用户名: 密码: 验证码:
稀少(无)控制条件下机载SAR高精度定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(Synthetic Aperture Radar, SAR)具有全天时、全天候、穿透性等特点,已成为当前测绘困难地区数据获取和测图的重要手段。机载SAR系统具有实时获取与处理、机动灵活等特点,可依据用户需求获取大比例尺、高分辨率、高精度SAR数据,因此越来越得到各国研究者的关注,机载SAR影像精确定位随之成为SAR数据处理技术的研究重点和热点。
     传统的机载SAR影像定位方法需采用大量控制点,距离大面积、稀少控制区域地形测绘的应用需求还有较大差距,亟待解决稀少(无)地面控制条件下的机载SAR测图问题。本文从分析SAR影像几何特点入手,重点研究机载SAR误差源及其影响、稀少控制条件下机载SAR区域网平差、无控制条件下的机载SAR影像主动定位模型,实现复杂地形、大面积、稀少(无)控制点条件下的机载SAR影像高精度定位,提高困难地区测图精度和效率。
     本文的主要研究内容和主要贡献:
     1.分析了机载SAR定位模型。从SAR影像的几何特点和几何变形因素出发,分析了SAR影像与光学影像几何特性差异及机、星载SAR的区别;研究了机载SAR定位的原理及流程,并对机载SAR影像的定位模型及各定位模型的适用情况和优缺点进行了分析、比较。
     2.设计了机载多波段多极化干涉SAR测图系统关键技术指标。研究了影响干涉测量精度的因素及其引起的误差,并对机载多波段多极化干涉SAR测图系统X波段干涉SAR传感器的基线长度进行了设计,为飞机改装提供了关键技术指标。
     3.研究了复杂地形条件下的机载SAR航线设计方案。重点分析了SAR影像产生阴影的原因及影响阴影大小的因素,研究了机载SAR影像去除阴影的方案:加大重叠度、双向成像、垂直方向成像,定量分析了各种方法去除阴影的效果,并对横断山脉地区各种地形引起的阴影及可采用的消除方法进行了分析,对此地区进行了机载SAR航线设计。
     4.提出了稀少控制条件下机载SAR区域网平差模型。该模型采用了基于投影差改正的多项式法和基于F.Leberl构像模型的多片联合平差算法,可适用于不同侧视方向、不同航高、不同分辨率的多景SAR影像。根据多片联合平差模型,设计了相应的软件,进行了试验和方法改进,验证了该方法可用于平地、丘陵地区1:1万测图的区域网平差。
     5.提出了无控制条件下的机载SAR影像主动定位模型。研究了定位定向系统(Position and Orientation System, POS)数据处理的方法,包括天线动态偏心改正和雷达相位中心插值;提出了在无控制点情况下基于POS高精度位置和姿态数据的机载SAR高精度定位方法。试验验证了在无控制点情况下,此模型可用于1:5万测图。
     6.提出了稀少控制条件下机载SAR多航带区域网联合地理编码模型。研究了机载SAR多航带区域网联合地理编码算法,包括航带粗定位、机载SAR多航带区域网平差和航带精定位,并提出了机载SAR多航带区域网控制点布设方案。
Synthetic Aperture Radar (SAR) Technology, characterized by its all-time, all-weather and penetrable capability, has been a primary technical means in data acquisition and mapping within the difficulty area at present. Airborne SAR system owns couple of features such as real-time acquisition, real-time processing, and flexibility; it can produce large-scale, high-resolution, and high-accuracy SAR data on the demand of users. Now it has been paid more and more attention by researchers all over the world. Therefore research on precise geolocation of airborne SAR images has been an important field in SAR data processing technologies.
     The traditional way of airborne SAR image positioning is employing Ground Control Points (GCPs) as many as possible, and topographic mapping in large area with few GCPs still has heavy disparity, meanwhile airborne SAR mapping with few or none GCPs is a burning question. According to the analyse on geometric characters of airborne SAR images, the main research topics of this dissertation are airborne SAR error sources and their effects, block adjustment of airborne SAR under the circumstance of few GCPs, direct positioning model of airborne SAR images with none GCP, high accuracy of SAR image positioning in extremely conditions like complex topography, large-scale, and few or no GCPs, raise in mapping effective and accuracy in difficulty area.
