用户名: 密码: 验证码:
土—结构动力相互作用非线性分析及基于SSI效应的结构隔震研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展、社会财富和人口的高度集中,地震灾害对人类社会所造成的损失越来越大。因此,基于性能的抗震设计日益得到重视,而这首先就要求对于结构的地震反应分析更为精确。正因为如此,广大研究者和工程技术人员在实践中越来越意识到将上部结构和基础考虑作为一相互作用的整体来进行设计的必要性和优越性。在土—结构动力相互作用问题中,土体的强烈非线性特性及其影响是其中的核心之一。而基于相互作用的机理进行上部结构的隔振研究是这个研究方向上的创新性思路,也是又一项具有工程实践意义的研究课题。
     本文围绕地基土体的非线性动力特性及其合适的本构模型构建这一问题开展工作,着重考察了地基土体非线性动力特性的变化规律及影响因素、土体非线性对于自由场和土—结构体系地震动力反应的影响及其机理。同时,在这其中通过试验研究了土—结构界面接触非线性特性、土—结构体系上下部刚度比变化对SSI效应的影响等问题,为相互作用问题的理论分析和实践应用提供参考。最后,根据相互作用机理分析的启示,提出了坚硬场地上刚性结构基底软土夹层隔震思路。全文的主要工作和创新如下:
     1.广泛阅读本领域的相关文献,总结了国内外开展土—结构动力相互作用研究的现状及其发展水平,评述了已有研究工作成果的局限性及优缺点,提出了本文针对土—结构动力相互作用问题研究的思路。
     2.对地基土体的非线性动力特性进行试验研究。通过对粉质黏土的循环单剪试验,研究了土体的应变累积特性以及土体加载历史、场地固结压力对于土非线性动剪模量和阻尼比的影响。试验验证了由小到大的分级循环加载试验方法的可行性,同时,在试验现象机理分析的基础上提出了能够考虑加载历史和固结压力影响的黏土动力特性模型。
     3.提出了基于阻尼的土体真非线性滞回模型,并且将这一模型推广至弹塑性领域,建立了基于阻尼的土体边界面模型。通过循环单剪试验,验证了所提本构模型的可行性与优越性。
     4.开发了自由场地震反应非线性分析程序。该程序应用自主提出的土动力特性模型和土体动力滞回本构模型,对自由场的非线性地震反应问题进行了深入分析,考察了自由场地底部边界条件、土体本构模型、土动力特性以及软弱夹层等因素对自由场非线性反应的影响。
     5.对粉质黏土与混凝土界面的界面接触力学性能进行试验研究,考查了界面粗糙度、界面法向压力、薄层单元厚度、加载形式等因素对界面单元应力应变关系的影响。根据试验结果,提出了改进的薄层界面接触单元本构模型。
     6.针对上下部结构刚度比对土—结构动力相互作用效应的影响这一问题进行了大比例模型试验,根据试验结果,对规范中关于考虑SSI效应的结构附加周期的确定提出了有益的建议。
     7.在通用有限元软件MSC.Marc中建立整体有限元模型,应用自主提出的基于阻尼的边界面本构模型和改进的土—结构界面本构模型,深入分析了土体非线性对结构地震反应的影响及其机理。针对一具体场地,考察了土体非线性对结构地震反应谱的影响。
     8.提出了较坚硬场地上刚性结构的基底软土夹层隔震思想,通过实例研究了软土夹层隔震的效果及其影响因素。最后,对人工软土材料的研究提出了建议与展望。
Along with the development of the human society, and with the centralizing of fortune and population ,the damage caused by earthquake disaster to our society goes up greatly, and so, the importance of performance based seismic design has been more widely recognized. Performance based design requires, however, more accurate analyses, including all potential important factors, in order to predict the expected level of damage associated with a given level of earthquake. Just because of this, the majority of researchers and technical staff working in practice have recongnized the the necessity and advantages to design the structures based on the analysis with the soil-foundation-upper structure considered in an overall system. In the soil-structure interaction system, the strong non-linear soil characteristics and their impact on SSI is one of the core problems. And in further, the idea of isolating the upper structures based on the SSI mechanism is an innovative idea, which deserves significant practical studying.
     This article focuses on the nonlinear dynamic characteristics of field soils as well as its suitable constitutive model. Keystones of the research are soil nonlinear dynamic properties and its impact factors, impact of non-linear soil behavior on both free field seismic reponse and the soil - structure system dynamic response during earthquakes and the mechanism of these impacts. Around these focuses, experiments are adopted to study the features of the soil-structure interface behavior and the impact of relative rigidity of the upper structure and the foundation on the SSI effect of soil-structure system, for the purpose of providing reference for both further theory research and practical applications. Finally, according to the inspiration of SSI analysis, the idea of isolating the upper structure with artifical soft interlayer between the shallow foundation of the rigid upper structure and the relative rigid field is advanced. The main work and innovation of this text are as follows:
     1. With the summarization of lots of interrelated references, the studying actuality and developing level which about soil-structure interaction are presented. The limitations、advantages and disadvantages existing in present researches are discussed too. Then the basic theory way and analyzing frame route related to soil structure interaction in this paper is introduced.
