用户名: 密码: 验证码:
航天器空间碎片防护结构超高速撞击特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天事业的发展,空间碎片环境日益恶化,严重地威胁着在轨航天器的安全运行。空间碎片危害航天器的最主要特征是超高速撞击现象,对于毫米级空间碎片,采用设置防护屏的防护结构方案被证明是现实有效的措施。航天器空间碎片防护结构的超高速撞击特性是航天器空间碎片风险评估和防护结构设计的重要基础数据。本文利用二级轻气炮发射技术实现了球形弹丸的超高速发射,针对国产铝合金材料的典型空间碎片防护结构进行了系统的超高速撞击实验研究和损伤规律分析,实验数据和研究结果可为航天器防护结构的工程设计提供参考依据。
     薄板和中厚板的超高速撞击特性是空间碎片防护结构设计的重要基础。通过实验研究了5A06铝合金中厚板的撞击成坑特性和2A12铝合金薄板的撞击穿孔特性,获得了给定结构铝合金单层板的撞击极限曲线,并建立了预测撞击特性的经验公式。研究结果表明:撞击弹丸的液化是导致其在部分撞击速度区间内侵彻能力下降的主要原因;在一定的厚度范围内,铝合金靶板厚度对其超高速正撞击穿孔特性的影响与弹丸直径和撞击速度同样具有显著性;铝合金球形弹丸超高速斜撞击铝合金薄板时,存在使撞击弹丸发生滑弹返溅的临界撞击角;与国外薄板超高速撞击穿孔经验公式相比,新建立的经验公式更适合于国产铝合金材料。
     双层板结构是最典型的航天器空间碎片防护结构。通过实验研究了铝合金双层板结构在正撞击和斜撞击条件下的后板撞击坑分布特性,获得了给定结构铝合金双层板的撞击极限曲线,并建立了预测后板撞击坑分布特性的经验公式。研究结果表明:弹丸直径、撞击速度、撞击角度、前板厚度以及前后板间距是决定双层板后板撞击坑特性的主要因素,但撞击速度对前板后主碎片云膨胀角无显著影响;弹丸的撞击破碎临界速度将会影响铝合金双层板结构正撞击的后板撞击坑分布和斜撞击的后板损伤与撞击角的变化关系;建立的后板撞击坑分布经验公式为超高速撞击二次碎片云特性的定量化分析提供了参考。
     多层板结构与双层板结构相比具有更加优良的抗空间碎片超高速撞击的能力。通过实验研究了提高铝合金多层板防护结构防护性能的方法和机理,讨论了防护板层数和各层防护板厚度对提高防护性能的作用。研究结果
With the unceasing development of space activity, the total number of space debris is ever increasing, which greatly threatens an orbiting space vehicle. The prominence characteristic of space debris impacting spacecraft is hypervelocity impact phenomena. For the millimeter size space debris, the Whipple shield is an effective shield configuration. The hypervelocity impact characteristic of spacecraft by space debris is the important basic of shield structure design and risk evaluation of spacecraft in space debris environment. In this dissertation, in order to systematically study the hypervelocity impact damage of typical spacecraft space debris shield configuration made of aluminum alloy, a two-stage light gas gun was used to launch sphere projectile. The experiment data and investigation results can provide criterions and references for engineering design of spacecraft shield configuration.
     The hypervelocity impact characteristics of thin plate and medium thickness plate are the important basic for design of space debris shield structure. By investigating the impact crater characteristic of 5A06 aluminum alloy medium thickness plate and impact perforation characteristic of 2A12 aluminum alloy thin plate, ballistic limit curve of aluminum alloy single wall and the equations for forecasting impact characteristic were obtained. The results indicated that projectile liquefied cause the decline of penetrate ability in some impact velocity range. The thickness of target plate has prominence effect on perforation size as projectile diameter and impact velocity. When hypervelocity projectiles oblique impact on thin targets, there exists a critical incident angle, and in the condition of impact angle of projectile smaller than the critical incident angle, projectiles leap away from the targets partially or entirely. Comparing the overseas equations, the new equations can apply to domestic aluminum alloy.
