用户名: 密码: 验证码:
东北典型黑土区流域侵蚀—沉积对土壤质量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北黑土区是我国主要的粮食产区和商品粮基地。近年来,该区土壤侵蚀的加剧已严重影响区域粮食生产,对我国粮食战略安全构成了严重威胁。因此,分析黑土区土壤侵蚀—沉积对土壤质量和作物产量的影响,对保护黑土资源和保障国家粮食安全具有重要意义。本研究运用野外调查、室内分析与数理统计、核素示踪和GIS技术相结合的方法,以典型黑土区松花江流域东山沟小流域为研究对象,分析了流域侵蚀—沉积空间分布特征,研究了侵蚀—沉积对土壤物理学、化学性质和生物学特性的影响;筛选了侵蚀环境下土壤质量评价指标,并构建了评价模型,探究了侵蚀—沉积和土壤质量对玉米产量的影响。主要研究结论如下:
     (1)研究流域侵蚀—沉积空间分布特征,发现土壤侵蚀强度在流域分布呈现上游>中游>下游的分布规律,上游区域以土壤侵蚀现象为主,中游区域侵蚀与沉积现象并存,下游区域主要发生土壤沉积现象。土壤侵蚀强度沿坡面分布呈现坡中部>坡顶部>坡上部>坡下部,呈现明显的侵蚀强弱交替变化规律。
     (2)分析了土壤团聚体水稳性的分布特征及其破碎机制。研究发现,黑土土壤团聚体破碎机制主要是消散作用,其次是黏粒膨胀作用。耕层土壤的团聚体稳定性沿坡面呈波动变化趋势,分析了土壤有机质和黏粒含量及开垦年限对土壤团聚体稳定性的影响。
     (3)研究流域土壤侵蚀对土壤养分、土壤酶活性和土壤微生物量的影响。结果表明,流域土壤有机质、全氮、碱解氮、速效磷、转化酶、脲酶、碱性磷酸酶和微生物量碳氮空间分布特征明显受土壤侵蚀影响。总体上,流域土壤养分、酶活性和微生物量均呈现由上游至下游增加的趋势,沿坡长分布呈现坡顶较高—坡上较低—坡中低—坡下高的变化趋势。流域土壤有机质、全氮、转化酶与土壤侵蚀速率呈极显著负相关,土壤碱解氮、微生物量碳和氮含量与土壤侵蚀速率呈显著负相关,土壤脲酶和碱性磷酸酶与土壤侵蚀速率存在负相关关系,说明土壤侵蚀是影响土壤养分含量、酶活性和微生物量下降的重要因素。
     (4)筛选侵蚀环境下土壤质量评价指标并构建了评价模型。基于相关分析、敏感性分析和主成分分析,取土壤微生物量碳氮、速效磷、转化酶、脲酶、碱性磷酸酶、有机质、全氮、碱解氮、阳离子交换量、MWDsw、>0.2mm水稳性团聚体、砂粒作为土壤质量评价的基本指标。选取土壤团聚体平均重量直径MWDsw、>0.2mm水稳性团聚体含量、土壤有机质、全氮、碱解氮、速效磷、转化酶和微生物量碳作为土壤质量评价的适宜指标。经判别分析,筛选土壤转化酶、有机质、全氮、碱解氮和MWDsw为表征土壤质量的关键指标并构建了基于不同指标体系的土壤质量评价模型。土壤质量指数(SQI)计算结果表明,研究区土壤质量退化严重,总体处于较低水平。土壤质量在流域分布表现为流域下游区域>中游区域>上游区域,沿坡长分布呈现中—较低—低—高的变化趋势。SQI与侵蚀速率呈现极显著性负相关关系,表明流域土壤侵蚀不仅对土壤质量空间分布有重要影响,也是导致土壤质量贫瘠化最直接最重要的原因。
     (5)分析土壤质量和土壤侵蚀对玉米产量的影响。结果表明,玉米产量在流域尺度表现为由流域下游向上游降低的趋势,沿坡长分布呈现坡下部>坡顶部>坡上部>坡中部。流域坡面侵蚀区玉米产量明显低于流域沉积区,流域玉米地总体以玉米中低产田为主。玉米产量与土壤质量呈现极显著性正相关关系,表明土壤质量对玉米产量的高低和空间分布有积极作用,而土壤侵蚀则有负向影响。
The black soil region in Northeast China is the main grain production area and commodity grain base of China. In recent years, soil erosion has become more and more serious, which greatly affects regional food production and food security of our country. Therefore, revealing the effects of soil erosion-deposition on soil quality and crop yield in the black soil area had become more important for protecting the valuable black soil and guarantee food security of China. This dissertation took Dongshangou watershed, located at Songhua River Basin of typical eroded black soil area of Northeast China, as a research area site. According to field investigation combining with laboratory analysis, mathematical statistical analysis, radioisotope tracer and GIS technology, the dissertation analyzed the spatial distribution characteristics of soil erosion-deposition, studied the influence of soil erosion-deposition on soil physical, chemical and biological characteristics, determined soil quality assessment indicators under erosion environment and established evaluation model, and then explored the effect of soil erosion-deposition and soil quality on maize yield. The main results were as follows:
     (1) Spatial distribution characteristics of soil erosion-deposition were studied. The results showed that soil erosion rate in the watershed was ordered as follows upperstream>downstream> middle. Soil erosion was dominated in upper stream area, erosion and deposition was coexisted in middle reaches area, soil deposition was dominated in downstream area. Erosion rate along slope length followed as:middle slope position> crest position> upper slope position> lower slope position.