     2. With the use of cyclic simple shear testing, the nonlinear dynamic properties of a certain kind of silty clay are probed. The feasibility of graded cyclic loading test method with the loading amplitude increase gradully on a soil specimen to get the dynamic properties of soil is validated by the experimental research. Also the effect of accumulated volume strains which caused by the cyclic loading history on the dynamic properties of soil and the effects of consolidation pressure which usually caused by the deadweight of the field soil on the dynamic properties of soil are researched respectively, and accordingly an accumulative strain strengthened dynamic model and an consolidation pressure relative dynamic model are brought out in the further study.
     3. A new damping based real nonlinear hysteretic model is advised, and further this model is extended into the elasto-plastic domain so that a damping based boundary model is constituted. With the Comparation of the model numerical realization and the cyclic simple shear testing results of a real soil, it is proved that the soil nonlinear model carried out in this paper is ascendant and proper.
     4. A new free field seimic reponse analysis program is build up, and then with the application of the dynamic property model and constitutive model advised previously, the effect of soil nonlinear behavior on the free field seismic response is researched, in which the influence of a series factors such as the bottom boundary condition, soil constitutive model, and the existing of soft interlayer, etc, on the free field seismic reponse is dicussed.
     5. A series cyclic simple shear tests aimed to discuss the nonlinear shear stress-strain relations of the interface between a silty clay and concrete are carried out. In these tests, several factors which may have effects on the interface behavior are investigated, such as the roughness of the interface, the vertical pressure on the interface, the thickness of the soil specimen beside the interface, and the shearing with unilateral or bidirectional loading. Based on the test result, a modified constitutive model for the finit thickness thin intereface element is suggested.
     6. Large scale model experiments are carried out in order to survey the effects of rigidity ratio between the upper structure and the foundational structure on the soil-structure interaction effects for the fisrt time. Based on the experimental reslults, benificial suggestion is brought forward for the code on how to decide the additional period of structure as the SSI effects taking in considerated.
     7. With proper finit element model of the SSI system builded up in the general software MSC.Marc, and with the use of the damping based boundary soil contstitutive model and the modified finit thickness thin interface elemental constitutive model, the effects of soil nonlinear behavior on the structural seismic response as well as the mechanisms of these effects are analized to a deep extend, and the structural response spectrum with the soil nonlinearity in consideration is carried out for the purpose of practical application.
     8. An innovate idea that using the soft interlayer between the rigid field and rigid shallow foundation as the base isolation material is brought out, and analysis case is carried out to validate the isolation effects of soft interlayer as well as the impact of some factors on the isolation effects. Lastly, advice and prospect on the artifical soft soil research is given.
引文
[1] 建筑抗震设计规范(GB 50011-2001). 北京: 中国建筑工业出版社, 2001:34-35
    [2] Veletsos A S, Meek J W. Dynamic behaviour of building-foundation system[J]. Earthquake Engineering and Structure Dynamic, 1974, 3(2): 121-138
    [3] Lysmer J. Richart F E. Dynamic response of footings to vertical loading[J]. Journal of Soil Mechnical Foundation Division, ASCE, 1966, 92(1):65-91
    [4] Carrier W D, Christian J T. Rigid circular plate resting on a non- homogeneous elastic halfspace[J]. Geotechnique, 1973, 23(1):67-84
