用户名: 密码: 验证码:
冀东—辽西地区太古代花岗质岩石成因与地壳演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冀东-辽西地区分布有大面积的太古代花岗质岩石,是研究华北克拉通地壳起源与演化的理想地区之一。通过详细的野外地质调查,将该地区太古代花岗质岩石划分为三类:英云闪长岩-花岗闪长岩组合、黑云母二长花岗岩组合和黑云母花岗岩组合,并初步划分出各类岩石组合的分布范围。LA-ICP-MS锆石U-Pb年代学研究显示,三类花岗质岩石形成时间基本一致,集中在2.50-2.56Ga。地球化学特征显示,英云闪长岩-花岗闪长岩和黑云母二长花岗岩组合源于高压下玄武质地壳的部分熔融,黑云母花岗岩组合来源于浅部层次硅铝质地壳的部分熔融。锆石Hf同位素显示,本区主要存在多期壳幔分异事件,最主要的壳幔分异事件发生在2.7-2.9Ga之间。2.5-2.6Ga壳幔分异事件与锆石的结晶年龄(2.50-2.52Ga)基本一致,表明本区花岗质岩石形成过程中有源自地幔分异的新生地壳物质的加入。根据前人研究成果和本文的工作推断,本区新太古代晚期以花岗质岩石为代表的大规模地壳重熔事件与幔源岩浆的底板垫托作用(underplating)相关。
The North China Craton is the largest and oldest known cratonic block in China. The Precambrian rocks distributed abroad, and developed complete. It recorded the very complex evolution process on earth with more than 30 hundred million years in geology history. In recent years, the North China Craton is tectonically divided into two major Archean to Paleoproterozoic blocks, named Eastern blocks and western blocks, separated by a Paleoproterozoic orogen, named the Central zone. The eastern Hebei and western Liaoning area belongs to the Eastern blocks in tectonic attribute, with large area of late Archean granitic rock exposure. This is an idea area for the evolution research of Archean lithosphere in North China Craton.
     In eastern Hebei and western Liaoning area, the Archean granitic rocks mainly are Suizhong granites, Anziling gneisses, Wangchang gneisses, Liugezhuang diorites and Qinhuangdao granites. Based on petrography and geochemistry characteristics, the granitic rocks in this area could mainly be divided into three types: tonalite-granodiorite(TTG), biotite adamellite and biotite granite. Based on field investigation, the distribution ranges of kinds of rocks are preliminary divided. Tonalite-granodiorite is distributed in west Anziling and Wangchang area. Biotite granite is distributed in north Qinhuangdao and south Suizhong area. And biotite adamellite is distributed between the two of them, in Heshangfangzi- Kuanbang area. There is a gradual change in the three of granitic rocks, without obviously boundary.
     In eastern Hebei and western Liaoning area, the zircon in granitic rocks generally have obviously fine-scale oscillatory growth zoning and high Th/u ratios, with the mode of depleted in light rare earth and enriched in heavy rare earth, suggesting magmatic origin. LA-ICPMS zircon U–Pb age shown that the granitic rocks age is 2500-2560Ma, indicated the mainly era of the continental crust accretion in this area is in late Archean, which is consistent with the mainly tectonic-magma events in North China Craton. Simultaneously, the age indicated that the three mainly granitic rocks basically have accordant form age, without obviously time interval.
     Geochemical characteristics indicated that tonalite-granodiorite and biotite adamellite all have high Mg#, low Rb/Sr ratios, Y and Yb, enriched in large ion lithophile elements and depleted in high field strength elements, shown as the product of basaltic crust partial melted at high pressure. However, tonalite-granodiorite have higher MgO, Cr, Ni, V, and lower SiO2, low light-heavy rare earth fractionation, suggesting early magmatic evolution. Biotite granite have high SiO2, K2O, low MgO, Cr, Ni, and high Rb/Sr ratios, suggesting a higher degree evolution of K-rich granite. And biotite granite have Eu negative anomaly,and depleted in Ba, Sr, suggesting the molten residuum are plagioclase. In addition, rock and zircon’s rare earth characteristics all shows relatively strong light-heavy rare earth fraction, and high Yb, Y. All these geochemistry characters indicated the product of partial melting salic crustal at low pressure.