     (2) The distribution characteristics of soil water-stable aggregate ability and broken mechanism were analyzed. Results showed that aggregate breakdown in black soil was mainly caused by the compression of air entrapped inside aggregates, the second was clay swelling during wetting. The soil aggregate stability of plough layer was fluctuated along the slope surface.Then the effects of soil organic matter, clay particles content and reclamation duration on soil aggregate stability were analyzed.
     (3) Effects of soil erosion on soil nutrient, soil enzyme activities and microbial biomass C and N were studied. Results showed that spatial distribution of soil organic matter, total nitrogen, available nitrogen, available phosphorus, invertase, urease, alkaline phosphatase and microbial biomass C and N were significantly affected by erosion. In the mass, soil nutrient, soil enzyme activities and microbial biomass C and N was increased from upperstream to downstream in watershed and the variation tendency ordered as follows:higher(top-slope)-lower(up-slope)-low(mid-slope)-high(down-slope) along the slope surface. The relationship between soil erosion rate and soil organic matter, total nitrogen, invertase was highly significant negative correlation. Soil erosion rate had significant negative correlation with available nitrogen content, microbial biomass carbon and nitrogen content, and had negative correlation with urease and alkaline phosphatase. Thus, soil erosion is the important factor that can affect soil nutrient, soil enzyme activities and microbial biomass.
     (4) Soil quality assessment indicators were selected, and assessment model was established under erosion environment. Based on correlation analysis, sensitivity analysis, the dissertation chose MWDsw,>0.2mm soil water-stable aggregate,sand, soil organic matter, total nitrogen, available nitrogen, rapid available phosphorus, CEC, invertase, urease, alkaline phosphatase soil microbial biomass carbon and nitrogen as base indicators for soil quality evaluation. According to principal component analysis, the dissertation chose MWDsw,>0.2mm soil water-stable aggregate, soil organic matter, total nitrogen, available nitrogen, rapid available phosphorus, invertase and soil microbial biomass carbon as appropriate indicators for soil quality evaluation. According to discriminant analysis, soil invertase, organic matter, total nitrogen, available nitrogen and MWDsw were selected as key soil quality indicators and soil quality evaluation model which based on different index system was established. The calculation results of the soil quality index (SQI) showed that soil quality had degenerated seriously and stayed at low level in the study area. The distribution manifestation of soil quality is as follows:downstream of the watershed>middle reaches of the watershed>upstream of the watershed, and the variation tendency ordered as follows:middle-lower-low-high along slope length. SQI had highly significant negative correlation with soil erosion rate, which indicated the soil erosion intensity had important influence on spatial distribution of soil quality, and it was the most important and direct reason that led to soil quality impoverishment.