    [5] Wolf J P,Somanini. Approximate Dynamic model of enbedded foundation in time domain[J]. Earthquake Engineering and Structure Dynamic,1986,14(6):683-703
    [6] F.Aboul-Ella, M.Novak. Dynamic response of pile-supported frame foundation[J]. Journal of the Engineering Mechanics Division, ASCE, 1980, 106(6): 1215-1232
    [7] S.Gupta, J.Penzien, T.W.Lin, C.S.Yen. Three-dimension hybrid modelling of soil-structure interaction[J]. Earthquake Engineering and Structure Dynamic, 1982, 10(1): 69-87
    [8] J.E.Luco, H.L.Wong. Seismic response of foundations embedded in a layered half-space[J]. Earthquake Engineering and Structure Dynamic, 1987, 15(3): 233- 247
    [9] A.Mita, J.E.Luco. Dynamic response of a square foundation embedded in a elastic half-space[J]. Soil Dynamic and Earthquake Engineering, 1989,8(2):54-67
    [10] A.Mita, J.E.Luco. Impedance functions and input motions for embedded square foundations[J].Journal of Geotechnical Engineering, ASCE,1989,115(4):491-500
    
    [11] Ke Fan, G.Gazetas, A.Kaynia, E.Kausel, S.Ahmad. Kinematic seismic response of single piles and pile groups[J]. Journal of Geotechnical Engineering, ASCE, 1991, 117(12):1860-1879
    
    [12] T.Tzong, J.Penzien. Hybrid modeling of a single-layer half-space system in soil-structure interaction[J]. Earthquake Engineering and Structure Dynamic, 1986, 14(5): 517-530
    
    [13] E.Richart, J.R.Hall, R.D.Woods. Vibration of Soils and Foundation[M]. Englewood Cliffs. NJ., 1970: 1-105
    [14] M.G.Zadeh, F.Chapel. Frequency-independent impedances of soil-structure systems in horizontal and rocking modes[J]. Earthquake Engineering and Structure Dynamic, 1983,11 (5):523-540
    [15] W.Y.Jean, T.W.Lin, J.Penzien. System parameters of soil foundations for time domain dynamic analysis[J]. Earthquake Engineering and Structure Dynamic, 1990, 19(5): 541-553
    [16] W.H.Wu, H.A.Smith. Efficient Modal Analysis for structures with soil-structure interaction[J]. Earthquake Engineering and Structure Dynamic, 1995, 24(3): 283-299
    [17] J.Guin, P.K.Banerjee. Coupled soil-pile-structure interaction analysis under seismic excitation[J]. Journal of Structural Engineering, 1998,124(4):434-444
    [18] J.P.Stewart, G.L.Fenves, R.B.Seed. Seismic soil-structure interaction in buildings.I: Analytical method[J]. Journal of Geotechnicaal and Geoenvironmental Engineering, ASCE,1999,125(1):26-37
    [19] J.P.Stewart,G.L.Fenves, R.B.Seed. Seismic soil-structure interaction in buildings II: Empirical findings[J].Journal of Geotechnicaal and Geoenvironmental Engineering, ASCE,1999,125(1):38-48
    [20] K.J.Ahn, P.L.Gould. Interactive Base-isolation foundation system:I, Finite element formulation[J]. Journal of the Engineering Mechanics, ASCE,1992, 118(10):2048-2058
    [21] K.J.Ahn,P.L.Gould. Interactive Base-isolation foundation system:I, Finite element formulation[J]. Journal of the Engineering Mechanics, ASCE, 1992, 118(10): 2059-2071
    [22] Y.Hayashi, H.Katukura. Effective time-domain soil-structure interaction analysis based on FFT algorithm with causality condition[J]. Earthquake Engineering and Structure Dynamic, 1990,19(6):693-708
    
    [23] G.Darbre. Seismic analysis of non-linearly base-isolated soil-structure interacting reactor building by way of the hybrid frequency-time-domain procedure[J]. Earthquake Engineering and Structure Dynamic,1990,19(7):725-738
    [24] N.Makris, D.Badoni, E.Delis, G.Gazetas. Prediction of observed bridge response with soil-pile-structure interaction[J]. Journal of Structural Engineering, 1994, 120 (10): 2992-3011
    [25] T.Nakamuta, I.Takewaki. Sequential stiffness design for seismic drift ranges of a shear building-pile-soil system[J]. Earthquake Engineering and Structure Dynamic, 1996,25(12): 1405-1420
    [26] I.Takewaki. Equivalent linear ductility design of soil-structure interaction systems[J]. Engineering Structure,1998,20(8):655-662
    [27] A.M.Budek, M.J.N.Priestley, G.Benzoni. Inelastic seismic response of bridge drilled-shaft RC pile/columns[J]. Journal of Structural Engineering, ASCE,2000, 126(4):510-517
    [28] B.C.Lin, Y.L.Tsaur. The seismic response of structure-visoelastic foundation systems in time domain and power spectra[J]. Engineering Structure, 1997, 19(12): 977-987