     Dual-wall configuration is typical spacecraft space debris shield structure. By hypervelocity impact experiment, the crater distributing in rear wall when normal impact and oblique impact were investigated. Ballistic limit curve of aluminum alloy dual-wall configuration and the equations for forecasting crater
引文
1 H. Klinkrad. Collision Risk Analysis for LEO. Adv. Space Res., 1993, 13(2):105-112
    2 张庆明, 黄风雷. 空间碎片环境及其危害. 中国安全科学学报, 1996, (5):15-20
    3 G. A. Graham, A. T. Kears, M. M. Grady, I. P. Wright, A. D. Griffiths, A. M. Mcdonnell. Hypervelocity Impacts in Low Earth Orbit: Cosmic Dust versus Space Debris. Int. J. Impact Engineering, 1999, 23:95-100
    4 C.Pardini. Survey of past on-orbit fragmentation events. Acta. Astronautica, 2005, 56:379-389
    5 M. Oswald, H. Krag, P. Wegener, B. Bischof. Concept for an Orbital Telescope Observing the Debris Environment in GEO. Adv. Space Res., 2004, 34:1155-1159
    6 M. Matney, R. Goldstein, D. Kessler, E. Stansbery. Recent Results from Goldstone Orbital Debris Radar. Adv. Space Res., 1999, 23(1):5-12
    7 L. Anselmo, A. Rossi, C. Pardini. Undated Results on the Long-Term Evolution of the Space Debris Environment. Adv. Space Res., 1999, 23(1): 201-211
    8 T. J. Settecerri, E. G. Stansbery, M. J. Matney. Haystack Measurements of the Orbital Debris Environment. Adv. Space Res., 1999, 23(1):13-22
    9 G.Stansberry, M. Matney, T. Settecerri, A. Bade. Debris Families Observed by the Haystack Orbital Debris Radar. Acta Astronautica, 1997, 41(1): 53-56
    10 朱毅麟. 空间碎片环境近况. 中国空间科学技术, 1996, (6):19-28
    11 A. E. Potter. Measuring the Orbital Debris Population. Earth Space Review, 1995, 4:21-29
    12 J. L. Hyde, E. L. Christiansen, J. H. Kerr. Meteoroid and Orbital Debris Risk Mitigation in Low Earth Orbit Satellite Constellation. Int. J. Impact Engineering, 2001, 26:345-356
    13 李清源. 航天器对空间碎片撞击危害的被动防护技术. 强度与环境,2002, 29(4):45-50
    14 I. Y. Telitchev, L. G. Kukashev, A. G. Prokhorov. Residual Toughness of Space Vehicles Structural Elements Damage by Space Debris. Int. J. Impact Engineering, 1997, 20:789-800
    15 B. G. Cour-Palais. Hypervelocity Impact in Metals, Glass and Composites. Int. J. Impact Engineering, 1987, 5:681-692
    16 W. P. Schonberg, R. A. Taylor. Penetration and Ricochet Phenomena in Oblique Hypervelocity Impact. Int. J. Impact Engineering, 1989, 27: 639-646
    17 W. P. Schonberg, A. J. Bean, K. Darze. Hypervelocity Impact Physics. NASA CR-4343, Washington, D. C., 1991:1-242
    18 M. Lambert. Hypervelocity Impacts and Damage Laws. Advance in Spacecraft Research-COSPAR, 1996, 7:213-223
    19 W. P. Schonberg, J. E. Williamsen. Empirical Hole Size and Crack Length Models for Dual-Wall Systems under Hypervelocity Projectile Impact. Int. J. Impact Engineering, 1997, 20:711-722
    20 E. A. Taylor, J. P. Glanville, R. A. Clegg, R. G. Turner. Hypervelocity Impact on Spacecraft Honeycomb: Hydrocode Simulation and Damage Laws. Int. J. Impact Engineering, 2003, 29:691-702
    21 Y. Akahoshi, M. Kaji, H. Hata. Measurement of mass, Spray Angle and Velocity Distribution of Fragment Cloud. Int. J. Impact Engineering, 2003, 29:845-853
