用户名: 密码: 验证码:
海上式风机基础结构设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海上风能是一种丰富的清洁可再生能源,然而海上风能发电机的基础结构所处环境恶劣性,致使其施工困难、建造成本高。因此,海上风机基础结构的经济性、安全性与稳定性成为了当今研究的热点。本文在缺乏国内相应设计规范的条件下,对式风机基础结构的强度、稳定性和疲劳寿命进行了研究与分析。
     本文在选型优化研究的基础上,选用四式风机基础结构进行研究。研究包括:环境荷载计算、结构静动力计算分析与疲劳分析。
     (1)环境荷载主要计算波流荷载和地震荷载。波流力采用五阶stokes波理论和波流共同作用下斜受力分析;对于动力分析,采用了文圣常方法计算波浪谱。计算结果发现,波流的水平推力比上部风机水平力大,是结构荷载的重要组成部分。分别采用频域与时域对地震荷载进行了计算与分析。
     (2)结构静力计算采用ANSYS软件,用pipe16单元模拟杆件,桩土相互作用分别采用固定端约束的六倍径法、Combin14线形单元模拟的m法和Combin39非线性单元模拟的p-y曲线法。其中p-y曲线法计算出的结果最大,在缺乏实测资料时,可用于极限荷载状态下的风能发电机基础分析。
     (3)为了保证风机的正常运行,还需讨论风机的动力分析。模态分析确定其前十阶自振频率在0.35-4.5Hz之间,其中一阶自振频率为0.352Hz;谐响应分析发现,环境荷载均能避免和结构发生共振;波浪与地震的谱响应和时程分析结果表明,结构在此荷载作用下均能保持稳定。
     (4)由于风机基础的荷载大部分为循环荷载,因而对其进行疲劳寿命分析是必要的。本文利用现有资料,在整体疲劳分析的基础上,采用壳单元shel193将结构进一步优化,将单元细化,进行局部应力集中处的疲劳分析。
     本文较为详细的阐述了风能发电机式基础结构的设计计算过程,较好的完成了课题的要求,对海上风能发电机基础结构的设计具有一定的参考价值。
Maritime wind energy,as a kind of abundant renewable clean energy,its popularization and application has already become the tendency.The complexity of wind turbine foundation in hostile environments leads to the high cost of the offshore wind power.In the absence of norms,intensity,stability and fatigue life of the wind turbine foundation is studied and analysed in this paper.
     Based on the results of lectotype optimization,wind turbine four-pile foundation is choosed for analysed.The study includes environmental load,the structure of static and dynamic calculation,fatigue analysis.
     (1)The environmental load includes seismic load,wave and current load.Fifth-order Stokes wave theory is used for static calculation.Wave spectrum with Wen shengchang method is adopted in dynamic analysis.Calculation result shows that horizontal wave force is bigger than the load of wind turbine.
     (2)ANSYS software is used in static calculation.Member of wind turbine foundation is simulated as pipel6 unit.Sixfold-pile diameter method,m-method and p-y curve method are used for simulated and compared in pile-soil interaction analyses.The result of p-y curve method is biggest.It can be used in the absence of measured data.
     (3)In order to ensure the normal operation of wind turbine,dynamic analysis needs to be discussed.The result of modal analysis shows that the top ten steps of the natural frequencies are between 0.35Hz and 4.5Hz,and the first step is 0.352Hz.Environmental and structural loads are able to avoid resonance in the analysis of Harmonic response.It's found that the structure is stable under the force of ether wave and earthquake spectrum or wave and earthquake time-history.
     4)As the cyclic loading of wind turbine foundation,it is necessary to analyse the fatigue life of the structure.Through the further optimization for the structure,shell93 element is used in this paper to do fatigue analysis of the stress concentration.
     The design and calculation process of the wind turbine foundation is discussed in this thesis.It has reference value for the similar problems.
引文
[1]科技信息.广东省新能源生产力促进中心,文献情报,2006,11:68.
    [2]国际电力动态.电子期刊,0348,2006-10C.
    [3]中国新能源与可再生能源1999年白皮书[M].中国计划出版社出版.
    [4]2008年中国新能源与可再生能源产生发展报告.中国能源网.
    [5]海洋能将成为沿海国家重要能源之一[J].电网与水力发电进展,ASPT 来源刊 CJFD 收录刊.
    [6]高祥帆,游亚戈.海洋能利用进展[J].中国高校科技与产业化,ASPT 来源刊 CJFD 收录刊.
    [7]汪鲁兵,张亮,李凤来.潮流发电水轮机基于动量定理的性能计算方法研究[J].哈尔滨工程大学船舶工程学院,15000.
    [8]A.S.Bahai,A.F.Molland,J.R.Chaplin,W.M.J.Batten.Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank[J].Renewable Energy,2007,32:407-426.
    [9]Luke Myers,A.S.Bahai.Wake studies of a 1/30th scale horizontal axis marine current turbine[J].Ocean Engineering,2007,34:758-762.
    [10]W.M.J.Batten,A.S.Bahaj,A.F.Molland,J.R.Chaplin.Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines[J].Ocean Engineering 2007,34:1013-1020.