     (5) Effects of soil quality and soil erosion on maize yield were analyzed. Results showed that, maize yield was decreased from downstream to upstream, and the variation tendency ordered along slope length as follows:down-slope> top-slope> up-slope> mid-slope. Maize yield in soil erosion area were significantly lower than deposition area in the watershed, and it was mainly the middle-and-low-yield farmland in maize field. Maize yield had a highly significant positive correlation with soil quality. The results indicated that soil quality had a positive effect on the level and spatial distribution of maize yield.On the contrary, soil erosion had a negative effect on them.
引文
[1]中国水土流失与生态安全综合科学考察·东北组.中国水土流失防治与生态安全·东北黑土区卷[M].北京:科学出版社,2010:52-55.
    [2]阎百兴,杨育红,刘兴土,等.东北黑土区土壤侵蚀现状与演变趋势[J].中国水土保持,2008,(12):26-30.
    [3]黑龙江省土地管理局,黑龙江省土壤普查办公室.黑龙江土壤[M].北京:中国农业出版社,1992.
    [4]刘兴土,阎百兴.东北黑土区水土流失与粮食安全[J].中国水土保持,2009,(13):17-19.
    [5]陆继龙.我国黑土的退化问题及可持续农业[J].水土保持学报,2001,15(2):53-54.
    [6]申艳,张晓平,梁爱珍,等.黑土坡耕地土壤流失形态分析——以一次降雨为例[J].干旱地区农业研究,2008,26(6):224-229.
    [7]阎百兴,汤洁.黑土侵蚀速率及其对土壤质量的影响[J].地理研究,2005,24(4):499-506.
    [8]方华军,杨学明,张晓平,等.黑土坡耕地侵蚀和沉积对物理性组分有机碳积累与损耗的影响[J].土壤学报,2007,44(3):467-473.
    [9]魏建兵,肖笃宁,张兴义,等.侵蚀黑土容重空间分异与地形和土地利用的关系[J].水土保持学报,2006,20(3):118-122.
    [10]朱白澍.黑龙江海伦耕地土壤质量评价研究[D].重庆,西南大学硕士论文,2010.
    [11]曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    [12]Doran J W, Parkin T B. Defining and assessing soil quality, In:Doran J W eds. Defining Soil Quality for A Sustainable Environment. SSSA Spec. Pub 1.35. SSSA and ASA, Madison,1994,3-21.
    [13]Soil Science Society of America. A frame work for evaluating sustainable land management. Can. J. Soil Sci.,1995,75:401-408.
    [14]Parr J F, Papendick R I, Hornick S B, et al. Soil quality:attributes and relationship to alternative and sustainable agriculture. Am. J. Altern. Agric.,1992,7:5-11.
    [15]Islam K R, Weil R R. Soil quality indicator properties in mid-Atlantis soil as influenced by conservation management. Journal of Soil Water Conservation,2000, 50:226-228.
    [16]曹志洪.解释土壤质量演变规律确保土壤资源持续利用[J].世界科技研究与发展,2001,23(3):28-32.
    [17]赵其国,孙波,张桃林.土壤质量与持续环境.Ⅰ.土壤质量的定义及评价方法[J].土壤,1997,(3):113-120.
    [18]孙波,赵其国,张桃林.土壤质量与持续环境.Ⅱ.土壤质量评价的碳氮指标[J].土壤,1997,(4):169-184.