     To discuss the source region characteristics and evolution of different granitic rocks in late Archean, especially discuss the continental crust accretion mechanism and the old continental crust’s characteristics, based on the zircon U-Pb chronology, corresponding zircons are carefully tested of Hf isotopes in situ. The test result indicated that: 1) Four periods of crust-mantle differentiation events as 3.7Ga, 3.0Ga-3.4Ga, 2.7-2.9Ga and 2.5-2.6Ga existed, the mainly event happed between 2.7Ga and 2.9Ga. 2) Partial zircon’s crystallization age are consistent with Hf model age (2.5-2.6Ga), indicated new crust substance from mantle differentiation added when granite formed. 3) Confirmed inconsistency of the crust-mantle differentiation from the three granite rocks. Biotite granite reflected Eoarchean-mo crust-mantle differentiation events (3.7Ga, 3.0-3.4Ga, 2.9Ga). Tonalite-granodiorite and biotite adamellite reflected middle-late Archean crust-mantle differentiation events (2.7-2.9Ga、2.5-2.6Ga). 4) Presumed mainly crust-mantle differentiation and a few products of granitic magma in 2.7-2.9Ga, mainly granic magma generated in 2.5-2.6Ga and a few crust-mantle differentiation happened.
     According to the previous research results, the paper speculated that: 1) The Archean granitic rocks in this area distributed in planar, with a lot of amphibolite, pyroxenite and other mafic enclaves. 2) The formation age of the Archean granitic rocks in this area is 2.50-2.56Ga, indicated a large-scale crust transformation event mainly happed in 2.50-2.56Ga. 3) Metamorphsim rocks in this area generally have equal pressure cool-down type anticlockwise P-T path characteristics, suggesting a additional heat source from out crust (mantle). This may related with lots of magmatic emplacement from mantle differentiation. 4) The Hf isotope model age of zircon shown mantle differentiation simultaneously happed when large-scale granitic rocks generated in 2.5-2.6Ma. According to above characteristics, it is speculated that the large-scale magmatic events in late Archean in this area are related with mantle magma’s underplating.
引文
[1]BELOUSOVA E A, GRIFFIN W L, O'REILLY S Y. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: Examples from Eastern Australian granitoids. journal of petrology[J]. 2006a, 47(2): 329-353.
    [2]BELOUSOVA E A, GRIFFIN W L, O'REILLY S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology[J]. 2002, 143(5): 602-622.
    [3]BELOUSOVA E A, KAMINSKY F V, GRIFFIN W L. U-Pb age, Hf-isotope and trace-element composition of zircon megacrysts from the Juina kimberlites, Brazil. Geochimica Et Cosmochimica Acta[J]. 2008, 72(12): A71-A71.
    [4]BELOUSOVA E A, REID A J, GRIFFIN W L, et al. Proterozoic rejuvenation of the Archean crust tracked by U-Pb and Hf-isotopes in detrital zircon. Geochimica Et Cosmochimica Acta[J]. 2006b, 70(18): A44-A44.
    [5]BIZZARRO M, SIMONETTI A, STEVENSON R K, et al. Hf isotope evidence for a hidden mantle reservoir. Geology[J]. 2002, 30: 771-774.
    [6]BOWRING S A, WILLIAMS I S. Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada. Contributions to Mineralogy and Petrology[J]. 1999, 134(1): 3-16.
    [7]BOYNTON W V. Geochemistry of the rare earth elements:meteorite studies. Rare earth element geochemistry[J]. 1984: 63-144.
    [8]CAVOSIE A J, WILDE S A, LIU D Y, et al. Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348-1576 Ma) magmatism. Precambrian Research[J]. 2004, 135(4): 251-279.
    [9]CHEN B, JAHN B M, TIAN W. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction-and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences[J]. 2009, 34(3): 245-257.
    [10]CONDIE K, C. Archaean Greenstone Belts[M]. New York: Amsterdam-Orford, 1981.
    [11]CONDIE K, C. Episodic continental growth and supercontinents:a mantle avalanche connection? Earth and Planetary Science Letters[J]. 1998, 163: 339-342.
    [12]CONDIE K, C. Plate tectonics and crustal evolution(Fouth edition)[M]. Oxfont: Buttewort-Heinemann, 2003, 144-227.
    [13]CONDIE K, C. TTGs and adakites:are they both slab melts. Lithos[J]. 2005, 80: 33-44.
    [14]CONDIE K C. Contrasting sources for upper and lower continental crust: the greenstone connection. J.Geol[J]. 1997, 105: 729-736.
    [15]CONDIE K C. Episodic continental growth models: afterthoughts and extensions. Tectonophysics[J]. 2000, 322(1-2): 153-162.
    [16]CONDIE K C, BELOUSOVA E, GRIFFIN W L, et al. Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Research[J]. 2009, 15(3-4): 228-242.