     The main research contents and contributions are as follows:
     1. Airborne SAR positioning models are analyzed. According to geometric characteristics and distortions of SAR images, the difference between SAR and optical images, the variances between airborne and spaceborne SAR are analyzed respectively. The principles and processing flows of airborne SAR positioning are studied. Airborne SAR positioning models are described emphatically. The availability, merits and demerits of every SAR positioning model are analyzed and compared.
     2. The key technical indexes of Airborne Multi-band Multi-polarization SAR Interferometry (InSAR) Mapping System are designed. Factors that restricted the accuracy of interferometry are studied and errors propagation by them is reasoned, the baseline length of X-band InSAR System is designed, which provides aircraft modification with technical foundation.
     3. Airborne SAR airline solution for complex terrain is studied. Reasons and factors of the shadow are analyzed spe cifically. Methods of eliminating shadow are proposed:increasing overlap ratio of SAR images, imaging from two directions and imaging on vertical direction. The effect of these methods in eliminating shadow are analyzed quantitatively. The reasons caused shadow by various terrains and possible eliminating methods are analyzed in Hengduan Mountain Region, and airborne SAR flight lines are designed in this area.
     4. A block adjustment model with few GCPs for airborne SAR is proposed. The model uses multi-photo united adjustment algorithm based on polynomial model with height displacement correction and F. Leberl imaging model. It is available for multi-scene SAR images with different looking side, flight height, resolution. According to multi-photo united adjustment model, software has been programmed. Additionally, experiments and improvement models have been done. The experimental results verified the 1:10000 scale topographic mapping block adjustment in plain and hilly terrain area.
     5. A direct positioning model with none GCP is put forward. Position and Orientation System (POS) data processing method is studied, including radar antenna dynamic eccentric correction and antenna phase center interpolation. Airborne SAR high-accuracy positioning method with none GCP is proposed which is based on high accuracy position and attitude data produced by POS. The model can satisfy 1:50000 scale topographic mapping through the experiment.
     6. The airborne SAR multi-strip block united geocoding model with few GCPs is brought up. The airborne SAR multi-strip block united geocoding algorithm is studied, including coarse positioning of single flight strip, airborne SAR multi-strip block adjustment and fine positioning of single flight strip. The GCPs layout plan of airborne SAR multi-strip block is brought forward as well.
引文
[1]Ackermann F. Practical Experience with GPS-Supported Aerial Triangulation [J]. Photogrammetric Record,1994,16(84):861-874
    [2]Applanix Product Outline. POSPacTM Air [EB/OL]. http://www.applanix.com /products/pospac_airborne_index.php,2007
    [3]Applanix. POSPac User Manual[M], Ontario:Applanix Corporation,2002
    [4]Applanix POS AVTM and POS TrackTM SPECIFICATIONS [EB/OL]. http://www.applanix.com