    [19]孙波,赵其国.红壤退化中的土壤质量评价指标及评价方法[J].地理科学进展,1999,18(2):118-128.
    [20]刘占锋,傅伯杰,刘国华,等.土壤质量与土壤质量指标及其评价[J].生态学报,2006,26(3):901-913.
    [21]Larson W E, Pierce F J. in:Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Inc, Maclison, Wisconsin USA,1994:37-52.
    [22]Soil and Water Conservation Society. Farming for a better environment-A white paper [N].Soil Water Conservation. Society. Ankeny. Iowa,1995.
    [23]Larson W E, Piece F J. Conservation and enhancement of soil quality[c]. In Proc. of the Int.Workshop on Evaluation for Sustainable Land Management in the Developing World. Vol.2. IBSRAM Proc.12(2). Int. Board for Soil Res. and Management. Bangkok, Thailand.
    [24]Doran, J W, Sarrantonio M., Liehig M I A. Soil health and sustainability [J]. Adv. Agric.1996, (56):51-54.
    [25]Dick R.P. Soil enzyme activities as indicators of soil quality. In:Doran J.W.,Coleman D.C., Bezdicek D.F.and Stewart B.A.,Editors,Defining soil quality for a sustainable environment, SSSA, Madison,1994,107-124.
    [26]Dick R.P.,Breakwill D.,Turco R.Soil enzyme activities and bio-diversity measurements as integrating biological indicators.In:Doran J.W.and Jones A.J.Editors,Handbook of Methods for Assessment of soil quality,SSSA,Madison USA,1996:247-272.
    [27]Dessaint F, Chadoeuf R, Barralis G. Nine years soil essd bank and weed vegetation relationships in an arable field without weed control. Journal of Applied Ecology,1997,34:123-130.
    [28]Holzapfel C, SchmidtW, Shmida A. Effects of human-caused disturbances on the flora along a Mediterranean desert gradient. Flora,1992,186:261-270.
    [29]Holzapfel C, Schmidt W, Shmida A. The role of seed bank and seed rain in the recolonization of disturbed sites along an aridity gradient. Phytocoenologia,1993, 23:561-580.
    [30]Kennedy A C, Papendick R J. Microbial characteristics of soil quality[J]. Journal of Soil and Water Conservation,1995,50:243-248.
    [31]巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报,2004,15(12):2292-2296.
    [32]熊东红,贺秀斌,周红艺.土壤质量评价研究进展[J].世界科技研究与发展,2005,(2):71-75.
    [33]许明祥,刘国彬,赵允格.黄土丘陵区土壤质量评价研究[J].应用生态学报,2005,16(10):1843-1848.
    [34]隋跃宇,张兴义,谷思玉,等.论农田黑土肥力评价体系[J].农业系统科学与综合研究,2004,20(4):265-270.
    [35]隋跃宇,焦晓光,张兴义,等.农田黑土肥力综合评价研究[J].土壤肥料,2005(5):46-48,51.
    [36]付微,李勇,李向越,等.松嫩平原黑土区农田土壤肥力评价研究[J].土壤与作物,2012,1(3):166-174.
    [37]卢铁光,杨广林,王立坤.基于相对土壤质量指数法的土壤质量变化评价与分析[J].东北农业大学学报.2003,59(1):56-59.
    [38]胡金明,刘兴土.三江平原土壤质量变化评价与分析[J].地理科学,1999,19(5):417-421.
    [39]Wang Xiaoju,Gong Zitong. Assessment and analysis of soil quality changes after eleven years of reclamation in subtropical China,Geoderma,1998,(81)3-4:339-355.
    [40]吕春华.黄土高原子午岭地区土壤质量对植被自然恢复过程的响应[D].陕西杨陵,西北农林科技大学博士论文,2009.
    [41]郭曼.黄土丘陵区土壤质量对植被自然恢复过程的响应和评价[D].陕西杨陵,西北农林科技大学博士论文,2009.