    [17]DAVIS D W, AMELIN Y, NOWELL G M, et al. Hf isotopes in zircon from the western Superior province, Canada: Implications for Archean crustal development and evolution of the depleted mantle reservoir. Precambrian Research[J]. 2005, 140(3-4): 132-156.
    [18]DAVIS D W, WILLIAMS I S, KROGH T E. Historical Development of Zircon Geochronology Reviews in mineralgogy & geochemistry[J]. 2003, 53: 145-173.
    [19]DENG J, F, MO X, X, ZHAO H L, et al. A new model for the dynamic evolution of Chinese lithosphere:‘continental roots–plume tectonics’Earth-Science Reviews[J]. 2004, 65(3-4): 223~275.
    [20]DRUMMOND M S, DDEFANT M J. A model for trondhjemite-tonalite-dacite genesis and crustalgrowth via slab melting; Archaean to modern comparisons Geophys. Res.[J]. 1990, 95: 21503-21521.
    [21]ELHLOU S, BELOUSOVA E, GRIFFIN W L, et al. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochimica Et Cosmochimica Acta[J]. 2006, 70(18): A158-A158.
    [22]FYFE W S, LEONARDOS O H. Ancient metamorphic-migmatite belts of the Brazilian African coasts. Nature[J]. 1973, 224(501-502).
    [23]GAO S, RUDNICK R L, YUAN H L, et al. Recycling lower continental crust in the North China craton. Nature[J]. 2004, 432(7019): 892-897.
    [24]GAO S, WEDEPOHL K H. The negative Eu anomaly in Archean sedimentary rocks: Implications for decomposition, age and importance of their granitic sources. Earth Planet Sci Lett[J]. 1995, 133: 89-94.
    [25]GENG Y S, YANG C H, WAN Y S. Paleoproterozoic granitic magmatism in the Luliang area, North China Craton: constraint from isotopic geochronology. Acta Petrologica Sinica[J]. 2006, 22(2): 305-314.
    [26]GRIFFIN W L, BELOUSOVA E A, SHEE S R, et al. Archean crustal evolution in the northern Yilgam Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research[J]. 2004, 131(3-4): 231-282.
    [27]GRIFFIN W L, PEARSON N J, BELOUSOVA E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta[J]. 2000, 64: 133-147.
    [28]GRIFFIN W L, WANG X, JACKSON S E, et al. Zircon Chemistry and Magma Mixing,SE China:Inrsitu Analysis of Hf Isoptopes: Tonglu and Pingtan Igneous Complexes. Lithos[J]. 2002, 61: 237-269.
    [29]GUO J H, SUN M, CHEN F K, et al. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences[J]. 2005, 24(5): 629-642.
    [30]HARLEY S L, BLACK L P. A revised Archaean chronlolgy for the Napier Complex, Enderby Land from SHRIMP ion-microprobe studies. Antarctic Sci[J]. 1997, 9(74-91).
    [31]HERMANN J, RUBATTO D, KORSAKOV A V, et al. The age of metamorphism of diamondiferous rocks determined with shrimp dating of zircon. Russian Geology and Geophysics[J]. 2006, 47(4): 511-518.
    [32]HOLLOCHER K, ROBINSON P, TERRY M P, et al. Application of major- and trace-element geochemistry to refine U-Pb zircon, and Sm/Nd or Lu/Hf sampling targets for geochronology of HP and UHP eclogites, Western Gneiss Region, Norway. American Mineralogist[J]. 2007, 92(11-12): 1919-1924.
    [33]HOSKIN P W O, IRELAND T R. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology[J]. 2000, 28(7): 627-630.
    [34]HOSKIN P W O, SCHALTEGGER U. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in mineralgogy & geochemistry[J]. 2003, 53: 27-55.
    [35]JOHANNES, WHOLTZ F. Petrogensis and experimental petrology of granitic rocks[M]. Berlin: Spring-verlag, 1996, 335.
    [36]KAMPUNZU A B, TOMBALE A R, ZHAI M, et al. Major and trace element geo chemistry of plutonic rocks from Francistown, NE Botswana:evidence for a Neoarchaean continental active margin in the Zimbabwe craton. Lithos[J]. 2003, 71: 431-460.
    [37]KINNY P D, MAAS R. Lu-Hf and Sm-Nd isotope systems in zircon. Zircon[J]. 2003, 53: 327-341.
    [38]KRONER A, CUI W Y, WANG S Q, et al. Single zircon ages from high-grade rocks of the Jianping Complex, Liaoning Province, NE China. Journal of Asian Earth Sciences[J]. 1998, 16(5-6): 519-532.
    [39]KRONER A, WILDE S A, LI J H, et al. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences[J]. 2005, 24(5): 577-595.