    22 J. P. Dear, H. Lee, S. A. Brown. Impact Damage Processes in Composite Sheet and Sandwich Honeycomb Materials. Int. J. Impact Engineering, 2005, 32:130-154
    23 C. G. Lamontagne, G. N. Manuelpillai, J. H. Kerr, E. A. Taylor, R. C. Tennyson, M. J. Burchell. Projectile Density, Impact Angle and Energy Effects on Hypervelocity Impact Damage to Carbon Fibre/Peek Composites. Int. J. Impact Engineering, 2001, 26:381-398
    24 E. L. Christiansen, J. H. Kerr. Projectile Shape Effects on Shielding Performance at 7km/s and 11km/s. Int. J. Impact Engineering, 1997, 20: 165-172
    25 F. K. Schafer, M. Herrwerth, S. J. Hiermaier, E. E. Schneider. Shape Effects in Hypervelocity Impact on Semi-Infinite Metallic Targets. Int. J. Impact Engineering, 2001, 26:699-711
    26 R. J. Turner, E. A. Taylor, J. A. M. Mcdonnell, H. Stokes, P. Marriott, J. Willinson, D. J. Catling, R. Vignjevic, L. Berthoud, M. Lambert. Cost Effective Honeycomb and Multi-Layer Insulation Debris Shields of Unmanned Spacecraft. Int. J. Impact Engineering, 2001, 26:785-796
    27 D. Palmieri, M. Lambert, M. Mendoza. Effect of Multi-layer Insulation on Top of Spacecraft Meteoroids/Debris Shield: Prediction of the Automated Transfer Vehicle Pressure Module Ballistic Limit. Int. J. Impact Engineering, 2003, 29:537-548
    28 J. H. Robinson. Orbital Debris Impact Damage to Reusable Launch Vehicles. Int. J. Impact Engineering, 1999, 23:783-794
    29 W. P. Schonberg. Protecting Spacecraft against Orbital Debris Impact Damage Using Composite materials. Int. J. Impact Engineering, 2000, 31: 869-878
    30 V.V. Silvestrov, A. V. Plastinin. An Investigation of Cerami/Aluminium as Shield for Hypervelocity Impact. Int. J. Impact Engineering, 1999, 23:859-867
    31 Y. Akahoshi, R. Nakamura, M. Tanaka. Development of Bumper Shield Using Low Density Materials. Int. J. Impact Engineering, 2001, 26:13-19
    32 R. Destefanis, F. Schafer, M. Lambert, M. Faraud, E. Schneider. Enhanced Space Debris Shield for Manned Spacecraft. Int. J. Impact Engineering, 2003, 29:215-226
    33 M. Tanaka, Y. Moritaka, Y. Akahoshi, R. Nakamura, A.Yamori, S. Sasaki. Development of a Light Weight Space Debris Shield Using High Strength Fibers. Int. J. Impact Engineering, 2001, 26:761-772
    34 P.V.Lavrukhov, A.V.Plastinin, V.V. Silvestrov. Double-Layer High-Porous Copper/Duralumin Bumper. Int. J. Impact Engineering, 2003, 29:407-416
    35 R. Destefanis. Testing of Advanced Materials for High Resistance Debris Shielding. Int. J. Impact Engineering, 1997, 20:209-222
    36 闵桂荣, 肖名鑫. 防止微流星击穿航天器舱壁的可靠性设计. 中国空间科学技术, 1986, (6):45-49
    37 黄本城. 空间环境工程学. 宇航出版社, 北京, 1993
    38 朱毅麟. 空间碎片减缓. 国际太空, 1999, (5):12-15
    39 都亨. 空间碎片行动计划近期工作设想及今后工作展望. 中国航天, 2003, (11):13-15
    40 柳森, 李毅. Whipple 防护屏弹道极限参数试验. 宇航学报, 2004, 25(2): 205-208
    41 柳森, 谢爱民, 黄洁, 李毅, 罗锦阳, 石安华. 超高速碰撞碎片云的激光阴影照相技术. 实验流体力学, 2005, 19(2):35-39
    42 Q. M. Zhang, Y. H. Chen. Experimental Study of Hypervelocity Impact on Multi-Shock Structure. Journal of Beijing Institute of Technology, 2004, 13(3):274-279
    43 韩增尧, 郑世贵, 闫军, 范晶岩, 曲广吉. 空间碎片撞击概率分析软件开发、校验与应用. 宇航学报, 2005, 26(2):228-231