    [42]白文娟,郑粉莉,董丽莉,等.黄土高原地区水蚀风蚀交错带土壤质量综合评价[J].中国水土保持科学,2010,8(3):28-37.
    [43]孙海运,李新举,胡振琪,等.马家塔露天矿区复垦土壤质量变化[J].农业工程学报,2008,24(12):205-209.
    [44]王效举,龚子同.红壤丘陵小区域不同利用方式下土壤变化的评价和预测[J].土壤学报,1998,35(1):135-139.
    [45]许明祥,刘国彬,赵允格.黄土丘陵区侵蚀土壤质量评价[J].植物营养与肥料学 报,2005,11(3)::285-293.
    [46]安韶山,黄懿梅,刘梦云,等.宁南宽谷丘陵区土壤肥力质量对生态恢复的响应[J].水土保持研究,2005,12(3):22-26.
    [47]Pimentel, D. World soil erosion and conservation[J]. Cambridge studies in applied ecology and resource management (USA),1993,22(3):24-29.
    [48]鄂竟平.中国水土流失与生态安全综合科学考察总结报告[C].中国水土流失与生态安全综合科学考察总结会.北京,2008.
    [49]黄勇,杨忠芳.土壤质量评价国外研究进展[J].地质通报,2009,28(1):130-136.
    [50]Zobisch, M, C. Richter, B. Heiligtag, et al. Nutrient losses from cropland in the Central Highlands of Kenya due to surface runoff and soil erosion[J]. Soil and Tillage Research,1995,33(2):109-116.
    [51]Pierce, F, W. Larson, R. Dowdy, et al. Productivity of soils:assessing long-term changes due to erosion [J]. Journal of Soil and Water Conservation,1983, 38(1):39-52.
    [52]Quinton, J.N, G. Govers, K. Van Oost, et al. The impact of agricultural soil erosion on biogeochemical cycling[J]. Nature Geoscience,2010,3(5):301-314.
    [53]Loch, R. J. Effects of vegetation cover on runoff and erosion under sumulated rain and overland flow on a rehabilitated site on the Meandu Mine, Tarong, Queensland. Aust. J. Soil Res.,2000,38:299-312.
    [54]史衍玺,唐克丽.林地开垦加速侵蚀下土壤养分退化的研究[J].土壤侵蚀与水土保持学报,1996,2(4):26-33.
    [55]史德明,韦启潘,梁音.关于侵蚀土壤退化及其机理[J].土壤,1996,3:140-]44.
    [56]唐克丽,张科利,郑粉莉,等.子午岭林区自然侵蚀和人为加速侵蚀剖析.西北水土保持研究所集刊(第17集).西安:陕西科学技术出版社,1993,17-28.
    [57]刘秉正,李光录,吴发启,等.黄土高原南部土壤养分流失规律[J].水土保持学报,1995,9(2):77-86.
    [58]蔡强国,范昊明,沈波.松辽流域土壤侵蚀危险性分析与防治对策研究[J].水土保持学报,2003,17(3):21-24.
    [59]李士文,吴景才.黑土侵蚀区土壤侵蚀演变规律及对策[J].中国水土保持,1989,(4):7-10.
    [60]刘宝元,阎百兴,沈波,等.东北黑土区农地水土流失现状与综合治理对策[J].中国水土保持科学,2008,6(1):1-8.
    [61]Fenli Zheng, Xiubin He. Effects of erosion patterns on nutrient loss following deforestation on the Loess Plateau of China[J]. Agri. Eco. & Envir.2005,108:85-97.
    [62]Zheng, F.L., Huang, C., Norton, L. D. Effects of Near-Surface Hydraulic Gradients on Nitrate and Phosphorus Losses in Surface Runoff [J]. Journal of Environmental Quality,2004,33:2174-2182
    [63]Zheng, F. L., Huang, C., Darrell Norton, L. Vertical Hydraulic Gradient and Run-On Water and Sediment Effects on Erosion Processes and Sediment Regimes [J]. Soil Science Society of America Journal,2000,64:4-11
    [64]鲁彩艳,陈欣,史奕,等.东北黑土资源质量变化特征研究概述[J].农业系统科学与综合研究,2005,21(3):182-184.