    [40]KRONER A, WILDE S A, ZHAO G C, et al. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China: Evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Research[J]. 2006, 146(1-2): 45-67.
    [41]KUSKY T M, LI J H. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences[J]. 2003, 22(4): 383-397.
    [42]LI J G, KUSKY T. A late Archean foreland fold and thrust belt in the North China craton: Implications for early collisional tectonics. Gondwana Research[J]. 2007a, 12(1-2): 47-66.
    [43]LI J H, KRONER A, HUANG X N, et al. The discovery of the Neoarchean mafic dyke swarm in Hengshan and reinterpretation of the previous "Wutai greenstone belt". Science in China Series D-Earth Sciences[J]. 2002, 45(8): 680-690.
    [44]LI S Z, ZHAO G C. SHRIMP U-Pb zircon geochronology of the Liaqji granitoids: Constraints on the evolution of the paleoproterozoic Jiao-Liao-Ji belt in the eastern block of the north China craton. Precambrian Research[J]. 2007b, 158(1-2): 1-16.
    [45]LI W Y, LI S G, GUO A L, et al. Zircon SHRIMP U-Pb ages and trace element geochemistry of the Kuhai gabbro and the Dur'ngoi diorite in the southern east Kunlun tectonic belt, Qinghai, Western China and their geological implications. Science in China Series D-Earth Sciences[J]. 2007c, 50: 331-338.
    [46]LIU D Y, NUTMAN A P. Remnants of≥3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology[J]. 1992, 1992(20): 339–342.
    [47]LOMBARDO B, RUBATTO D, CASTELLI D. Ion microprobe U-PB dating of zircon from a Monviso metaplagiogranite: Implications for the evolution of the Piedmont-Liguria tethys in the Western Alps. Ofioliti[J]. 2002, 27(2): 109-117.
    [48]LUO Y, SUN M, ZHAO G C, et al. A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups: Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research[J]. 2008, 163(3-4): 279-306.
    [49]NEMCHIN A A, PIDGEON R T, WHITEHOUSE M J. Re-evaluation of the origin and evolution of > 4.2 Ga zircons from the Jack Hills metasedimentary rocks. Earth and Planetary Science Letters[J]. 2006, 244(1-2): 218-233.
    [50]NUTMAN A P. Anatomy of an Early Archean gneiss complex: 3900 to 3600 Ma crustal evolution in southern West Greenland Geology[J]. 1993, 21: 415-418.
    [51]NUTMAN A P. A ntiquity of the oceans and continents Elements[J]. 2006, 2: 223-227.
    [52]NUTMAN A P, FRIEND C R L, BENNETT V C. Review of oldest(4400-3600Ma) geological and mineralogical record: Glimpses of the beginning. Episodes[J]. 2001, 24(2): 93-101.
    [53]POLAT A, LI J, FRYER B, et al. Geochemical characteristics of the Neoarchean (2800-2700 Ma) Taishan greenstone belt, North China Craton: Evidence for plume-craton interaction. chemical geology[J]. 2006, 230(1-2): 60-87.
    [54]RUBATTO D. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. chemical geology[J]. 2002, 184(1-2): 123-138.
    [55]RUDNICK R L, GAO S. The composition of the continental crust [M] //R. L. RUDNICK, The crust. Oxford, Elsevier-Pergamon, 2003.
    [56]SANTOSH M, WILDE S A, LI J H. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research[J]. 2007, 159(3-4): 178-196.
    [57]SCHERER E E, CAMERON K L, BLICHERT-TOFT J. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions. Geochimica Et Cosmochimica Acta[J]. 2000, 64(19): 3413-3432.
    [58]SMITHIES R H, CHAMPION D C. The Archaean high-Mg diorite suite: Links to tonalite-trondhjemite-granodiorite magmatism and implications for early Archaean crustal growth.journal of petrology[J]. 2000, 41(12): 1653-1671.
    [59]SMITHIES R H, CHAMPION D C, CASSIDY K F 2001. Formation of earth's early Archaean continental crust [C] //, Elsevier Science Bv; City. 89-101.
    [60]SODERLUND U, PATCHETT P J, VERVOORT J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters[J]. 2004, 219: 311-324.
    [61]SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [M] //A. D. SAUNDERS, M. J. NORRY, Magmatism in the Ocean Basins. London, Geological Society of London, Special Publication, 1989: 313-345.
    [62]VEEVERS J J, SAEED A, BELOUSOVA E A, et al. U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modem sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgam Craton. Earth-Science Reviews[J]. 2005, 68(3-4): 245-279.
