,2007,135(2):381–387.
    [61] Dubov A A, Development of a metal magnetic memory method. Chemical and PetroleumEngineering,2011, V47(11-12):837~839.
    [62]王丹,董世运,徐滨士.应力集中部位的金属磁记忆检测研究.失效分析与预防,2007,23(3):32~35.
    [63]张亚梅.油气管道的磁记忆检测技术应用及其对比性定量的初探,(博士学位论文).天津:天津大学,2004.
    [64]成曙,杨荣祥.小波分析在金属磁记忆无损检测中的应用.自动测量与控制,2008,27(7):48~50.
    [65]张启欣.小波变换用于磁记忆信号降噪技术研究.山西建筑,2007,33(31):45~49.
    [66]彭玉华.小波变换与工程应用.北京:科学出版社,1999.
    [67]成礼智,王红霞,罗永.小波的理论与应用.北京:科学出版社,2004.
    [68]黄松岭,李路明,汪来富等.用金属磁记忆方法检测应力分布.无损检测,2002,24(5):212~214.
    [69]李路明,王晓凤,黄松岭.磁记忆现象和地磁场的关系.无损检测,2003,25(8):387~389.
    [70]任吉林,邬冠华,宋凯.金属磁记忆检测机理的探讨.无损检测,2001,24(1):29~31.
    [71]任吉林,宋凯,唐继红.航空铁磁构件磁记忆检测技术的应用.航空制造技术,2005,1:80~83.
    [72]唐继红,潘强华,任吉林.静载拉伸下磁记忆信号变化特征分析.仪器仪表学报,2011,32(2):336~341.
    [73]耿荣生.磁记忆检测技术在飞机结构件早期损伤监测的应用前景.无损检测,2004,26(7):349~351.
    [74]张亦良,徐学东,葛森.高压气瓶工艺残余应力测试和分析.实验力学,2004,19(2):194~199.
    [75]张卫民,刘红光,孙海涛.中低碳钢静拉伸时磁记忆效应的试验研究.北京理工大学学报,2004,24(7):571~574.
    [76]梁志芳.焊接裂纹的金属磁记忆特征研究.天津:天津大学,2005.
    [77]宛德福.磁性理论及其应用.武汉:华中理工大学出版社,1996.
    [78]李国栋.当代磁学.合肥:中国科技大学出版社,1999.
    [79]戴道生,钱昆明.铁磁学.北京:科学出版社,2000.
    [80]苏东林,陈爱新,谢树果等.电磁场与电磁波.北京:高等教育出版社,2009.
    [81]姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社,2003.
    [82]谢希德,陆栋.固体能带理论.上海:复旦大学出版社,1998.
    [83] WANG Z D, YAO K, DENG B, et al. Theoretical studies of metal magnetic memory technique onmagnetic flux leakage signals. NDT&E International,2010,43(10):354~359.
    [84] Jiles D C, Hariharan M K, Devine M K.Magnescope: a portable magnetic inspection system forevaluation of steel structures and components. IEEE Transactions on Magnetics,1990,26(5):2577~2579.
    [85]潘荣宝,袁溶.管道压力容器磁粉检测技术.中国锅炉压力容器安全,2003,19(4):33~36.
    [86]邸新杰,李午申,严春妍等.焊接裂纹金属磁记忆信号的特征提取与应用.焊接学报,2006,27(2):19~22.
    [87]邸新杰,李午申,白世武等.焊接裂纹的金属磁记忆定量化评价研究.材料工程,2006,7:56~60.
    [88] DONG L H, XU B S, DONG S Y, et al. Metal magnetic memory signals from surface of low-Car--bon steel andlow-carbon alloyed steel. J. Cent. South Univ. Technol.2007,5(4):24~27.
    [89] Bom M and I-Iuang K. Dynamical Theory of Crystal Lattices. Oxford: Oxford University Press,1954.
    [90] Mcweeny R. Methods of Molecular Quantum Mechanics. Academic Press, London,1989.
    [91] Thomas L H. First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite Pr--oc. Cambridge. Phil. Soc.,1927,23(8):542~551.
    [92] Fermi E. Rend. Pressure-driven phase transitions in correlated systems. Aecad. Naz., Lincei.,1927,7(3):602~621.
    [93] Hohenberg P, Kohn W. Inhomogeneous elecyron gas.Phys.Rev.B,1964,136(8):864~871.
    [94] Cheng Y T Cheng C M. Relationships between hadrness, elastic modulus, and the Work of inden--tation. Appl. Phy. Lett.,1998,73(12):614~616.
    [95]李名腹.半导体物理学.北京:科学出版社.1988.
    [96] HeineV, Weaaire D. Pseudo Potential theory of cohesion and structure. Solid State Physics,1970,24(10):250~463.
    [97] Heine V. The Pseudo Potential Concept.Solid State Physics,1970,24(3): l~36.
    [98] Woodruff T O. The orthogonalized Plane-wave method. Solid State Physics,1957,4(2):367~412.
    [99] Hamann D R, SehluterM, Chiang C. Norm-eonserving PseudoPotentials. Phys. Rev. Lett.,1979,4(3):1494~1497.
    [100] IhmJ, Zunger A, Cohen M L. Momentum-Space formalism for the total energy of solids. J.Phys C:Solid State Phys.,1979,12(3):4409~4422.
    [101]柳清菊,朱忠其,张瑾等.3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究.物理学报,2007,56(11):6592~6599.
    [102] Liu W, Wang F, Li L. The Beijing Density Functional (BDF) Program Package Methodologies a--nd applications. J. Theor. Comput. Chem.2003,12(4):257.
    [103] Segall MD, Lindan PL D, ProbertMJ, Pickard C J, Hasnip P J, Clark S J, Payne M C. First-princi--ples simulation: ideas, illustrations and the CASTEP code. J. Phys.: Cond. Matt.2002,14(11):2717~2725.
    [104] Holzmann M, Bernu B, Olevanol V. Spatially resolved spectroscopy of monolayer graphene onSiO2. Phys. Rev. B,2009,79(20):1308~1314.
    [105] William K. Entanglement of Formation of an Arbitrary State of Two Qubits. phys. Rev. lett,1998,80(10):2245~2248.
    [106] Perdew J P, Zunger A. Measurement of Lattice Temperature of Silicon during Pulsed LaserAnnealing. Phys. Rev B,1981,47(5):356~358.
    [107] Fu H, Zunger A. Thresholds for the phase formation of cubic boron nitride thin films. Phys. Rev.B,199755(19):13230~13233.
    [108] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J. Uniaxial pressuredependence of the superconducting critical temperature in RBa2Cu3O7-delta high-Tc oxides.Phys. Rev. B,1992,46(2):1257~1260.
    [109] Lide D R. CRC Handbook of Chemistry and Physies (Florida: CRC Press).1992.
    [110]麻焕峰.铁基材料物性的第一性原理计算:(博士学位论文).成都:西南交通大学,2007.
    [111] Kittel C. Introduction to Solid State Physic,5th ed (NewYork: Wiley),1976.
    [112] Wijs G A D, Kresse G. Biomimetic engineering of non-adhesive glycocalyx-like surfaces usingoligosaccharide surfactant polymers. Nature,1998,392(6678):799~801.
    [113] Busehow K H J. Non-Hermitian spin chains with inhomogeneous coupling. Rep. Progr. Phys.,2011,22(3):393~410.
    [114] MELEHY M A.Proposed Distribution of Electron Energy in p–n Junctions and the Theory ofInjection. Nature,1964,20(2):864~868.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700