    44 张伟, 庞宝君, 张泽华, 马文来. 航天器波纹防护屏高速撞击实验研究. 宇航学报, 2000, 21(1):79-84
    45 张伟, 庞宝君, 罗德坤, 张泽华. 柱状弹丸撞击防护屏形成碎片云材料状态特性研究研究. 中国空间科学技术, 2001, (3):53-59
    46 张伟, 庞宝君, 马文来, 张泽华. 第一门槛值区间单防护屏防护正撞击实验研究. 实验力学, 2000, 15(1):115-119
    47 A. J. Stilp. Review of Modern Hypervelocity Impact Facilities. Int. J. Impact Engineering, 1987, 5:613-621
    48 D. W. Bogdanoff, R. J. Miller. Improving the Performance of Two-Stage Gas Guns by Adding a Diaphragm in the Pump Tube. Int. J. Impact Engineering, 1995, 17:81-92
    49 Tatsumi Moritoh, Nobuaki Kawai, Kazutaka G. Nakamura, Ken-ichi Kondo. Optimization of a Compact Two-Stage Light-Gas Gun Aiming at a Velocity of 9km/s. Rev. Sci. Instruments, 2001, 72(11):4270-4272
    50 E. Schneider, F. Schafer. Hypervelocity Impact Research Acceleration Technology and Applications. Adv. Space Res., 2001, 28(9):1417-1424
    51 A. J. Piekutowski. A New Technique for Achieving Impact Velocities Greater Than 10km/sec. NASA/CR-2001-210990, May, 2001
    52 D. W. Bogdanoff. Optimization Study of The Ames 0.5″Two-Stage Light Gas Gun. Int. J. Impact Engineering, 1997, 20:131-142
    53 M. W. Greenaway, W. G. Proud, J. E. Field. A Laser-accelerated Flyer System. Int. J. Impact Engineering, 2003, 29:317-321
    54 L. Kay, A. Podoleanu, M. Seeger, C. J. Solomon. A New Approach to the Measurement and Analysis of Impact Craters. Int. J. Impact Engineering, 1997, 19(8):739-753
    55 L. C. Chhabildas, L. N. Kmetyk, W. D. Reinhart, C. A. Hall. Enhanced Hypervelocity Launcher-Capabilities to 16km/s. Int. J. Impact Engineering, 1995, 17:183-194
    56 W. D. Reinhart, L. C. Chhabildas, D. E. Carroll, T. K. Bergstresser, T. F. Thornhill, N. A. Winfree. Equation of State Measurements of Materials Using a Three-Stage Gun to Impact Velocities of 11km/s. Int. J. Impact Engineering, 2001, 26:625-637
    57 T. Moritoh, N. Kawai, S. Matsuoka. Hypervelocity Impact Experiments up to 9km/s by a Compact Multi-Stage Light-Gas Gun. Int. J. Impact Engineering, 2003, 29:459-467
    58 Y. V. Batkov, N. P. Kovalev, A. D. Kovtun, V. G. Kuropatkin. Explosive Three-Stage Launcher to Accelerate Metal Plates to Velocities More than 10km/s. Int. J. Impact Engineering, 1997, 20:89-92
    59 A. C. Charters. The Early Years of Aerodynamics Ranges, Light-Gas Guns, and High-Velocity Impact. Int. J. Impact Engineering, 1995, 17:151-182
    60 林俊德. 非火药驱动的二级轻气炮的发射参数分析研制. 爆炸与冲击, 1995, 15(3):229-239
    61 王金贵. 二级轻气炮超高速弹丸发射技术的研究. 高压物理学报, 1992, 6(4):264-272
    62 张德志, 唐润棣, 林俊德, 张向荣, 朱玉荣. 新型气体驱动二级轻气炮研制. 兵工学报, 2004, 25(1):14-18
    63 Dr. Harry D. Fair. Electromagnetic Launch. Int. J. Impact Engineering, 2003, 29:247-262
    64 沈金华, 贾浩. 电磁轨道炮及其应用. 爆炸与冲击, 1984, 4(2):90-96
    65 徐兴海, 高顺受, 陈素年. 一种电炮装置. 爆炸与冲击, 1982, (4):67-69
    66 周之奎, 陈素年, 邓利文. 电热炮原理实验研究. 爆炸与冲击, 1993, 13(2):186-192
    67 文尚刚, 孙承纬, 赵锋, 李庆忠. 多级爆轰驱动——研究超高速碰撞的一种新的加载技术. 高压物理学报, 2000, 14(1):22-27
    68 B. Stever, R. Frank. A Plasma Drag hypervelocity Particle Accelerator. Int. J. Impact Engineering, 1999, 23:67-76
    69 W. D. Weldon. Development of hypervelocity electromagnetic gun. Int. J. Impact Engineering, 1987, 5:671-679