    [63]VERVOORT J D, PATCHETT P J, GEHRELS G E, et al. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature[J]. 1996, 379: 624-627.
    [64]WAN Y S, LIU D Y, SONG B, et al. Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. Journal of Asian Earth Sciences[J]. 2005, 24(5): 563-575.
    [65]WANG Z H, WILDE S A, WANG K Y, et al. A MORB-arc basalt-adakite association in the 2.5 Ga Wutai greenstone belt: late Archean magmatism and crustal growth in the North China Craton. Precambrian Research[J]. 2004, 131(3-4): 323-343.
    [66]WEDEPOHL K H, HEINRICHS, BRIDGEWHATER D. Chemical characteristics and genesis of the quartz-feldspathic rocks in the Archean crust of Greenland. Contrib.Mineral.Petrol[J]. 1991, 107(163-179).
    [67]WHALEN J B, PERCIVAL J A, MCNICOLL V J. Geochemical and isotopic (Nd-O) evidence bearing on the origin of late-to post-orogenic high-K granitoid rocks in the Western Superior Province: implications for late Archean tectono-magmatic processes. Precambrian Research[J]. 2004, 132: 303-326.
    [68]WILDE S A, CAWOOD P A, WANG K Y, et al. Granitoid evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Sciences[J]. 2005, 24(5): 597-613.
    [69]WILDE S A, VALLEY J W, PECK W H, et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature[J]. 2001, 409(6817): 175-178.
    [70]WILDE S A, VALLEY J W, KITA N T, et al. Shrimp u-pb and cameca 1280 oxygen isotope results from ancient detrital zircons in the caozhuang quartzite, eastern Hebei, North China craton: evidence for crustal reworking 3.8 Ga ago. American Journal of Science[J]. 2008, 308: 185-199
    [71]WINDLEY B F. Proterozoic anorogenic magmatism and its orogenic connections. 1993, 150: 39-50.
    [72]WU F Y, YANG J H, WILDE S A, et al. Detrital zircon U-Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Research[J]. 2007, 159(3-4): 155-177.
    [73]WU F Y, ZHANG Y B, YANG J H, et al. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research[J]. 2008, 167(3-4): 339-362.
    [74]WU F Y, ZHAO G C, WILDE S A, et al. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences[J]. 2005, 24(5): 523-545.
    [75]YANG J H, WU F Y, WILDE S A, et al. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd-Hf isotopic evidence. Precambrian Research[J]. 2008, 167(1-2): 125-149.
    [76]YUAN H L, GAO S, DAI M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. chemical geology[J]. 2008, 247(1-2): 100-118.
    [77]YUAN H L, GAO S, LIU X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma-mass spectrometry. Geostandards Newsletter-the Journal of Geostandards and Geoanalysis[J]. 2004, 28: 353~370.
    [78]ZHAI M G. 2.1 similar to 1. 7 Ga geological event group and its geotectonic significance. Acta Petrologica Sinica[J]. 2004, 20(6): 1343-1354.
    [79]ZHAI M G, GUO J H, LI Y G, et al. Two linear granite belts in the central-western North China Craton and their implication for Late Neoarchaean-Palaeoproterozoic continental evolution. Precambrian Research[J]. 2003a, 127(1-3): 267-283.
    [80]ZHAI M G, LIU W J. Palaeoproterozoic tectonic history of the North China craton: a review. Precambrian Research[J]. 2003b, 122(1-4): 183-199.
    [81]ZHANG S B, ZHENG Y F, WU Y B, et al. Zircon isotope evidence for >= 3.5 Ga continental crust in the Yangtze craton of China. Precambrian Research[J]. 2006, 146(1-2): 16-34.
    [82]ZHAO G C, CAWOOD P A, WILDE S A, et al. Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution. Precambrian Research[J]. 2000, 103(1-2): 55-88.
    [83]ZHAO G C, SUN M, WILDE S A. Reconstruction of a pre-Rodinia supercontinent: New advances and perspectives. Chinese Science Bulletin[J]. 2002a, 47(19): 1585-1588.
    [84]ZHAO G C, SUN M, WILDE S A. Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Science in China Series D-Earth Sciences[J]. 2003, 46(1): 23-38.
    [85]ZHAO G C, SUN M, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research[J]. 2005a, 136(2): 177-202.
    [86]ZHAO G C, WILDE S A, CAWOOD P A, et al. Thermal evolution of the Archaean basement rocks from the eastern part of the north chian craton and its bearing on tectonic setting. International Geology Review[J]. 1998, 40: 706-761.