    [11]A.S.Bahaj,W.M.J.Batten,G.McCann.Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines [J].Renewable Energy 2007,32:2479-2490.
    [12]W.M.J.Batten,A.S.Bahaj,A.F.Molland,J.R.Chaplin.The prediction of the hydrodynamic performance of marine current turbines[J].Renew Energy,2006,in press,doi:10.1016/j.renene.2007.05.043.
    [13]L.Myers,A.S.Bahaj.Power output performance characteristics of a horizontal axis marine current turbine J].Renewable Energy 2006,31:197-208.
    [14]海上风电开发及沿海大型风电基地建设研讨会[C],workshop on Offshore wind and Coastal Wind Base Development,北京:[出版社不详],2009.
    [15]P.Deglaire,S.Engblom,O.Agren,act.Analytical solutions for a single blade in vertical axis turbine motion in two-dimensions[J],EJMFLU:2370.
    [16]宋础,刘汉中.海上风力发电场开发现状及发展趋势[J],太阳能学报,2006,2.
    [17]Simon-Philippe Breton,Geir Moe.Status,plans and technologies for offshore wind turbines in Europe and North America[J],Renewable Energy 2009,34:646-654.
    [18]胡可颖,张慧.欧洲的海上风力发电[J],太阳能学报,2005,5.
    [19]Wang Zhixin,Jiang Chuanwen,Ai Qian.The key technology of offshore wind farm and its new development in China[J],Renewable and Sustainable Energy Reviews,2009,13:216-222.
    [20]Brian Snyder,Mark J.Kaiser.A comparison of offshore wind power development in Europe and the US:Patterns and drivers of development[J],APPLIED ENERGY,2009(2)18.
    [21]Thijs Smit,Martin Junginger,Ruud Smits.Technological learning in offshore wind energy:Different roles of the government[J],ENERGY POLICY,2007(3).
    [22]曹延欣.有限元分析软件 ANSYS 及其使用[J],大众科技,2008(2):55-68.
    [23]风力发电机组安全要求.国家质量监督检验检疫总局,GB18451.1-2001.
    [24]海港水文规范,JTJ 213-98.人民交通出版社,1999.
    [25]金伟良.工程荷载组合理论与应用[M].机械工业出版社,2006.
    [26]何生厚,洪学福.浅海固定式平台设计与研究[M].中国石化出版社,2003.
    [27]Leen De Vos,Peter Frigaard,Julien De Rouck.Wave run-up on cylindrical and cone shaped foundations for offshore wind turbines[J].Coastal Engineering,2007,54:17-29.
    [28]俞聿修.随机波浪及其工程应用[M].大连理工出版社,2003.
    [29]李围,叶裕明,刘春山.ANSYS 土木工程应用实例[M].中国水利水电出版社,2007.
    [30]建筑抗震设计规范 GB 50011-2001.中国建筑工业出版社,2001.
    [31]王呼佳,陈洪军.ANSYS 工程分析进阶实例[M].中国水利水电出版社,2006.
    [32]罗传信.海洋基平台[M].天津大学出版社,1988.
    [33]卢绪庆,张洁,叶华文.南宁大桥锚索地垄有限元仿真分析[J].四川建筑,2007(8):73-74
    [34]李克钏.基础工程(第二版)[M].北京:中国铁道出版社.
    [35]海上固定平台规划、设计和建造的推荐作法—工作应力设计法 SY/T10020-2004.中国石油工业出版社.
    [36]固定式海上平台设计施工技术规范.美国石油学会制定.
    [37]孙容.考虑空间效应的土结构共同作用的分析[D].浙江大学,2003.
    [38]胡瑞华.近海钢质基平台[M].北京:海洋出版社,1989年5月.
    [39]Design of Offshore Wind Turbine Structures,Offshore Standard DNV-OS-J101.
    [40]Specification for Structural Steel Buildings,ANSI/AISC 360-05,2005,09.
    [41]梁庆海,周国强,韩东颖.JJ454_49_H 型海洋动态井架动力特性分析[J].石油矿场机械,2007.
    [42]王新敏.ANSYS 工程结构数值分析[M].北京-人民交通出版社,2007.
    [43]李声艳.大型风力发电机组的动力学特性计算分析[D].天津工业大学,2007.
    [44]郭健.风力发电机整机性能评估与载荷计算的研究[D],大连理工大学,2003.
    [45]叶先磊,史亚杰.ANSYS 工程分析软件应用实例[M].清华大学出版社,2003.
    [46]张安哥.疲劳、断裂与损伤[M].西南交通大学出版社,2006-2-1.
    [47]俞剑勇,张艳芳,王铭飞.海上风力发电工程钢结构疲劳分析[J].钢结构,2008,23.
    [48]C.M.Sonsino.Fatigue testing under variable amplitude loading[J].International Journal of Fatigue,2007,29:1080-1089.
    [49]林毅锋,李健英,沈达等.东海大桥海上风电场风机地基基础特性及设计[J].上海电力,2007(2):153-157.
    [50]王伟,莫骄,冀珍英.钢结构设计数据资料——一本全[M].中国建材工业出版社,2007.
    [51]DNV-RP-C203.Fatigue Design of Offshore Steel Structures.DNV,AUG,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700