    [29] Y.X.Cai, P.L.Gould, C.S.Desai. Nonlinear analysis of 3D seismic interaction of soil-pile-structure systems and application[J]. Engineering Structures, 2000, 22(2): 191-199
    [30] B.K. Maheshwaria, K.Z. Trumana, M.H. El Naggarb, P.L. Gould. Three-dimensional nonlinear analysis for seismic soil-pile-structure interaction[J], Soil Dynamics and Earthquake Engineering, 2004,24(2):343-356
    [31] Amir M. Halabian, M. Hesham El Naggar. Effect of non-linear soil-structure interaction on seismic response of tall slender structures[J]. Soil Dynamics and Earthquake Engineering, 2002, 24(4): 639-658
    [32] Yong-Seok Kim, Jose M. Roesset, Hon.M. Effect of Nonlinear Soil Behavior on Inelastic Seismic Response of a Structure[J]. International Journal of Geomechanics, ASCE, 2004, 4(2): 104-114
    [33] K. T. Chau, X. Yang. Nonlinear Interaction of Soil-Pile in Horizontal Vibration[J]. Journal of Engineering Mechanics, ASCE, 2005, 131(8) : 847- 858
    [34] K.J.Ahn, P.L.Gould. Interactive Base-isolation foundation system: I. Finite element formulation[J]. Journal of the Engineering Mechanics, ASCE, 1992, 118(10):2048-2058
    [35] K.J.Ahn, P.L.Gould. Interactive Base-isolation foundation system: II. Parametric Study [J]. Journal of the Engineering Mechanics, ASCE, 1992, 118(10):2059-2071
    [36] Izuru Takewaki. Bound of earthquake input energy to soil-structure interaction systems[J], Soil Dynamics and Earthquake Engineering , 2005, 25(7) :741-752
    [37] Ertugrul Taciroglu, ChangSoon Rha, John W. Wallace. A Robust Macroelement Model for Soil-Pile Interaction under Cyclic Loads[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2006, 132(10): 1304-1314
    [38] Shi-Shuenn Chen, Jun-Yang Shi. Simplified model for torsional foundation vibrations[J]. Soil Dynamics and Earthquake Engineering, 2007,27(3): 250-258
    [39] M. I. Todorovska, Y. A. Rjoub. Plain strain soil-structure interaction model for a building supported by a circular foundation embedded in a poroelastic half-space[J].Soil Dynamics and Earthquake Engineering,2006,26(6):694-707
    [40]Maria I.Todorovska,Yousef A1 Rjoub.Effects of rainfall on soil-structure system frequency:Examples based on poroelasticity and a comparison with full-scale measurements[J].Soil Dynamics and Earthquake Engineering,2006,26(6):708-717
    [41]D.L.Karabalisa,C.-F.D.Huangb.Vibrations of square and circular foundations with concentric openings on elastic half space[J].Soil Dynamics and Earthquake Engineering,2005,25(10):951-965
    [42]Erdal Safak.Time-domain representation of frequency-dependent foundation impedance functions[J].Soil Dynamics and Earthquake Engineering,2006,26(1):65-70
    [43]俞载道,傅公康.桩-土-高层框剪结构动力相互作用分析[J].同济大学学报,1984,12(1):66-79
    [44]俞载道,王荣昌,应稼年.地基土与非线性多层剪切型结构相互作用体系的动力分析[J].同济大学学报,1986,14(3):271-280
    [45]应稼年,王荣昌,俞载道.地基土-桩基础-核电站辅助厂房结构相互作用体系的地震响应分析[J].地震工程与工程振动,1995,15(1):44-52
    [46]王开顺.地基阻抗与结构地震反应[J].地震工程与工程振动,1985,5(2):87-102
    [47]王开顺,王有为,李林友.土与结构相互作用地震反应研究及实用计算[J].建筑结构学报,1986,7(2):64-76
    [48]王有为,王开顺.建筑物-桩-土相互作用地震反应分析的研究[J].建筑结构学报,1985,5(3):64-73
    [49]范敏,解明雨,邬瑞锋.土-桩-结构相互作用体系的非线性地震反应分析[J].地震工程与工程振动,1985,5(3):6-12
    [50]刘季,阎维明.土-高层建筑、高耸结构相互作用地震反应分析[J].哈尔滨建筑工程学院学报,1988,2l(4):11-28
    [51]王复明,林皋.粘弹性非均质地基的动力柔度系数[J].土木工程学报,1990,23(1):54-64
    [52]要明伦,李大成,黄黎忠.箱腿深卧式海洋平台-土的动力相互作用[J].岩土工程学报,1993,15(2):40-45
    [53]林皋,栾茂田,陈怀海.土-结构相互作用对高层建筑非线性地震反应的影响[J].土木工程学报,1993,26(4):1-13
    [54]赵彤,于晓黎.高层建筑-基础-土体耦合系统的动力分析[J].地震工程与 工程振动,1991,11(3):67-75
    [55]黄杰民,庄潮鹏.桩基高层结构体系地震响应的整体分析方法[J].建筑结构学报,1994,15(5):68-78
    [56]蒯行成,沈蒲生,陈军.埋置基础近似动力模型及其应用[J].振动工程学报,1997,10(1):506-509
    [57]杨允表,石洞,宋启根.核心单筒式高层悬挂结构考虑土-结构相互作用的动力分析[J].地震工程与工程振动,1999,19(2):64-70
    [58]廖雄华,周健,张克绪,李锡燮.广义位移法在土-结构相互作用问题分析中的应用[J].岩土工程学报,2001,23(6):672-676
    [59]王霓,严士超.土-群桩-结构系统动力特性及相互作用地震反应分析[J].建筑结构学报,1990,11(3):61-80
    [60]楼梦麟,吴京宁.桩基-结构体系的地震响应分析[J].土木工程学报,1999,32(5):56-61
    [61]熊辉.层状场域内上、下部结构动力相互作用分析及其优化设计:[湖南大学博士学位论文].湖南长沙:湖南大学,2003
    [62]王海东.地基-桩(筏)-上部结构动力相互作用分析与大比例模型试验研究:[湖南大学博士学位论文].湖南长沙:湖南大学,2005
    [63]卢华喜.成层地基-桩基-上部结构动力相互作用理论分析与试验研究:[湖南大学博士学位论文].湖南长沙:湖南大学,2006