    [5]Belgued Y et al. Application of Radar Triangulation to the Calibration of Inter-ferometric DEM [A]. In:Proceedings of Geoscience and remote sensing symposium, IGARSS'98, Seattle, Washington,1998,(5):2665-2667
    [6]Bennett J R, Widmer P, Cumming I G.A real-time airborne SAR processor[J]. Proc. ESA Working Group, Erascati, Italy,1980,25(2):1024-1031
    [7]Blitzer D L. Steering and focusing antenna beams by the use of quantized phase shifts[R]. Control System. Lab., University of Illinois,1959,5(4):81-84
    [8]COSMO-Skymed, COSMO 1,2,3,4 http://space.skyrocket.de/index_frame.h-tm?http://www.skyrocket.de/space/doc_sdat/cosmo-skymed-l.htm
    [9]Cramer M, Stallmann D, Haala N. Direct Georeferencing Using GPS/Inertial Exterior Orientations for Photogrammetric Applications. International Archives of Photogrammetry and Remote Sensing,2000,33(B3):198-205
    [10]Curlander J C. Location of Spaceborne SAR Imagery[J]. IEEE Trans. on Geoscience and Remote Sensing,1982,20(3):359-364
    [11]Curlander J C, Kwok R, Pang S S. A Post-processing System for Automated Rectification and Registration of Spaceborne SAR Imagery [J]. International Journal of Remote Sensing,1987,8(4):621-63
    [12]DLR, TerraSAR-X Ground Segment level1b Product Format Specification. CAF-Cluster Applied Remote Sensing.2007,12-14
    [13]DLR, Cluster Applied Remote Sensing-TerraSAR-X Ground Segment-Basic Product Specification Document[R]. Doc:TX-GS-DD-3302, Issue:1.5,2008, 28
    [14]Curlander J C. Location of Pixels in Space-borne SAR Imagery[J]. IEEE Transaction on Geoscience and Remote Sensing,1982,20(3):359-364
    [15]Cutrona L J, Vivian W E, Leith E, et, al. A high resolution radar combat surveillance system[J]. IRE Trans. Military Elec,1961,6(1):127-131
    [16]European Space Agency, ASAR Product Handbook Issue 2.2[M/OL] [M]. http://envisat.esa.int/handbooks/asar/CNTR.htm.2007
    [17]F. Leberl. Radar grammetric processing[M]. Artech House,1990
    [18]Franz, W.Leberl. et al. Satellite Radargrammetry. A-8010Graz, Austria Graz Research Center,1982
    [19]Gordon C. Staples, RADARSAT-2:Program Overview and Applications, Anais XII Simposio Brasileiro de Sensoriamento Remoto, Goiania, Brasil, 16-21 abril 2005,4501-4506
    [20]G. Konecny, W.Schuhr. Reliability of Radar Image Data [J].16th ISPRS,1988, (16):92-101
    [21]G. M. Huang, J.K. Guo, Z. Zhao.et al. DEM Generation from Stereo SAR Images Based on Polynomial Rectification and Height Displacement. IEEE International Geoscience and Remote Sensing Symposium,2004
    [22]GKonecny, W.Schuhr. Reliability of Radar Image Data[J]. ISPRS Comm. I Symposium,1988
    [23]Greening T, Schickler W, Thorpe A. The Proper Use of Directly Observed Orientation Data:Aerial Triangulation is not Obsolete [C].2000 ASPRS Annual Conference, Washington DC,2000
    [24]Gruen A, Baer S. Aerial Mobile Mapping-Georeferencing without GPS/INS [C]. Proceedings of the 3rd International Symposium on Mobile Mapping Technology, Cairo,2001
    [25]Guindon B, Harris J. W. E, Teillet P. M, Goodenough D. G. Meunier J. E., Integration of MSS and SAR Data for Forested Regions in Mountainous Terrain, Proceedings of the Fourtheenth International Symposium on Remote Sensing of Environment, San Jose, Costa Rica,1980,1673-1690
    [26]Guindon B, Goodenough D. G, Teillet P. M. The Role of Digital Terrain Models in the Remote Sensing of Forests, Canadian Journal of Remote Sensing,1982,8(1):4-16