    70 J. D. Walker, D. J. Grosch. A Hypervelocity Fragment Launcher Based on an inhibited Shaped Charge. Int. J. Impact Engineering, 1993, 14:763-774
    71 H. Fechtig, D. E. Gault, G. Neukum, E. Schneider. Laboratory Simulation of Lunar Craters. Naturwissenschaften, 1972, 59:151-157
    72 E. Igenbergs, Ein Magnetomechanischer Beschleuniger fur die Simulation von Mikrometeoroiden. Raumfahrtforschung, 1973, 4:175-181
    73 L. C. Chhabildas. An Impact Technique to Accelerate Flier Plates to Velocities over 12km/s. Int. J. Impact Engineering, 1993, 14:121-132
    74 J. Bol, W. Fucke. Shaped Charge Technique for Hypervelocity Impact Tests at 11km/s on Space Debris Protection Shield. Proceedings of the Second European Conference on Space Debris, ESOC, Darmstadt, Germany, 17-19 March 1997
    75 R. Zworkz, W.Weldon. Application of a Friction Model to Electromagnetic Launchers. Proc. 37th Meeting of the Aeroballistic Range Association, Quebec, Canada, 1986
    76 王金贵. 气体炮原理及技术. 国防工业出版社, 2001:102-128
    77 Protection Manual. Prepared by The IADC WG3 Members. IADC-WD-00 -03, Version 3.1 Revision March 2003
    78 经福谦. 超高速碰撞现象. 爆炸与冲击, 1990, 10(3):15-34
    79 王金贵. 超高速碰撞的弹托分离技术. 高压物理学报, 1993, 7(2):143- 147
    80 施尚春, 陈攀森, 黄跃等. 高速弹丸的磁感应测速方法. 高压物理学报, 1991, 5(3):205-214
    81 K. Dahl, B. Cour-Palais. Standardization of Impact Damage Classificationand Measurements for Metallic Targets. MDSSC-SSD, Houston, Texas, 1992
    82 N. C. Elfer. Structural Damage Prediction and Analysis for Hypervelocity Impact-Handbook. NASA Contractor Report 4706, 1996
    83 ESA Contract 9354. Damage Assessment Standardization Multi Bumpers with Kevlar Multi Bumpers all Aluminum Multi Bumpers with Glare NASA Multi Bumpers. FhC-EMI-7800 FR, 1993
    84 F. Schafer. Hypervelocity Impact Testing Impact on Pressure Vessels. EMI. Freiburg, Germany. April 30, 2001
    85 W. P. Schonberg, R. A. Taylor. Oblique Hypervelocity Response of Dual -Sheet Structures. NASA Technical Memorandum, NASA TM-100358, 1989
    86 A. J. Stilp, K. Weber. Debris Clouds behind Double-Layer Targets. Int. J. Impact Engineering, 1997, 20:765-778
    87 A. J. Piekutowski. Debris Clouds Produced by the Hypervelocity Impact of Nonspherical Projectiles. Int. J. Impact Engineering, 2001, 26:613-624
    88 L. A. Merzhievsky. Statistical Characteristics of a Debris Cloud behind a Shield. Int. J. Impact Engineering, 1997, 20:569-577
    89 E. L. Christiansen, J. H. Kerr, J. P. Whitney. Debris Cloud Ablation in Gas-Filled Pressure vessels. Int. J. Impact Engineering, 1997, 20:217-228
    90 A. J. Piekutowski. Characteristics of Debris Clouds Produced by High -Velocity Impact of Aluminum Spheres with thin Aluminum Plates. Int. J. Impact Engineering, 1993, 14:573-586
    91 A. J. Piekutowski. Formation and Description of Debris Clouds Produced Hypervelocity Impact. NASA Contractor Report 4707:1-222
    92 W. P. Schonberg. Characterizing Secondary Debris Impact Ejecta. Int. J. Impact Engineering, 2001, 26:713-724
    93 L. J. Cohen. A Debris Cloud Cratering Model. Int. J. Impact Engineering, 1995, 17:229-240