    [64]Wolf.J.P.Dynamic Soil-Structure Interaction[M].Prentice-Hall.Inc.:Englewood Cliffs,N.J.,1985
    [65]Wolf.J.P.Dynamic Soil-Structure Interaction in time domain[M].Prentice-Hall.Inc:Englewood Cliffs,N.J.,1988
    [66]朱合华,陈清军,杨林德.边界元法及其在岩土工程中的应用[M].上海:同济大学出版社,1997:35-144
    [67]Z.C.Han,Z.C.Bin.Coupling method of finite and infinite elements for strip foundation wave problems[J].Earthquake Engineering and Structure Dynamic,1987,15(7):839-851
    [68]H.R.Yerli,B.Temel,E.Kiral.Transient infinite elements for 2D soil-structure interaction analysis[J].Journal of Geotechnicaal and Geoenvironmental Engineering,A S CE,1998,124(10):976-988
    [69]曹志远,瞿桐.计入无限空间连续介质效应的地下结构地震分析[J].同济大学学报,1987,15(2):177-188
    [70]廖振鹏.近场波动的有限元模拟[J].地震工程与工程振动,1984,4(2):1-14
    [71]丁海平,廖振鹏,周正华.土-结构相互作用通用程序的改进[J].地震工程与 工程振动,1999,19(2):51-55
    [72]丁海平,廖振鹏.线性土-结构动力相互作用时域-频域联合解法[J].地震学报,2001,23(4):413-419
    [73]熊建国.土-结构动力相互作用问题的新进展(Ⅰ)[J].世界地震工程,1992,8(2):22-29
    [74]Y.C.Han,M.Novak.Dynamic behaviour of single piles under strong harmonic excitation[J].Journal of Canadian Geotechnical,1988,25(3):523-534
    [75]H.El-Marsafawi,Y.C.Han,M.Novak.Dynamic experiments on two pile groups[J].Journal of Geotechnical Engineering,ASCE,1992,118(4):576-592
    [76]R.W.Boulanger,C.J.Curras,D.W.Wilson.Seismic soil-pile-structure interaction experiments and analysis[J].Journal of Geotechnicaal and Geoenvironmental Engineering,1999,125(9):750-759
    [77]C.J.Curras,R.W.Boulanger,B.L.Kutter,Dynamic experiments and analysis of a pile-group-supported structure[J].Journal of Geotechnicaal and Geoenvironmental Engineering,ASCE,2001,127(7):585-596
    [78]K.Toki,T.Sato,J.Kiyono,etc.Hybrid experiments on non-linear earthquake-induced soil-structure interaction[J].Earthquake Engineering and Structure Dynamic,1990,19(6):709-723
    [79]K.Toki,T.Sato,J.Kiyono,N.K.Garmroudi,S.Emi,M.Yoshikawa.Hybrid experiments on non-linear earthquake-induced soil-structure interaction[J].Earthquake Engineering and Structure Dynamic,1990,20(8):895-909
    [80]N.Makris,D.Badoni,E.Delis,G.Gazetas.Prediction of observed bridge response with soil-pile-structure interaction[J].Journal of Structural Engineering,ASCE,1994,120(10):2992-3011
    [81]H.Dou,P.M.Byrne.Dynamic response of single piles and soil-pile interaction[J].Journal of Canadian Geotechnical,1996,33(1):80-96
    [82]Shintaro Yaoa,Koichi Kobayashib,Nozomu Yoshidac,Hiroshi Matsuo.Interactive behavior of soil-pile-superstructure system in transient state to liquefaction by means of large shake table tests[J].Soil Dynamics and Earthquake Engineering,2004,24(4):397-409
    [83]Kohji Tokimatsua,Hiroko Suzukia,Masayoshi Sato.Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation[J].Soil Dynamics and Earthquake Engineering,2005,25(7):753-762
    [84]吕西林,陈跃庆,陈波,等.结构-地基相互作用体系的振动台模型试验研究[J].地震工程与工程振动,2000,19(4):20-29
    [85]陈跃庆,吕西林,李培振.分层土-基础-高层框架结构相互作用体系振动台模型试验研究[J].地震工程与工程振动,2001,21(3):104-112
    [86]王海东,尚守平,卢华喜,等.场地土动剪模量的试验对比研究[J].湖南大学学报,2005,32(3):33-37
    [87]尚守平,卢华喜,王海东,等.大比例模型结构-桩-土动力相互作用试验研究与理论分析[J].工程力学.2006,23(SⅡ):155-166
    [88]尚守平,朱志辉,涂文戈,等.土-箱形基础-结构动力相互作用的模态试验分析[J].湖南大学学报,2004,31(5):71-76
    [89]Ke Fan,G.Gazetas,A.Kaynia,E.Kausel,S.Ahmad.Kinematic seismic response of single piles and pile groups[J].Journal of Geotechnical Engineering,ASCE,1991,117(12):1860-1879
    [90]龚晓南.21世纪岩土工程发展展望[J].岩土工程学报,2000,22(2):238-242
    [91]Kelly J M.Aseismic base isolation:review and bibliography[J].Soil Dynamics and Earthquake Engineering,1986,5(4):202-216
    [92]Skinner R.I.工程隔震概论[M].北京:地震出版社,1996
    [93]Constantinou M C,Kneifati M.Dynamics of soil-base-isolationed structure systems[J].Journal of Structural Engineering,ASCE,1988,114(1):211-221
    [94]Novak M,Hendreson P.Base-isolated building with soil-structure interaction[J].Earthquake Engineering and Structural Dynamics,1989,18(6),751-765
    [95]邹立华,赵人达,赵建昌.桩-土-隔震结构相互作用地震响应分析[J].岩土工程学报,2004,26(6):782-786
    [96]李海岭,葛修润.土-结构相互作用对基础隔震体系的影响[J].土木工程学报,2001,34(4):83-87
    [97]王阿萍,姚谦峰.土与隔震结构共同作用的随机地震反应分析[J].北京交通大学学报,2007,31(4):40-44