    [27]H. A. Zebker, R. M. Goldstein, Topographic Mapping from Interferometry Synthetic Aperture Radar Observation. Journal of Geophysical Research,1986, 91:4993-4999
    [28]Heipke C, Jacobsen K, Wegmann H. The OEEPE Test on Integrated Sensor Orientation-Results of Phase I[C]. Proceedin gs of Photogr ammetric Week, Stuttgart,2001,195-204
    [29]Hennig T A, Kretsch J L, Pessagno C J, Salamonowicz P H, Stein W L. The Shuttle Radar Topography Mission [M]. C.Y. Westort (Ed.):DEM 2001, LNCS 2181, Springer-Verlag, Berlin Heidelberg,2001,65-77
    [30]Honkavaara E, Jaakkola J, Risto Ilves. Practical Results of GPS/IMU/Camera System Calibration, in Theory, Technology and Realities of Inertial/GPS Sensor Orientation[A]. ISPRS Commision I[C]. Castelldefels, Spain,2003
    [31]Johnsen H, Lauknes L, Guneriussen T. Geocoding of fast-delivery ERS-1 SAR image mode product using DEM dat[J]. International Journal of Remote Sensing,1995,1(11):1957-1968
    [32]JOHNSENH,CHAPRONB,WALKERN, et al., The ASAR wave mode:Level 1 and 2 algorithms and products [C/CD] [M], Proceedings of the Envisat Calibration Review,2002
    [33]Joz Wu, De-Chen Lin. Radargrammetric parameter evaluation of an airborne SAR image[J]. Photogrammetric Engineering & Remote Sensing,2000, 66(l):41-47
    [34]Karathanassi V, Iossifidis Ch. A SAR Geocoding Method for Evaluating Geodetic Coordinates and Improving Indirect Geocoding Accuracy [A]. In: Proceedings of SPIE Vol.4886, Manfred Ehlers Editor,2003, Bellingham, WA, 268-278
    [35]Kirk J C, Jr. Digital synthetic aperture radar technology. IEEE International Radar Conference Record.1975,2(1):482-487
    [36]Kouba J, Heroux P. Precise Point Positioning Using IGS Orbit and Clock Products[J]. GPS Solutions,2001,5(2):12-28
    [37]Kremer J, Kruck E. Integrated Sensor Orientation Two Examples to show the Potential of simultaneous GPS/IMU and Image Data Processing in Theory, Technology and Realities of Inertial/GPS Sensor Orientation[A]. ISPRS Commision I[C]. Castelldefels, Spain,2003
    [38]Leberl F.. Radargrammetry for Image Interpretation, ITC Technical Report, 1978
    [39]Liang Tang, Jens Kremer, Helmut Kohlhaas. Introducing DGPS/IMU-based Photogrammetry to China[J]. Photogrammetric Week,2003
    [40]Lithopoulos E. The Applanix Approach to GPS/INS Integration [A], In: Photogrammetric Week 99, FRITSCH/S PILLER (Eds.), Wichmann Verlag, Heidelberg,1999,53-57
    [41]MADSENSN, ZEBKERHA, and MARTINJ. Topographic Mapping Using Radar Interferometry:Pocessing Techniques [J]. IEEE Transation of Geoscience and Remote Sensing,1993,31:246-255
    [42]Michael Cramer, Dirk Stallmann. On the use of GPS/Inertial exterior orientation parameters in airborne photogrammetry [J]. OEEPE-Workshop Integrated Sensor Orientation,2001
    [43]Michael Cramer. Integrated GPS/inertial and digital aerial triangulation Recent test results[J]. Photogrammetric Week,2003
    [44]Mostafa M R. Camera/IMU Boresight Calibration:New Advances and Performance Analysis [C]. The ASPRS Annual Meeting, Washington D C, 2002
    [45]OmniSTAR 8200HPTM System SPECIFICATIONS. OSBV September 2006
    [46]Pu-Huai Chen, Ian J.Dowman. A Weighted Least Squares Solution for Space Intersection of Spaceborne Stereo SAR Data. IEEE Transactions on Geoscience and Remote Sensing.2001,39(2):233-240
    [47]Radarsat Internation[S].Technical Documents For Radarsat Network Stations. 1997