    [87]ZHAO G C, WILDE S A, CAWOOD P A, et al. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research[J]. 2001, 107(1-2): 45-73.
    [88]ZHAO G C, WILDE S A, CAWOOD P A, et al. SHRIMP U-Pb zircon ages of the Fuping Complex: Implications for late Archean to Paleoproterozoic accretion and assembly of the North China Craton. American Journal of Science[J]. 2002b, 302(3): 191-226.
    [89]ZHAO G C, WILDE S A, SUN M, et al. SHRIMP U-Pb zircon geochronology of the Hengshan-Wutai-Fuping mountain belt, North China Craton. Geochimica Et Cosmochimica Acta[J]. 2005b, 69(10): A832-A832.
    [90]ZHAO T P, ZHAI M G, XIA B, et al. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong'er Group: Constraints on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin[J]. 2004, 49(23): 2495-2502.
    [91]ZHAO T P, ZHOU M F, ZHAI M G, et al. Paleoproterozoic rift-related volcanism of the Xiong'er Group, North China craton: Implications for the breakup of Columbia. International Geology Review[J]. 2002c, 44(4): 336-351.
    [92]ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al. U-Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: evolution of the lower crust beneath the North China craton. Contributions to Mineralogy and Petrology[J]. 2004, 148(1): 79-103.
    [93]ZHENG Y F, ZHAO Z F, WU Y B, et al. Protolith nature of deeply subducted continent: Zircon U-Pb age, Hf and O isotope constraints from UHP eclogite and gneiss in the Dabie orogen. Geochimica Et Cosmochimica Acta[J]. 2006, 70(18): A745-A745
    [94]白瑾,黄学光,戴凤岩,等.中国前寒武纪地壳演化[M].北京:地质出版社, 1993.
    [95]陈斌,刘树文,耿元生,等.吕梁-五台地区晚太古宙—古元古代花岗质岩石锆石U-Pb年代学和Hf同位素性质及其地质意义.岩石学报[J]. 2006, 22(02): 296~304.
    [96]陈丹玲,赖绍聪,刘养杰.秦皇岛柳江盆地混合花岗岩的锆石U-Pb定年.西北大学学报(自然科学版)[J]. 2007, (02).
    [97]陈道公,倪涛,谢烈文.大别地体超高压变质岩石锆石Lu-Hf同位素研究.岩石学报[J]. 2007, (02).
    [98]陈道公,倪涛.大别-苏鲁造山带高级变质岩中锆石微区U,Th和Pb化学组成特征统计.岩石学报[J]. 2004, (05).
    [99]崔盛芹,李锦蓉,吴珍汗,等.燕山地区中新生代陆内造山作用[M].北京:地质出版社, 2002.
    [170]崔文元,王长秋,王时麒.辽西太古代建平变质杂岩的地球化学和变质作用的PTt轨迹[J]岩石学报,1991(4):13-26
    [100]邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社, 2004.
    [101]邓晋福,吴宗絮,赵国春,等.华北地台前寒武花岗岩类、陆壳演化与克拉通形成.岩石学报[J]. 1999, (02): 190~198.
    [102]邓万明,钟大赉.壳幔过度带及其在岩石圈构造演化中的地质意义.科学通报[J]. 1998, 42: 2474-2482.
    [103]郭锋,范蔚茗,李超文,等.延吉地区古新世埃达克岩捕获锆石U-Pb年龄、Hf同位素和微量元素地球化学对区域中酸性岩浆演化的指示.岩石学报[J]. 2007, (02).
    [104]河北省地质矿产局.河北省、北京市、天津市区域地质志[M].北京:地质出版社, 1989.
    [171]贺高品,卢良兆,叶慧文等.冀东和内蒙古东南部早前寒武纪变质作用演化[M].长春,吉林大学出版社,1991
    [105]贺同兴,林强,方占仁,等.冀东太古宙花岗岩成因[M].长春:吉林科学技术出版社, 1992.
    [106]胡桂明,王守伦,谢坤一,等.华北陆台北缘地体构造与铁金矿产[M].北京:地质出版社, 1998.
    [107]江博明, B.欧弗瑞, J.柯尼协,等.中国冀东3500Ma斜长角闪岩系的野外产状、岩相学、Sm-Nd同位素年龄及稀土地球化学[D]. 1988.
    [108]金巍,李树勋,刘喜山.内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学.岩石学报[J]. 1991, (04).
    [109]金巍,李树勋,刘喜山.内蒙大青山早前寒武纪变质岩和早期陆壳的演化.吉林大学学报(地球科学版)[J]. 1992, (03).