    [98]Pender,M J.Nonlinear cyclic soil-structure interaction[J].Pacific Conference on Earthquake Engineering,Wairakei,New Zealand,1987,3:83-93
    [99]H.H.Tsang.Seismic isolation by rubber-soil mixtures for developing countries[J].Earthquake Engineering and Structural Dynamics,2008,37(2):283-303
    [100]谢定义,土动力学[M].西安:西安交通大学出版社,1988
    [101]Hardin B O,Drenvich V P.Shear modulus and damping in soils:design equation and curves[J].Journal of Soil Mechanics and Foundation Division,ASCE,1972,98(7):667-692
    [102]Martin P P,Seed H B.One-dimensional dynamic ground response analysis[J].Journal of the Geotechnical Engineering Division,ASCE,1982,108(7):935-954
    [103] Martin GR, Finn WD, Seed H B. Fundamentals for liquefaction under cyclic loading[J], Journal of Geotechnical engineering division, ASCE, 1975, 101 (GTS): 423- 438
    [104] Drnevich VP, Richart FE. Dynamic prestraining of dry sand[J]. Journal of Soil Mechanics and Foundation Division, ASCE, 1970, 96(SM2): 453- 467
    [105] Shen CK, Li XS, Gu YZ. Microcomputer based free torsional vibration test[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(8): 971-986
    [106] Lo Presti DCF,Pallara O.,Lancellotta R., etc, Monotonic and cyclic loading behavior of two sands at small strains[J]. Geotechnical Testing Journal, 1993,16(4):409-424
    [107] T.Wichtmann, Th. Triantafyllidis. Influence of a cyclic and dynamic loading history on dynamic properties of dry sand,part I:cyclic and dynamic torsional prestraining[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(2): 127-147
    [108] Derendelli, M.B., A New Family of Normalized Modulus Reduction and Material Damping Curves [PhD Dissertation of University of Texax]. Austin: University of Texax, 2001: 1-362
    [109] Roblee, C, and Chiou, B. A proposed geoindex model for design selection of non-linear properties for site response analysis. Proc, NSF/PEER Int. Workshop on Uncertainties in Nonlinear Soil Properties and their Impact on Modeling Dynamic Soil Response, University of California at Berkeley, Berkeley, California, 2004
    [110] Jianfeng Zhang, Ronald D. Andrus, C. Hsein Juang. Normalized Shear Modulus and Material Damping Ratio Relationships[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(4): 453-464
    [111] Larid, J.P., Stokoe, K.H. Dynamic properties of remolded and undisturbed soil samples tested at high confining pressure. Geotechnical Engineering Report. No. GR93-6, 1993
    [112] Leo Matesic, Mladen Vucetic. Strain-Rate Effect on Soil Secant Shear Modulus at Small Cyclic Strains[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2003, 129(6):536-549
    [113] Timothy M. Wehling, Ross W. Boulanger, Rajendram Arulnahtan. Nonlinear Dynamic Properties of a Fibrous Organic Soil[J]. Journal of geotechnical and geoenvironmental engineering, ASCE,2003, 129(10):929-939
    [114] Vucetic, M.,Dobry, R. Effect of soil plasticity on cyclic response[J]. Journal of Geotechnical Engineering,ASCE,117(1 ):89-117
    [115]陈国兴,谢君斐,张克绪.土的动模量和阻尼比的经验估计[J].地震工程与工程振动,1995,15(1):73-84
    [116]Woods R D.土壤动力性能的测定[A].地震工程与土动力问题译文集[C].北京:地震出版社,1985
    [117]谢君斐,石兆吉.原状饱和粘土动力性能的试验研究[A].地震工程研究报告集(3)[C].北京:科学出版社,1977
    [118]市原松平.地震时土的动力特性[A].地基与基础译文集(4)[C].北京:中国建筑工业出版社,1980
    [119]王昆耀,常亚平,陈宁.往返荷载下粗粒土的残余变形特性[J].土木工程学报,2000,33(3):48-53
    [120]孔宪京,贾革续,等.微小应变下堆石料的变形特性[J].岩土工程学报,2001,23(1):32-37
    [121]Martin,Finn,H.B.Seed.Fundamentals for liquefaction under cyclic loading[J].Journal of Geotechnical engineering division,ASCE,1975,101(GT5):423-438
    [122]T.Paulay,M.J.N.Priestley,钢筋混凝土和砌体结构的抗震设计[M].戴瑞同等译.北京:中国建筑工业出版社,1999:29-39
    [123]石兆吉.土壤的动剪切模量和阻尼比[A].地震小区划(理论与实践)[C].北京:地震出版社.1989
    [124]顾尧章.海底粘土的剪切模量[J].岩土工程学报,1995,17(2):30-35
    [125]陈国兴,谢君斐,张克绪.土的动模量和阻尼比的经验估计[J].地震工程与工程振动,1995,15(1):73-74
    [126]袁晓铭,孙锐,孙静,等.常规土类动剪切模量比和阻尼比试验研究[J].地震工程与工程振动,2000,20(4):133-139
    [127]栾茂田,林皋.场地地震反应一维非线性计算模型[J].工程力学,1992,9(1):94-103
    [128]G.Muravskii,Sam Frydman.Site response analysis using a nonlinear hysteretic model[J].Soil dynamics and Earthquake Engineering,1998,17(3):227-238
    [129]李小军,廖振鹏.土应力应变关系的粘-弹-塑模型[J].地震工程与工程振动,1989,9(3):65-72