    [48]Sherwin C W, Ruina J P, Rawcliffe R D. Some early developments in synthetic aperture radar systems[J]. IEE Trans. On Military Elec.,1962,7(1) 6:11-115
    [49]Shi mada M, ALOS PALSAR Mission and Polari metric Application[C] [M]. POLinSAR Workshop2007,2007
    [50]Toutin Th. Review article:geometric processing of remote sensing images: model, algorithms and methods [J]. International Journal of Remote Sensing, 2003,25:1893-1924
    [51]Toutin T, Carbonneau Y, Chenier R. Block Adjustement of Landsat-7 ETM+ Images[R]. In Proceedings of ISPRS Joint Workshop High Resolution Mapping from Space, Hannover, Germany,2001,19-21
    [52]Toutin T. An Integrated Method to Rectify Airborne Radar Imagery Using DEM[J], Photogrammetric Engineering & Remote Sensing,1992,58(4): 417-422
    [53]Wiley C A. Synthetic aperture radars-a paradigm for technology evolution [J]. IEEE. Transactions on Aerospace and Electrical System, AES-1951,21(3): 440-443
    [54]Xiang Maosheng, Wu Yirong, Li Shaoen. Introduction on An Experimental Airborne InSAR System[A]. IGARSS'05[C],2005,7:4809-4812
    [55]X. J. Yue, G. M. Huang. Multi-photo Combined Adjustment with Airborne SAR Images Based on a Few Ground Control Points,2008 International Workshop on Earth Observation and Remote Sensing Applications(EORSA), 2008 IEEE. No.55
    [56]X.J. Yue, G.M. Huang, Y. Zhang, Z.Zhao, L.Pang. Multi-photo Combined Adjustment with Airborne SAR Images Based on F.Leberl Ortho-rectification Model, the 21th ISPRS Congress,2008,357-360
    [57]Xijuan Yue, Guoman Huang, Zheng Zhao. Methods Research on Eliminating Shadow in Airborne SAR Images, International Conference on Earth Observation Data Processing and Analysis(ICEODPA),2008, Proc. of SPIE Vol.7285 1E
    [58]Young-Kyun, Byung-Lae Cho, and Young-Soo Kim. Ambiguity-free doppler centroid estimation technique for airborne SAR using the radon transform. Geosciense and Remote Sensing. April 2005,43(4):715-721
    [59]Yuan X X, Xie C, Wang S G.. Image Orientation by Combined Bundle Adjustment with Fixed Imagerie. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,2004,35(B2):34-38
    [60]ZEBKER H A, WERNER C L, ROSEN P A, HENSLEY S. Accuracy of Topographic Maps Derived from ERS-1 Interferometric Radar[J]. IEEE Transactions on Geoscience and Remote Sensing,1994,32(4):823-836
    [61]ZUMBERGE J F,HEF LIN M B, JEFFERSON D C, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks[J]. Journal of Geophysical Research,1997,102(B3):5005-5017
    [62]ZUMBERGE J F, WATKINS M M, WEBB F H. Characteristics and Application of Precise GPS Clock Solution Every 30 Seconds Navigation[J]. Navigation,1998,44(4):449-456
    [63]卜彦龙,潘亮,彭辉,沈林成.未知DEM下的机载SAR图像几何校正方法研究[J].测绘学报,2009,38(1):41-47
    [64]陈尔学.星载合成孔径雷达影像正射校正方法研究[D].中国林业科学研究院,2004
    [65]邓磊.Contourlet域隐马尔可夫模型及其在SAR图像处理中的应用[D].北京师范大学,2007
    [66]顿斯科夫等.雷达摄影测量[M].北京:测绘出版社,1986
    [67]范永弘.SAR图像的几何纠正[J].武汉测绘科技大学学报,1997,22(1):41-43
    [68]方圣辉,舒宁,潘斌.ERS-1 SAR图像的几何处理的研究[J].测绘信息与工程,1997,(4):26-29
    [69]冯林刚,赵永贵.星基差分GPS-StarFire系统[J].测绘通报,2006,(11):6-8
    [70]高力,赵杰,王仁礼.利用Leberl模型进行机载SAR图像的立体定位[J].测 绘学院学报,2004,21(4):269-271
    [71]高力.SAR摄影测量处理的基本方法和实践[D].中国人民解放军信息工程大学,2004
    [72]郭大海,吴立新,王建超,郑雄伟.机载POS系统对地定位方法初探[J].国土资源遥感,2004,(2):26-31
    [73]何钰.SAR图像区域网数字空中三角测量[D].中国人民解放军信息工程大学,2005
    [74]黄国满,张继贤,赵争,燕琴.机载干涉SAR测绘制图应用系统研究[J].测绘学报,2008,37(3):277-279
    [75]黄国满,郭建坤,赵争等.SAR影像多项式纠正方法与实验[J].测绘科学,2004,29(6):27-30.