    [65]郑粉莉,张成娥.林地开垦后坡面侵蚀过程与土壤养分流失的研究[J].水土保持学报,2002,16(1):44-46.
    [66]郭胜利,刘文兆,史竹叶,等.半干旱区流域土壤养分分布特征及其与地形、植被的关系[J].干旱地区农业的研究,2003,21(4):40-43.
    [67]孟凯,张兴义.松嫩平原黑土退化的机理及其生态复原[J].土壤学报,1998,29(3):100-102.
    [68]Williams J R. Soil erosion effects on soil productivity:A research perspective. Journal of Soil and Water Conservation,1981,36(2):82-90.
    [69]Larson W E, Pierce F J, Dowdy R H. The threat of soil erosion tolong-term crop production. Science,1983,219:458-465.
    [70]Pierce F J, Dowdy R H, Larson W E, et al. Soil productivity in the Corn Belt:An assessment of erosion's long-term effects. Journal of Soil and Water Conservation, 1984,39(2):131-135.
    [71]Fenton T E, Kazemi M, Lauterbach-Barrett M A. Erosional impa ct on organic matter content and productivity of selected Iowa soils[J]. Soil Tillage Res,2005, 81(2):163-171.
    [72]Doran, J.W., A.J. Jones. Methods for assessing soil quality[M]:Soil Science Society of America Inc,1996.
    [73]Rockstrom J, Barron J, Brouwer J, et al. On-farm spatial and temporal variability of soil and water in pear millet cultivation soil sci soc Am J,1999,63:1308-1319.
    [74]Larney F J, Izaurralde R C, Jansen H H, et al. Soil erosion-crop productivity relationships for six Alberta soils [J]. Journal of soil and water conservation,1995, 50(1):87-91.
    [75]刘秉正,吴发启,陈继明.渭北高原水土流失对土壤肥力与生产力影响的初步 研究[J].中科院水土保持研究所集刊.1990.(12):104-113.
    [76]杨武德.王兆骞.畦国平,等.土壤侵蚀对土壤肥力及土地生物生产力的影响[J].应用生态学报,1999,10(2):175-178.
    [77]陈奇伯,齐实,孙立达.等.宁南黄土丘陵区坡耕地土壤侵蚀对土地生产力影响研究[J].北京林业大学学报.2001,23(1):34-37.
    [78]陈奇伯,王克勤,齐实,等.黄土丘陵区水土流失与土地生产力的关系[J].生态学报,2003.23(8):1464-1469.
    [79]张兴义.刘晓冰.隋跃宇,等.人为剥离黑土层对大豆干物质积累及产量的影响[J].大豆科学,2006,25(2):123-126.
    [80]张兴义,孟令钦,刘晓冰,等.黑土区水土流失对玉米干物质积累及产量的影响[J].中国水利,2007,22:47-49.
    [81]王志强,刘宝元,王旭艳,等.东北黑土区土壤侵蚀对土地生产力影响试验研究[.J].中国科学D辑:地球科学,2009.39(10):1397-1412.
    [82]Tanaka D L. Spring wheat straw production and composition as influenced by topsoil removal. Soil Sci Soc Am J.1995.59(3):649-654.
    [83]Larney F J, Janzen H H, Olson B M. et al. Soil quality and productivity responses to simulated erosion and restorative amen dments. Can J Soil Sci,2000, 80(3):515-522.
    [84]Strauss P. Klaghofer E. Effects of soil erosion on soil char acteristics and productivity. Bodenkultur.2001.52(2):147-153.
    [85]Graveel J G. Tyler D D, Jones J R. et al. Crop yield and roo ting as affected by fragipan depth in loess soils in the southeast USA. Soil Tillage Res,2002, 68(1):153-161.