    94 F. K. Schafer, E. Schneider, M. Lambert, M. Mayseless. Propagation of Hypervelocity Impact Fragment Clouds in Pressure Gas. Int. J. Impact Engineering, 1997, 20:697-710
    95 H. Tamura, M. Iwawaki, A. B. Sawaoka. Quantitative Analysis of Debris Clouds from Duralumin and SiC-fiber/Aluminum-matrix Composite Bumpers. Int. J. Impact Engineering, 2003, 28:829-848
    96 L. C. Chhabildas, M. B. Boslough. SAND93-1859C, Proceeding of the 44th Aeroballistics Range Association Meeting, Munich, Germany September 13-17, 1993
    97 L. N. Kmetyk, L. C. Chhabildas, M. B. Boslough, R. J. Lawrence. Effect of Phase Change in a Debris Cloud after Backwall Structure. SAND94-0878 UC-910, 1994
    98 乔纳斯 A. 朱卡斯等著. 张志云等译. 碰撞动力学. 兵器工业出版社. 1989
    99 马晓青, 韩峰. 高速撞击动力学. 国防工业出版社. 1998
    100 J. W. Gehring. Theory of Impact on Thin Target and Shields and Correlation with Experiment. Edited by R. Kinslow. High-Velocity Impact Phenomena. Academic Press, 1970
    101 孙庚辰, 谈庆明, 赵成修, 葛学真. 金属厚靶的超高速碰撞开坑实验. 兵工学报, 1994, (1):27-31
    102 周劲松, 杨德庄. 高速撞击下弹坑的成坑规律研究. 哈尔滨工业大学学报, 1999, 31(3):132-136
    103 张庆明. LY-12 铝合金熔化的临界碰撞速度. 北京理工大学学报, 2000, 20(4):427-430
    104 周劲松, 甄良, 杨德庄. 几种金属材料在 2.6~7km/s 弹丸撞击下的损伤行为. 宇航学报, 2000, 21(2):75-81
    105 N. R. Sorensen. Systematic Investigation of Crater Formation in Metals. Proceedings of the Seventh Symposium on Hypervelocity Impact, 1965, 6-281
    106 V. C. Frost. Meteoroid Damage Assessment. Aerospace Corporation, NASA SP-8042, May 1970
    107 R. H. Fish, J. L. Summers. The Effect of Material Properties on Threshold Penetration. Proceeding of the Seventh Hypervelocity Impact Symposium, vol. VI, February 1965
    108 A. R. Coronado, M. N. Gibbins, M. A. Wright, P. H. Stern. Space StationIntegrated Wall Design and Penetration Damage Control. Final Report, D180-30550-1, NAS8-36426, July 1987
    109 A. K. Holsapple, R. M. Schmidt. On the Scaling of Crater Dimensions 2 Impact Process. Journal of Geophysical Research, N87, vol. B3, March 10, 1982
    110 向家琳. 金属材料可压塑性效应对超高速碰撞中厚靶成坑的影响. 中国科学院力学研究所硕士研究生学位论文, 1990
    111 谈庆明. 高速冲击模型. 冲击动力学进展, 王礼立, 余同希, 李永池编, 中国科学技术出版社, 合肥, 1992:303
    112 周劲松. 在高速粒子撞击作用下几种金属的宏观和微观损伤行为. 哈尔滨工业大学博士研究生学位论文. 1997:49-56
    113 K. B. Hayashida, J. H. Robinson. Single Wall Penetration Equations. NASA TM-103565, 1991
    114 B. G. Cour-Palais. Hypervelocity Impact Investigations and Meteoroid Shielding Experience Related to Apollo and Skylab. NASA Conference Publication 2360, Orbital Debris, 1985:247-275
    115 E. L. Christiansen. Shield Sizing and Response Equations. NASA-SN3-91 -42, February 1991
    116 R. F. Rolsten, J. N. Wellnitz, H. H. Hunt. An Example of Hole Diameter in Thin Plates Tue to Hypervelocity Impact. J. Appl. Phys., 1964, 34(3): 556-559
    117 C. J. Maiden, A. R. McMillan, R. E. Sennett. Thin Sheet Impact. NASA CR-295, Washington DC, 1965
    118 C. J. Maiden, A. R. McMillan. An Investigation of the Protection Afforded a Spacecraft by a Thin Shield. AIAA, 1964, 2(11):1992-1998
    119 D. R. Sawle. Hypervelocity Impact in Thin Sheets, Semi-Infinite Targets at
    15km/s. AIAA Paper No. 69-378, AIAA Hypervelocity Impact Conference, Cincinnati, OH, 1969