    [76]黄国满,岳昔娟,赵争等.基于多项式正射纠正模型的机载SAR影像区域网平差[J].武汉大学学报信息科学版,2008,33(6):569-572
    [77]孔祥元,郭际明,刘宗泉.大地测量学基础[M].武汉:武汉大学出版社,2001
    [78]李德仁,郑肇葆.解析摄影测量学[M].北京:测绘出版社,1992
    [79]李晶,肖国超,陈鹰.利用SAR图像制作几何影像图的研究[J].解放军测绘学院学报,1997,14(2):115-118
    [80]李鑫慧.InSAR-DEM地学编码方法的研究[D].武汉:武汉大学,2003
    [81]廖明生,林珲.雷达干涉测量—原理与信号处理基础[M].北京:测绘出版社,2003
    [82]廖明生,田馨,赵卿.TerraS AR-X/TanDEM-X雷达遥感计划及其应用[J].测绘信息与工程,2007,32(2):44-46
    [83]靳国旺,朱彩英.机载SAR图像定向参数的F.LDT解法[J].测绘学院学报,2002,19(4):272-275
    [84]刘军,张永生,王冬红,徐卫明.POS AV510-DG系统外方位元素的计算方法[J].测绘技术装备,2004,6(4):6-9
    [85]刘大杰,陶本藻.实用测量数据处理方法[M].北京:测绘出版社,1992
    [86]楼良盛,汤晓涛,刘志铭,牛瑞,高力.机载InSAR测绘系统飞行试验 报告[J].测绘科学与工程,2006,26(4):6-9
    [87]陆国胜.测量学[M].北京:测绘出版社,1991
    [88]吕京国.星载合成孔径雷达影像正射纠正算法的研究与实现[D].武汉大学,2002
    [89]庞蕾.高分辨率机载合成孔径雷达空中三角测量方法的研究[D].山东科技大学,2006
    [90]史世平.使用ERS-1/2干涉测量SAR数据生成DEM[J].测绘学报,2000,29:317-323
    [91]舒宁.微波遥感原理[M].武汉:武汉大学出版社,2003
    [92]孙家抦.遥感原理与应用[M].武汉:武汉大学出版社,2003
    [93]王超,张红,刘智.星载合成孔径雷达干涉测量[M].科学出版社,2002
    [94]王冬红,刘军,张莉.基于F.Leberl改进模型的星载SAR影像精纠正[J].测绘通报,2005,10(10):12-15
    [95]王之卓.摄影测量原理[M].北京:测绘出版社,1979
    [96]韦立登,向茂生,吴一戎.POS数据在机载干涉SAR运动补偿中的应用[J].遥感技术与应用,2007,22(2):188-194
    [97]吴从晖,朱彩英,徐青.机载SAR图像的快速几何纠正算法及应用[J].解放军测绘学院学报,1999,16(4):267-270.