    [86]张信宝.137Cs法测算黄土高原土壤侵蚀速率的初步研究[J].地球化学.1991,(3):212-218.
    [87]李立青.杨明义,刘普灵.等.137Cs示踪农耕地土壤侵蚀速率模型的比较研究[J].地球科学进展.2004,19(1):32-37.
    [88]张晓平,梁爱珍.申艳,等.东北黑土水土流失特点[J].地理科学,2006,26(6):687-692.
    [89]Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility I. Theory and methodology [J]. European Journal of Soil Science, 1996.47:425-428.
    [90]Le Bissonnais Y, Arrouays D. Aggregate stability and assessment of soil crustability and erodibility:Application to humic loamy soils with various organic carbon contents[J]. European Journal of Soil Science,1997,48:39-48.
    [91]中国科学院南京土壤研究所土壤物理研究室编.土壤物理性质测定方法[M].北京:科学出版社,1978.
    [92]Rawe A. Basic principles of particle size analysis [EB/OL].http://www. Malvern.com.cn.2008-12-16.
    [93]Ward-Smit h R S, Gummery N, Rawle A F. Validation of wet and dry laser diffraction particle characterization methods [EB/OL]. http://www. malvern.com.cn.2008-12-18.
    [94]劳家柽.土壤农化分析手册[M].北京:农业出版社.1988.
    [95]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1977.
    [96]周礼恺.土壤酶学[M].北京:科学出版社,1987:116-267.
    [97]程丽娟,薛泉宏.微生物实验技术[M].西安:世界图书出版公司,2000.
    [98]张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报,1999,19(2):174-178.
    [99]宫阿都,何毓蓉.金沙江干热河谷退化土壤结构的分形特征研究[J].水土保持学报,2001,15(3):112-115.
    [100]吴承桢,洪伟.不同经营模式土壤团粒结构的分形特征研究[J].土壤学报,1999,36(2):162-167.
    [101]Z. Zhang, C. F. Wei, D. T. Xie, et al. Effects of Land Use Patterns on Soil Aggregate Stability in Sichuan Basin, China[J]. Particuology,2008,6(3):157-166.
    [102]H. Zhou, Y. Z. Lu, Z. C. Yang, et al. Influence of Conservation Tillage on Soil Aggregates Features in North China Plain[J]. Agricultural Sciences in China,2007,6(9): 1099-1106.
    [103]李阳兵,魏朝富,谢德体,等.岩溶山区植被破坏前后土壤团聚体分形特征研究[J].土壤通报,2006,37(1):24-28.
    [104]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
    [105]范昊明,蔡强国,崔明.东北黑土漫岗区土壤侵蚀垂直分带性研究[J].农业工程学报,2005,21(6):8-11.
    [106]杨丽娜,范昊明,郭成久,等.不同坡形坡面侵蚀规律试验研究[J].水土保持研究,2007,14(4):237-243.
    [107]方华军,杨学明,张晓平,等.137Cs示踪技术研究坡耕地黑土侵蚀和沉积特征[J].生态学报,2005,25(6):1376-1382.
    [108]安娟.东北黑土区土壤侵蚀过程机理和土壤养分迁移研究[D].陕西:中国科学院水土保持与生态环境研究中心博士论文,2012.
    [109]王彬.东北典型薄层黑土区土壤可蚀性关键因子分析与土壤可蚀性计算[D].陕西:西北农林科技大学硕士论文,2009.
    [110]王禹,杨明义,刘普灵.典型黑土直型坡耕地土壤侵蚀强度的小波分析[J].核技术,2010,24(1):98-103.
    [111]Bryan R B. The development use and efficiency of indices of soil erodibility [J]. Geoderma,1968,25-26.
    [112]王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素[J].土壤通报,2005,36(3):415-421.
