用户名: 密码: 验证码:
安徽省地下水污染调查评价与防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水是一种重要的资源,但近年来地下水污染的问题在世界范围内日益严重,已经成为一个相当普遍的环境问题。地下水是安徽省主要的生产生活用水,近年来不断加剧的人类经济活动造成了安徽省地下水污染的不断恶化。主要表现为地下水中氯化物、硫酸盐、硝酸盐、总硬度、溶解性总固体等常量组份的含量有不断增高的趋势。
     本文在对安徽省地质、水文地质、地下水污染源以及污染途径调查分析的基础上,采用单因子污染指数法和内梅罗综合指数法评价了安徽省地下水污染状况,并对城镇生活污水污染与农业污染按单位面积污染负荷进行了分析评价,此外调查研究了安徽省污染防治工程现状,并在此基础上探讨了安徽省地下水污染防治措施与对策,得出主要成果如下:(1)安徽省淮北平原区和沿江丘陵平原区浅层孔隙水已受到一定污染,主要表现为地下水中常规组份总硬度、溶解性总固体、铁(Fe)、锰(Mn)和硝酸盐(NO3-)、亚硝酸盐(NO2-)、氨氮(NH4+)等组份超标或超过地下水背景含量。(2)地下水类别分为:严重污染区、中等污染区、轻度污染区和未污染区。其中重污染区主要分布于淮北平原区的亳州、涡阳-濉溪、奎河沿河地区、蚌埠-固镇、五河北部、淮南、阜南南部和沿江丘陵平原区的天长等地,面积11242km2,约占全省总面积的8.0%。中等污染区主要分布于淮北平原区的蒙城-涡阳义门、五河、砀山等地和沿江丘陵平原区的天长北部地区,面积6570km2,约占全省总面积的4.7%。轻度污染区主要分布于淮北平原区的阜阳-凤台-怀远-宿州-泗县等地,沿江丘陵平原区的沿江两侧及皖南山地区的屯溪等地,面积33488km2,约占全省总面积的23.9%。(3)针对污染源负荷评价结果,提出地下水污染防治措施建议,为遏制安徽省地下水污染趋势,改善地下水环境质量,最终为“生态安徽”建设工作提供参考依据。
Groundwater is an important resource. But recently, the groundwater pollution is worsening in the world, which becomes a big issue in environmental problems. Groundwater is the one of the main domestic and production waster in Anhui province. The developing urbanization and economic activity lead a continual deterioration of the groundwater in Anhui province. The main deterioration is represented in that the concentration of the following components increasing sharply, such as chloride, sulfate, nitrate, tatal hardness, total dissolved solids etc.
     The paper aimed at the status analysis of the groundwater pollution in Anhui province based on the related geological and hydrogeological conditions, investigation information and monitoring data of the pollution resource and path in recent years. A combained method of single-factor pollution index method and Nemero composite index was chosen. Besides, evaluation of the municipal sewage and agricultural pollution was carried out based on the pollution load per unit area. In addition, pollution prevention and control project status of Anhui province was investigated and the suggestions and countermesures were put forward. The main conclusions were:
     (1) The shallow porous water in the Huaibei Plain and the hill and plain area along the Changjiang River must were contaminated in certain degree, which show the following components exceed the National Security Standard for Groundwater or the background value of the riginal groundwater, such as tatal hardness, total dissolved solids, Fe, Mn, NO3-, NO2- and NH4+ etc.
     (2) The groundwater can be divided into four parts as high-polluted area, medium -polluted area, slight-polluted area and non-polluted area. Amoung those, the high-polluted area was mainly distributed in Bozhou, Guoyang-Sui River, Kuihe, Bengbu-Guzhen, north of the Wuhe, Huainan, South of the Fuyang in Huaibei Plain and Tianchang in plain area along the Changjiang River. The total area amounts 11242km2 and accounts for 8.0% of the total area of the province. The medium-polluted area was mainly distributed in Mengcheng- Guoyang, Yimen, Wuhe, Dangshan in Huaibei plain and north of Tianchang in plain area along the Changjiang River. The total area amounts 6570km2 and accounts for 4.7% of the total area of the province. The slight-polluted area was mainly distributed in Fuyang, Fengtai, Huaiyuan, Shuzhou, Sixian in Huaibei plain, Tunxi in Wannan Mountain and both sides of the plain area along the Changjiang River. The total area amounts 33488km2 and accounts for 23.9% of the total area of the province.
     (3) Groundwater pollution and control measures and proposals were put forward based on the pollution load evaluation. The work is supposed to support the recording data for the control of the groundwater pollution, for the construction of the“Eco-Anhui”and improve the environmental quality of the groundwater.
引文
[1]United Nations Environment Program(UNEP).Global Environment Outlook 2000. Earthscan, UK,1999.
    [2] Helegeson H.C.. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueons solufions.Ⅰ.Thermodynamic relations [J]. Geochim. Cosmochim Acta. 1968, 32: 853-877.
    [3] Osmond J.K., Kaufan,M.I., Cowart.J.B.. Mixing volume calculations,sources and aging trends of florida aquifer water by uranium isotopic methods[J]. J.Geochim Cosmochim.Acta,1976,38:1083-1100.