    [98]武汉测绘科技大学《测量学》编写组编著.测量学[M].北京:测绘出版社,1996
    [99]武汉测绘科技大学测量平差教研室编著.测量平差基础(第三版)[M].北京:测绘出版社,1994
    [100]肖国超,朱彩英.雷达摄影测量[M].北京:地震出版社,2001
    [101]肖国超.SAR影像纠正的数学模型[J].解放军测绘学院学报,1994,11(3):175-180
    [102]杨存建等.基于DEM的SAR图像洪水水体的提取[J].自然灾害学报,2002,11(3):121-125
    [103]杨杰.星载SAR影像定位和从星载InSAR影像自动提取高程信息的研究[D],武汉大学,2004
    [104]杨杰,潘斌,李德仁,钟永正.无地面控制点的星载SAR影像直接对地定位研究[J].武汉大学学报信息科学版,2006,31(2):144-147
    [105]尤红建,丁赤彪,向茂生.机载高分辨率SAR图像直接对地定位原理及精度分析[J].武汉大学学报信息科学版,2005,30(8):712-715
    [106]尤红建,向茂生.机载干涉雷达数据的直接地学编码处理[J].现代雷达,2006,1(28):38-40
    [107]于秋则.合成孔径雷达(SAR)影像匹配导航技术研究[D].华中科技大学,2004
    [108]袁修孝.GPS辅助空中三角测量原理及应用[M].北京:测绘出版社,2001
    [109]袁修孝.POS辅助光束法区域网平差[J].测绘学报,2008,37(2):342-348
    [110]袁修孝.当代航空摄影测量加密的几种方法[J].武汉大学学报信息科学版,2007,32(11):1001-1006
    [111]袁修孝,付建红,楼益栋.基于精密单点定位技术的GPS辅助空中三角测量[J],测绘学报,2007,36(3):251-255
    [112]袁修孝,傅建红,左正立,孙红星.机载POS系统用于航空遥感直接对地目标定位的精度分析[J].武汉大学学报信息科学版,2006,31(10):847-850
    [113]袁修孝,朱武,武军郦,王瑞幺.无地面控制GPS辅助光束法区域网平差[J].武汉大学学报信息科学版,2004,29(10):852-857
    [114]岳焕印,郭华东,王长林,阎福礼.利用ERS-1/2重轨干涉SAR数据提取DEM及其精度分析[J].测绘通报,2001,(8):16-18
    [115]张澄波.合成孔径雷达[M].北京:科学出版社,1989
    [116]张过,李德仁,袁修孝,张春玲.卫星遥感影像的区域网平差成图精度.测绘科学技术学报,2006,23(4):239-241
    [117]张剑清,张勇,程莹.基于新模型的高分辨率遥感影像光束法区域网平差[J].武汉大学学报信息科学版,2005,30(8):659-663
    [118]张继贤,杨明辉,黄国满.机载合成孔径雷达技术在地形测绘中的应用及其进展[J].测绘科学,2004,29(6):24-26
    [119]张继贤.SPOT影像像点位移的研究[J].测绘科学,2000,25(1):19-22
    [120]张俊.合成孔径雷达(SAR)图像处理与分析方法研究[D].华中理工大学,1998
    [121]张利.机载合成孔径雷达影像几何处理方法研究[D].中国矿业大学,2006
    [122]张天光,王秀萍,王丽霞等译.捷联惯性导航技术(第2版)[M].国防工业出版社,2007
    [123]张永红,林宗坚,张继贤,甘梦龙.SAR影像几何校正,测绘学报,2002,31(2): 134-138
    [124]张永红,张继贤,刘明军,林宗坚.星载合成孔径雷达构像方程及其应用于轨道精化的研究[J].遥感学报,2007,11(6):771-777
    [125]张永生,巩丹超等著.高分辨率遥感卫星应用—成像模型、处理算法及应用技术[M].科学出版社,2005
    [126]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2004
    [127]张祖勋,张剑清.数字摄影测量学[M].武汉:武汉测绘科技大学出版社,1996
    [128]郑凯仁.应用数值地形于立体空载SAR影像之分析[D].台湾国立中央大学,2000
    [129]GB/T 18313-2001,全球定位系统测量规范[S].中国标准出版社
    [130]中国测绘科学研究院.国家重大测绘科技专项-机载多波段多极化干涉SAR测图系统实施方案[R].2008
    [131]全球定位系统测量规范,中国标准出版社,GB/T 18313-2001
    [132]周金萍.星载SAR图像的实用化R-D定位模型的研究[D].中国科学院遥感卫星地面站,2000
    [133]周金萍,唐伶俐,李传荣.星载SAR图像的两种实用化R-D定位模型及其精度比较[J].遥感学报,2001,5(3):191-197
    [134]朱彩英,蓝朝桢,徐青等.GPS支持下的机载SAR遥感图像无控制准实时地理定位[J].测绘学报,2003,32(8):233-238
    [135]朱彩英,徐青,吴从晖等.机载SAR图像几何纠正的数学模型研究[J].遥感学报,2003,7(2):112-117
    [136]朱肇光,孙护,崔炳光.摄影测量学[M].北京:测绘出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700