    [110]金巍,李树勋.华北晚太古代-早元古代高级变质区的变质PTt轨迹及其地壳热动力学演化模式.岩石学报[J]. 1996, (02).
    [111]康迪,李静仁.太古代花岗——绿岩带.黄金地质[J]. 1982, (00).
    [112]李惠民.前寒武同位素地质年代学[M] //肖庆辉,当代地质科学前沿.武汉,中国地质大学出版社, 1993.
    [113]李江海,侯贵廷,刘守偈.早期碰撞造山过程与板块构造:前寒武纪地质研究的机遇和挑战.地球科学进展[J]. 2006, (08).
    [114]李江海,牛向龙,陈征,等.辽西豆荚状铬铁矿的发现及其意义.岩石学报[J]. 2002, (02).
    [115]李江海,钱祥麟,黄雄南,等.华北陆块基底构造格局及早期大陆克拉通化过程.岩石学报[J]. 2000, (01).
    [116]李勤,张德生.河北省早前寒武纪变质基底的划分和对比.前寒武纪研究进展[J]. 2002, (01).
    [117]李胜荣,许虹,申俊峰,等.结晶学与矿物学[M].北京:地质出版社, 2008, 210 - 211.
    [118]辽宁省地质矿产局.辽宁省区域地质志[M].北京:地质出版社, 1989.
    [119]刘敦一,万渝生,伍家善,等.华北克拉通太古宙地壳演化和最古老的岩石.地质通报[J]. 2007, 26(09): 1131~1138.
    [120]刘敦一,伍家善,沈其韩.中朝克拉通老于38亿年的残余陆壳──离子探针质谱锆石微区U-Pb年代学证据.地球学报-中国地质科学院院报[J]. 1994, (Z1).
    [121]刘敦一.中国38亿年古陆壳的发现.中国地质[J]. 1991, (05).
    [122]刘喜山,金巍,李树勋.内蒙古中部早元古代造山事件中麻粒岩相低压变质作用.地质学报[J]. 1992, (03).
    [123]柳小明.华北克拉通中生代壳幔交换作用的地球化学研究[D]. 2004.
    [124]龙晓平,金巍,葛文春,等.东昆仑金水口花岗岩体锆石U-Pb年代学及其地质意义.地球化学[J]. 2006, (04).
    [125]龙晓平,金巍,余能.东昆仑格尔木东部金水口片麻状富铝花岗岩锆石微区Raman光谱研究.地质通报[J]. 2005, (01).
    [126]陆松年,杨春亮,蒋明媚,等.前寒武纪大陆地壳演化示踪[M].北京:地质出版社, 1996.
    [169]陆松年,杨春亮,蒋明媚等.前寒武纪大陆地壳演化示踪[M].北京:地质出版社, 1996
    [127]马寅生,崔盛芹,施炜,等.中国东部-朝鲜半岛海陆构造格局及含油气盆地特征[M].北京:地质出版社, 2008.
    [168]穆克敏,林景仟,邹祖荣等.华北地台区花岗质岩石的成因[M].长春:吉林科学技术出版社, 1989.
    [128]潘兆橹,赵爱醒,潘铁虹.结晶学及矿物学[M].北京:地质出版社, 1994.
    [129]钱祥麟,崔文元,王时麒,等.冀东前寒武纪铁矿地质[M].石家庄:河北科学技术出版社, 1985.
    [130]钱祥麟,李江海,程素华.前寒武纪大陆地壳地质构造演化研究进展与问题.高校地质学报[J]. 2005, (02).
    [131]钱祥麟.早前寒武纪大陆地壳的性质与构造演化问题.岩石学报[J]. 1996, (02).
    [132]沈保丰,杨春亮,李俊建,等.冀东朱杖子群定年新证据. 2005, 29(S1): 433~436.
    [133]沈其韩,耿元生,杨崇辉,等.我国早前寒武纪地层研究的主要新进展.地层学杂志[J]. 2004, (04).
    [134]沈其韩,伍家善,耿元生.中国太古宙陆壳演化阶段的划分.现代地质[J]. 1999, (02).
    [135]孙大中,胡维兴.中条山前寒武纪年代构造格架和年代地壳结构[M].北京:地质出版社, 1993.
    [136]孙大中.冀东早前寒武纪地质[M].天津:天津科学技术出版社, 1984.
    [137]万渝生,宋彪,耿元生,等.辽北抚顺—清原地区太古宙基底地球化学组成特征及其地质意义.地质论评[J]. 2005a, 51(02): 128~137.