    [130]Ishihara,K.Evolution of soil properties for use in earthquake response analysis.Zurich:Proceeding International Symposium of Numerical Models in Geomechanics,1982:237-259
    [131]Robert M.Pyke.Nonlinear Soil Models for Irregular Cyclic Loadings[J].Journal of the Geotechnical Engineering Division,1979,105(6):715-726
    [132]Y.Gyoden,K.Mizuhata.等.一个新的土模型与土的动力性质[A],岩土地震工程与土动力学新进展国际会议论文选译[C],北京:地震出版社,1982:55-64
    [133]沈珠江.一个计算砂土液化变形的等价粘弹性模型[A].中国土木工程学会力学与基础工程学会主编.第四届全国土力学及基础工程学术会议论文集[C].北京:建筑工业出版社,1986:199-207
    [134]Mroz.Z.On the description of anisotropic hardening[J].Journal of the Mechanics and Physics of Solids,1967,15(3):163- 175
    [135]Provest JH,A simple plastic theory for frictional cohenionless soils[J].Soil Dynamic and Earthquake Engeering,1985,4(1):9-17
    [136]Mroz Z,Norris VA,Zienkiewicz O C.An anisotropic critical state model for soils subjected to cyclic loading[J].Geotechnique,1981,34(4):451-470
    [137]Dafalias YF,Herrmann L R.A boundary surface soil plasticity model[A].PndeGN,Zienkiewicz O C.Proc Int.Symp Solids under cyclic Trans load[C].Rotterdam:Balkema Publ,1980:335-356
    [138]Krieg R D.A practical two surface plastic theory[J].Journal of Applied Mechanics,ASME,1975,42(5):641-646
    [139]Hashiguchi K.Subloading Surface Model in Unconventional Plasticity[J].International Journal of Solids Structure,1989,25(8):917-945
    [140]Hashiguchi K.Mechanical requirement and structures of cyclic plasticity[J].International Journal of Plasticity.1993,9(6):721-748
    [141]Hashiguchi K.,Chen Z P.Elastoplastic constitutive equation of soils with the subloading surface and rotational hardening[J].International Journal for Numerical and Analytical Methods,1998,22(2):197-227
    [142]Hashiguchi K.,Okayasu T.Time-dependent elastoplastic constitutive equation based on the subloading surface model and its applications to soils[J].Journal of the Japanese Geotechnical Society of Soils and Foundations,2000,40(4):19-36
    [143]Hashiguchi K.Fundamentals in constitutive equation:continuity and smoothness conditions and loading criterion[J].Soils and Foundations,2000,40(4):155-161
    [144]Chowdhury EQ,Nakai T,Tawada M,et al.A model for clay using modified stress under various loading conditions with the application of subloading concept[J].Soils and Foundations,1999,39(6):103-116
    [145]Asaka A,Nakano M,Noda T.Superloading yield surface concept for highly structured soil behavior[J].Soils and Foundations,2000,40(2):99-110
    [146]王志良,王余庆,韩清宇.不规则循环剪切荷载作用下土的粘弹塑性模型[J].岩土工程学报,1980,2(3):10-19
    [147]郑大同,王天龙.土的滞回特性及其模型化[A].中国土木工程学会第四界土力学及基础工程学术会议论文选集[C],北京:中国建筑工业出版社,1986:302-308
    [148]栾茂田.土动力非线性分析中的变参数Ramberg-Osgood本构模型[J].地震工程与工程振动,1992,12(2):69-78
    [149]G.Muravskii.Application of experimental results on cyclic deformation of soils to seismic response analysis[J].Soil dynamics and Earthquake Engineering,2001,21(6):661-669
    [150]Tao Li,Helmut Meissner.Two surface plasticity model for cyclic undrained behavior of clays[J].Journal of geotechnical and geoenvironmental engineering,ASCE,2002,128(7):613-626
    [151]李涛,H.Meissner.循环荷载作用下饱和粘性土的弹塑性双面模型[J].土木工程学报,2006,39(1):92-97
    [152]Francisco-Javier Montans.Bounding surface plasticity model with extended Masing behavior[J].Computer methods in applied mechanics and engineering,2000,182(2):135-162
    [153]Yong R N,Mohamed A M.Experimental study on yielding and failure of an anisotropic clay[J].Mechanics of Materials,1984,121(3):301-310
    [154]Desai C S.Siriwardane H J.Constitutive Laws for Engineering Materials[M].Prentice-Hall N J:Englewood Cliffs,1983
    [155]Potyondy JG.Skin friction between various soils and construction material[J].Geotechnique,1961,11(4):339-353
    [156]Desai C S,Drumm E C,Zaman M M.Cyclic testing and modeling interfaces[J].Journal of Geotechnical Engineering Division,ASCE,1985,111(6):793-815
    [157]Brandt J R.Behavior of soil-concrete interface[Ph D Thesis of University of Alberta].Edmonton Alberta Canada:University of Alberta,1985
    [158]殷宗泽,朱泌,许国华.土与结构材料接触面的变形及数值模拟[J].岩土工程学报,1994,16(3):14-22
    [159]Yin Zong-Ze,Zhu Hong,Xu Guo-Hua.A study of deformation in the interface between soil and concrete[J].Computers and Geotechnics,1995,17(1):75-92