    [4] W.Stumm.水化学-天然水体化学平衡导论[M].北京:科学出版社, 1987.
    [5] Frengstad, B. The pH-dependence of element concentration in crystalline bedrock groundwater [J]. The Science of the Total Environment, 277: 101-117.
    [6]Edmunds W.M., Carrillo-Rivera J.J., Acardona. Geochemical evolution groundwater beneath Mexico City [J]. Journal of Hydrology, 2002, 258: 1-24.
    [7]宋长春,邓伟.吉林西部地下水特征及其与土壤盐渍化的关系[J].地理科学, 2000, 20 (3): 246-250.
    [8]郭占荣.三屯河流域平原区地下水化学组成特征及变化[J].勘察科学技术, 2002, 2: 34-38.
    [9]钱家忠,汪家权,吴剑锋等.徐州张集水源地裂隙岩溶水化学特征及影响[J].环境科学研究, 2003, 16(2): 23-26.
    [10]李向全,张发旺,毕二平等.宁夏南部“南北古脊梁”岩溶裂隙水流系统分析[J].地球学报, 2004, 25(5):571-574.
    [11]丁宏伟,张举.河西走廊地下水水化学特征及其演化规律[J].干旱区研究, 2005, 22(1): 24-28.
    [12]辛宝东.北京市房山区岩溶地下水水文地球化学特征[J].水文地质工程地质, 2005, 3: 74-75.
    [13]陈静生,周宝仪.中国水环境重金属研究[M].北京:中国环境科学出版社,1992.
    [14]梁涛,张秀梅,章申等.官厅水库及永定河枯水期水体氮、磷和重金属含量分布规律[J].地理科学进展, 2001, 20(4): 341-346.
    [15]王卫中,曾晓立,夏雁等.济宁市深层地下水中微量元素含量研究[J].环境与职业医学, 2003, 20 (2): 132-133.
    [16]张国平,刘丛强,杨元根等.贵州省几个典型金属矿区周围河水的重金属分布特征[J].地球与环境, 2004, 32(1): 82-85.
    [17]Clark I.D., Fritz P. Environmental isotopes in hydrogeology[J]. Lewis Publishers, Boca Raton, 1997, 148-154 & 172-186.
    [18]陈建耀,王亚,张洪波等.地下水硝酸盐污染研究综述[J].地理科学进展, 2006, 25(1): 35.
    [19]Mahendrappa M.L., R.L.Smith, A.T.Christiansen. Nitrify organisms affected by climatic region in westem United States [J]. Soil Sci. Soc. Am. Proc. 1966, 30: 60-62.
    [20]Lin D.M., J.W.Doran. Effect of water-filled pore space on CO2 and NO2 production in tilled and nontilled soils [J]. Soil Sci. Soc. Am.J. 1982, 48: 1267-1272.
    [21]Ingwersen J., K.Butterbaeh-Bahl.R.Casehe, O.Richter, H.Papen.. Barometric progress separation: New mett for quantifymg nitrification, soLll'cesin soils[J]. Soil Sei. Soc. Am. J.1999,63: 117-128.
    [22]Weier K.L., I.C.Mse Rw.R, J.K.Myers.. Denitrifieation in achy soil under Pasture and annual crop: eshmat'n of potential loss using intact soil eo'[J]. Soil Biol.Biochem. 1993. 25: 991-997.
    [23]Aankirl T.R., E.L.Schmidt.. An aeidophihc and aneutrophihc Nitrobacter strain isolated from the nunaerically predommant nitrite-oxidizing population of an acid forest soil [J]. Appl. Environ. Mierobiol, 1988, 54: 1536-1540.
    [24]Duggln J.A., G.K.Voight, F.H.Borramm. Autotrophic and heterotrophic nitrification in respo use to clear-cutting northem hardwood forest[J]. So.1 Biology and Biochemistry,1991,23:779-787.
    [25]Paul EA, F.E.Clark. Soil Microbiology and Biochemistry San Diego, Califom [J]. Academ is Press, 1989.
    [26]Nele W., R.Conrad. Influence of soil pH on the nitrate-reducing microbial popubtions and their potential to reduce nitrate to NO and N2O [J]. FEMS Mierobiol. Ecol. 1990, 74: 49-58.
    [27]张思聪.唐山平原区地下水氮污染变化趋势的研究[J].水利发电学报, 2002, 1: 68-75.
    [28]Faycal Bouraoui, Bruna Grizzetti. An integrated modelling framework to estimate the fate of nutrients application to the Loire France [J]. Ecological modeling. 2008, 218: 450-459.
    [29]World Health Organization (1985). Anon., 1985. Health Hazards from Nitrates in Drinking Water. WHO, Regional office for Europe.
    [30] Insaf S.Babiker, Mohamed A.A.Mohamed, H.Terao. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system [J]. Environment International, 2009, 24: 1009-1017.
    [31]高旺盛.黄淮海平原典型集约农区地下水氮污染初探[J].生态农业研究, 1999, 7(4): 41-43.