    [138]万渝生,宋彪,杨淳,等.辽宁抚顺—清原地区太古宙岩石SHRIMP锆石U-Pb年代学及其地质意义.地质学报[J]. 2005b, (01).
    [139]王德滋,周新民.中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化[M].北京:科学出版社, 2002.
    [140]王凯怡.河北山海关地区晚太古代花岗岩类的地球化学和成因.岩石学报[J]. 1992, (04): 363~375.
    [141]王曰伦,陆宗赋.根据绝对年龄资料对前寒武地层问题的讨论.岩石矿物学杂志[J]. 1962, 42(2): 186-197.
    [142]吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用.岩石学报[J]. 2007, (02).
    [143]吴福元,林强,江博明.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义.科学通报[J]. 1997, (20).
    [144]吴福元,杨进辉,柳小明,等.冀东3.8Ga锆石Hf同位素特征与华北克拉通早期地壳时代.科学通报[J]. 2005, (18).
    [145]吴元保,陈道公,夏群科,等.大别山黄镇榴辉岩锆石的微区微量元素分析:榴辉岩相变质锆石的微量元素特征.科学通报[J]. 2002, (11).
    [146]吴元保,陈道公,郑永飞,等.北大别漫水河混合岩化片麻岩中锆石微区微量元素特征及其地质意义.岩石学报[J]. 2004, (05).
    [147]伍家善,耿元生,沈其韩,等.华北陆台早前寒武纪重大地质事件[M].北京:地质出版社, 1991.
    [148]肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].北京:地质出版社, 2002.
    [149]肖庆辉,邱瑞照,邓晋福,等.中国花岗岩与大陆地壳生长方式初步研究.中国地质[J]. 2005, (03).
    [150]谢烈文,张艳斌,张辉煌,等.锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定.科学通报[J]. 2008, (02).
    [151]徐平,吴福元,谢烈文,等. U-Pb同位素定年标准锆石的Hf同位素.科学通报[J]. 2004, (14).
    [152]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报[J]. 2003, (14): 1305 - 1402.
    [153]翟明国,郭敬辉,赵太平.新太古-古元古代华北陆块构造演化的研究进展.前寒武纪研究进展[J]. 2001, (01).
    [154]张立东,郭胜哲,鲍庆忠,等.辽西叶柏寿隆起区早前寒武纪地质.中国区域地质[J]. 1999, (02).
    [155]张旗,王焰,熊小林,等.埃达克岩和花岗岩:挑战与机遇[M].北京:中国大地出版社, 2008.
    [156]张秋生.中国早前寒武纪地质及成矿作用[M].长春:吉林人民出版社, 1984.
    [157]赵凤清.山西中条山地区古元古代地壳演化的年代学和地球化学制约[D].中国地质大学, 2006.
    [158]赵国春.从变质作用观看板块构造何时在华北克拉通开始(英文).地学前缘[J]. 2007, (01).
    [159]郑建平,路凤香,余淳梅,等.汉诺坝玄武岩中麻粒岩捕虏体锆石Hf同位素、U-Pb定年和微量元素研究:华北下地壳早期演化的记录.科学通报[J]. 2004a, (04).
    [160]郑建平,张瑞生,余淳梅,等.冀东-辽西玄武岩二长岩包体锆石U-Pb定年、Hf同位素和微量元素示踪燕辽地区169Ma和107Ma的热事件.中国科学D辑[J]. 2004b, (S1): 32~44.
    [161]郑培玺,金巍,李建.冀东-辽西地区太古代花岗质岩石的锆石Hf同位素特征及其意义. 2009全国岩石学与地球动力学研讨会论文摘要[J]. 2009: 285
    [162]郑培玺,金巍,郑长青等.绥中地区岩浆岩年代学格架研究, 2007全国岩石学与地球动力学暨化学地球动力学研讨会论文集. 2007, 81-83
    [163]郑培玺,金巍,周燕等.辽西地区台子里花岗质片麻岩锆石U-Pb年龄及其地质意义[J],吉林大学学报(地学版),2009. 39(3)455-460
    [164]郑永飞,陈仁旭,张少兵,等.大别山超高压榴辉岩和花岗片麻岩中锆石Lu-Hf同位素研究.岩石学报[J]. 2007, (02).
    [165]郑永飞.化学地球动力学[M].北京:科学出版社, 1999.
    [166]钟玉芳,马昌前,佘振兵.锆石地球化学特征及地质应用研究综述.地质科技情报[J]. 2006, (01).
    [167]周汉文,李献华,钟增球,等.豫西小秦岭地区太华杂岩中斜长角闪岩地球化学及其大地构造意义.地球化学[J]. 1997, 26(2): 87-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700