    [160]胡黎明,濮家骝.土与结构接触面物理力学特性试验研究[J].岩土工程学报,2001,23(4):431-435
    [161]Kishiida H.,Uesugi M.Test of interface between sand and steel in the simple shear apparatus[J].Journal of Geotechnique,1987,37(1):45-52
    [162]Vucetic M.Specimen size effect in simple shear test[J].Journal of Geotechnical Engineering Division,ASCE,1982,108(12):1567-1585
    [163]Desai CS.,Ma Youzhi.Modeling of joints and interfaces using the disturbed-stated concept[J].International Journal for Numerical and Analytical Methods in Geomechanic,1992,16(l):623-653
    [164]吴军帅,姜朴.土与混凝土接触面的动力剪切特性明[J].岩土工程学报,1992,14(2):61-66
    [165]Liu Sihong,Lu Tinghao.Microscopic shear mechanism of granular materials in simple shear by DEM.Chinese Journal of Geotechnical Engineering,2000,22(5):608-611
    [166]高俊合,于海学,赵维炳.土与混凝土接触面特性的大型单剪试验研究及数值模拟[J].土木工程学报,2000,33(4):42-46
    [167]Uesugi M,Kishida H.Frictional resistance at yield between dry sand and mild steel[J].Soils and Foundations,1986:,26(4):139-149
    [168]张嘎,张建民.粗粒土与结构接触面单调力学特性的试验研究[J].岩土工程学报,2004,26(1):21-25
    [169]张嘎,张建民.循环荷载作用下粗粒土与结构接触面变形特性的试验研究[J].岩土工程学报,2004,26(2):254-258
    [170]王伟.基于能量耗散原理的土与结构接触面模型研究及应用:[河海大学博士学位论文].南京:河海大学,2006
    [171]Clough G.W,Ducan J.M.Finit element analysis of retaining wall behavior[J].Journal of the soil mechanics and foundation division,ASCE,1971(SM12):1657-1672
    [172]M.Boulon.Basic features of soil structure interface behaviour[J].Computers and Geotechnics,1989,14(7):115-131
    [173]I.Shahrour,F.Rezaie.An Elastoplastic Constitutive Relation for the Soil-Structure Interface Under Cyclic Loading[J].Compufers and Geotechnics,1991,21(1):21-39
    [174]V.De Gennaro,R.Frank.Elasto-plastic analysis of the interface behaviour between granular media and structure[J].Computers and Geotechnics,2002,29:547 - 572
    [175]Desai C S,Ma Y.Modelling of joints and interfaces using the disturbed-state concept[J].Journal of Numerical and Analytical Method in Geomechanics,1992,16(9):623-653
    [176]Liming Hu,Jia Liu Pu.Application of damage model for soil-structure interface[J].Computers and Geotechnics,2003,30(9):165-183
    [177]林皋.土-结构动力相互作用[J].世界地震工程,1991,7(2):4-21
    [178]王松涛,曹资.现代抗震设计方法[M].北京:中国建筑工业出版社,1997
    [179]横田辛满著,唐进清,吴永荪.等译.桩结构物的计算方法和计算实例.北京:中国铁道出版社,1984
    [180]日本铁道协会.道路桥示方书·同解说:Ⅳ下部构造编.1980
    [181]Nogami T,Konagai K.Time domain axial response of dynamically loaded single piles[J].Journal of Engineering Mechanics,ASCE,1986,112(11):1241-1252
    [182]Nogami T,Konagai K.Time domain flexural response of dynamically loaded single piles[J].Journal of Engineering Mechanics,ASCE,1988,114(9):1512-1525
    [183]Nogami T,Otani J,Konagai K,Chen HL.Nonlinear soil-pile interaction model for dynamic lateral motion[J].Journal of Engineering Mechanics,ASCE,1992,118(1):89-106
    [184]El Naggar MH,Novak M.Nonlinear lateral interaction in pile dynamics[J].Soil Dynamics and Earthquake Engineering,1995,14(2):141-57
    [185]El Naggar MH,Novak M.Nonlinear analysis for dynamic lateral pile response[J].Soil Dynamics and Earthquake Engineering,1996,15(4):233-244
    [186]Wu G,Finn WDL.Dynamic nonlinear analysis of pile foundations using finite element method in the time domain[J].Canada Geotechnics Journal,1997,34(1):44-52
    [187]Bentley KJ,El Naggar MH.Numerical analysis of kinematic response of single piles[J].Canada Geotechnics Journal,2000,37(6):1368-1382
    [188]Maheshwari BK,Truman KZ,Gould PL,El Naggar MH.Three dimensional nonlinear seismic analysis of single piles using FEM:effects of plasticity of soil[J].Journal of Geomechnics,ASCE,2005,5(1):35-44
    [189]Maheshwari BK,Truman KZ,E1 Naggar MH,et al.Three dimensional nonlinear dynamic behavior of pile groups using finite element method in the time domain[J].Canada Geotechnics Journal,2003,41(2):118-133
    [190]B.K.Maheshwari,K.Z.Trumana,M.H.El Naggar,etc.Three-dimensional nonlinear analysis for seismic soil-pile-structure interaction[J].Soil Dynamics and Earthquake Engineering,2004,24(4):343-356
    [191]赵少伟.砌体结构基础下砂垫层隔震性能试验研究:[河北工业大学硕士学位论文].天津:河北工业大学,2004:39-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700