    [32]刘宏斌,张云贵,李志宏等.北京市平原农区深层地下水硝态氮污染状况研究[J].土壤学报, 2005, 42(3): 411-418.
    [33]Gallbally I.E, C.R.Roy, C.M.Elsworth, H.A.H.Rabich. The measurement of nitrogen oxide (NO,NO2) exchange over plant/soil surface [J]. CRISO Aust. Div.Atmos.Res.Tech.Pap.No.1985,8:1-23.
    [34]McLay C., Dragten R., Sparling G., Selvarajah N.. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: A comparison of three approaches [J]. Environmental Pollution, 2001, 115: 191–204.
    [35]Srinivasa Rao Yammani, T.V.K.Reddy, M.R.K.Reddy. Identification of influencing factors for groundwater quality variation using multivariate analysis. Environ Geol, 2008, 55: 9-16.
    [36]Alfonso Corniello, Daniela Ducci, Giovanni Ruggieri. Areal Identification of Groundwater Nitrate Contamination Sources in Periurban Areas [J]. J Soils Sediments, 2007, 7(3): 159-166.
    [37]Eunice M de A, Helba A.Q.P., Ivam H.S.. Land use effects in groundwater com-position of an alluvial aquifer (Trussu River, Brazil) by multivariate techniques [J]. Enviorenmantal Research, 2008, 106: 170-177.
    [38]Shrestha S., F.Kazama. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan [J]. Environment-al Modeling&Software, 2007, 22: 464-475.
    [39]张伟,武强,段保旭.天津市浅层地下水Pb污染研究[J].中国矿业大学学报,2002, 31 (1): 89-95.
    [40]金菊良.洪天求.魏一鸣.流域非点源污染源解析的投影寻踪对应分析方法[J].水利学报, 2007, 38 (9): 1032-1036.
    [41]Lasserre F., Razack M., Banton O.. A GIS-linked model for the assessment of nitrate contamination in groundwater[J]. Journal of Hydrology , 1999, 224: 81–90.
    [42]Hudak P.F.. Chloride and Nitrate Distributions in the Hickory Aquifer, Central Texas, USA [J]. Environment International 1999,25 (4):393–401.
    [43] Bilgehan Nas, Ali Berktay. Groundwater contamination by nitrates in the city of Konya, (Turkey): A GIS perspective [J]. Journal of Environmetal Management. 2006, 79:30-37.
    [44]宫辉力,尹连旺,赵文吉等.基于GIS技术的浅层地下水硝酸盐氮浓度场数值仿真[J].系统仿真学报. 2004, 16(6): 1254-1256.
    [45]刘英华,张世熔,张素兰等.成都平原地下水硝酸盐含量空间变异研究[J].长江流域资源与环境.2005, 14(1): 114-117.
    [46]Kohl D.H., Shearer G.B.. Fertilizer nitrogen: contribution to nitrate in surface water in A cornbelt watershed [J]. Science, 1971, 174: 1331-1334.
    [47]Wassenaar L.I.. Evaluation of the origin and fate of nitrate in the Abbotsford Aquiferusing the isotopes of 15N and 18O in NO3 - [J]. Applied Geochemistry, 1995,10: 391-405.
    [48]杨瑛. NO3-中15N、18O同位素新技术在岩溶地区地下水氮污染研究中的应用[J].中国岩溶, 2004 (23): 206-212.
    [49]程言新,张福生等.安徽省地貌分区和分类.安徽地质. 1996, 6(1): 63-68.
    [50]于镇江,黄多成等.安徽淮北平原上新世-全新世岩石地层划分及其年龄.安徽地质.1996, 6(2): 21-29.
    [51]王嵩嵘.安徽省浅层地下水水化学特征探讨.江淮水利科技. 2008,第3期: 33-34.
    [52]王宁,张光生,杜金娥等.大王洞地下河水化学分析及污染状况初探.地球与环境.2008, 36(2): 106-122.
    [53]徐小磊.淮河流域(安徽段)地下水污染调查评价与防治对策研究.安徽地质. 2007,17(2): 129-144.
    [54]Hem J.O. Study and interpretation of the chemical characteristics of natural water, 3rd edn. US Geol Surv Water Suppl Pap 2254, US Geological Survey, Reston, 1985,VA 263.
    [55]沈照理.水文地球化学基础[M].北京:地质出版社,1993, 136-138.
    [56]R.A.弗里泽,J.A.彻里.地下水[M].北京:地震出版社,1987, 303-304.
    [57]刘兆昌,张兰生,聂永丰等.地下水系统的污染与控制[M].北京:中国环境出版社,1991,10.
    [58]朱学愚,钱孝星.地下水水文学[M].北京:中国环境科学出版社,2005. [59钱家忠,汪家权.我国北方型裂隙岩溶水模拟模型及水环境质量评价[M].合肥工业大学出版社,2003,1.
    [60]王焰新.地下水污染与防治[M].北京:高等教育出版社,2007.
    [61]Fetter C W. Contaminant Hydraogeology. New York: Macmillan Publishing Company. 1992.
    [62]汪家权,钱家忠.水环境系统模拟[M].合肥:合肥工业大学出版社, 2005. 10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700