    120 N. R. Sorenson. Systematic Investigation of Crater Formations in Metals. Proceedings of the Seventh Hypervelocity Impact Symposium, 1964, VI: 281-325
    121 C. R. Nysmith. Experimental Investigation of the Momentum TransferAssociated with Impact into Thin Aluminum Targets. NASA TND-5492, 1969
    122 W. P. Schonberg. Hypervelocity Impact Penetration Phenomena in Aluminum Space Structures. J. Aerospace Eng., 1990, 3(3):173-85
    123 B. A. Mayer, W. P. Schonberg, J. E. Williamsen. Temperature Effects on Bumper Hole Diameter for Impact Velocity from 2 to 7 km/s. Int. J. Impact Engineering, 2003, 26:487-495
    124 F. L. Whipple. Meteorites and Space Travel. Astron. Journal, 1947, 52:131
    125 W. P. Schonberg. Spacecraft Wall Design for Increased Protection Against Penetrations by Space Debris Impact, AIAA 90-3663
    126 B. G. Cour-Palais, J. L. Crew. A Multi-Shock Concept for Spacecraft Shielding. Int. J. Impact Engineering, 1990, 10:134-140
    127 G. D. Olsen, A. M. Nolen. Advanced Shield Design for Space Station Freedom. Int. J. Impact Engineering, 1993, 14:541-550,
    128 K. Shiraki, F. Terada. Space Station JEM Design Implementation and Testing for Orbital Debris Protection. Int. J. Impact Engineering, 1997, 20: 723-732
    129 E. L. Christiansen, J. H. Kerr. Mesh Double-Bumper Shield. Int. J. Impact Engineering, 1993, 14:169-180
    130 E. L. Christiansen, et al. Enhanced Meteoroid and Orbital Debris Shield. Int. J. Impact Engineering, 1995, 17:217-228
    131 E. L. Christiansen, J. L. Crew, J. H. Kerr. Hypervelocity Impact Testing above 10km/s of Advanced Orbital Debris Shields. Shock Compression of Condensed Matter-1995, AIP Conference Proceedings 1995:1183-1186
    132 T. D. Maclay, et al. Topographically Modified Bumper Concepts for Spacecraft Shielding. Int. J. Impact Engineering, 1993, 14:479-489
    133 E. L. Christiansen. Design and Performance Equation for Advanced Meteoroid and Debris Shields. Int. J. Impact Engineering, 1993, 14: 145-156
    134 E. L. Christiansen. Advanced Meteoroid and Debris Shielding Concept. AIAA 90-1336
    135 K. Hopkins. Material Phase Transformation Effects upon Performance ofSpaced Bumper Systems. J. Spacecraft and Rocket, 1972, 9:342-345
    136 L. J. Friesen. Hypervelocity Impact Tests of Shielded and Unshielded Pressure Vessels, Part II. JSC 27081, JSC, TX, 1995
    137 G. D. Olsen, A. M. Nolen. Hypervelocity Impact Testing of Pressure Vessels to Simulate Spacecraft failure. Int. J. Impact Engineering, 2001, 26: 555-566
    138 B. Lutz, J. Williamsen. Critical Fracture of Space Station Modules Following Orbital Debris Penetration. 1996, AIAA 96-4362
    139 S. A. Mullin, H. Couque. Bursting of Shielded Pressure Vessels Subject to Hypervelocity Impact. Int. J. Impact Engineering, 1997, 20:579-590
    140 M. Lambert, E. Schneider. Hypervelocity Impacts on Gas Filled Pressure Vessels. Int. J. Impact Engineering, 1997, 20:491-498
    141 M. R. Baum. Rupture of a Gas-Pressurized Cylindrical Vessel: The Velocity of Detached End-Cap. J. Loss Prev. Process Ind., 1995, 8(3):149-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700