    [113]Diaz-Zorita M, Perfect E, Groenevelt P H. Disruptive methods for assessing soil structure[J]. Soil and Tillage Res,2002,64:3-22.
    [114]卢升高,竹蕾,郑晓萍.应用Le Bissonnais法测定富铁土中团聚体的稳定性及其意义[J].水土保持学报,2004,18(1):7-11.
    [115]Matkin, E. A., Smart. A comparison of tests of soil structural stability [J]. Journal of Soil Science,1987,38:123-135.
    [116]郑晓萍,卢升高.富铁土团聚体稳定性的表征及其物理学机制[J].浙江大学学报:农业与生命科学版,2005,31(3):305-310.
    [117]Barthes B, Roose E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion:Validation at several levels. Catena,2002,47(2),133-149.
    [118]李朝霞.降雨过程中红壤表土结构变化与侵蚀特点[D].2005,华中农业大学.
    [119]郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀影响因素的研究[J].土壤学报,1989,26(2):109-116.
    [120]汪晓勇,郑粉莉.黄土坡面坡长对侵蚀—搬运过程的影响研究[J].水土保持通报,2008,28(3):1-4.
    [121]关连珠,张伯泉,颜丽,等.不同肥力黑土、棕壤微团聚体的组成及其胶结物质研究[J].土壤学报,1991,28(3):260-266.
    [122]赵世伟,苏静,杨永辉,等.宁南黄土丘陵区植被恢复对土壤团聚体稳定性的影响[J].水土保持研究,2005,12(3):27-29.
    [123]史奕,陈欣,沈善敏,等.土壤团聚体稳定机制及人类活动的影响[J].应用生态学报,2002,13(11):1491-1494.
    [124]宇万太,沈善敏,张路,等.黑土开垦后水稳性团聚体与土壤养分的关系[J].应用生态学报,2004,15(12):2287-2291.
    [125]张保华,何毓蓉.长江上游几种林地耕层土壤侵蚀率及与相关土壤性质关系[J].水土保持研究,2006,13(4):220-225.
    [126]苏永中,王芳,张智慧,等.河西走廊中段边缘绿洲农田土壤性状与团聚体特征[J].中国农业科学,2007,40(4):741-748.
    [127]彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报,2003,23(10):2176-2183.
    [128]沈善敏.黑土开垦后土壤团聚体稳定性与土壤养分的关系[J].土壤通报,1981,12(2):20-32.
    [129]丁瑞兴,刘树桐.黑土开垦后土壤肥力研究[J].土壤学报,1980,17(1):20-32.
    [130]孔祥斌,张凤荣,齐伟,等.集约化农区土地利用对土壤养分的影响[J].地理学报,2003,58(3):333-342.
    [131]Liu C Q, Lu J J, Li H P. Landward changes of soil enzyme activities in a tidal flat wetland of the Yangtze River Estuary and correlations with physico-chemical factors[J]. Acta Ecologica Sinica,2007,27(9):3663-3669.
    [132]王国梁,刘国彬,许明祥.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J].水土保持通报,2002,22(1):1-5.
    [133]南雅芳,郭胜利,张彦军,等.坡向和坡位对小流域梯田土壤有机碳氮变化的影响[J].植物营养与肥料学报,2012,18(3):595-601.
    [134]薛立,赖日石,陈红跃,等.不同坡位造林地酶活性与土壤养分的关系[J].土壤通报,2002,33(4):278-280.
    [135]Hairsto A B, Grigal D F. Topographic variation in soil-water and nitrogen for 2 forested landforms in Minnesota US A, [J]. Geoderma,1994,64(1-2):125-138.
    [136]史衍玺,唐克丽.人为加速侵蚀下土壤质量的生物学特性变化[J].土壤侵蚀与水土保持学报,1998,4(1):28-33,40.
    [137]焦晓光,魏丹,隋跃宇.长期施肥对黑土和暗棕壤土壤酶活性及土壤养分的影响[J].土壤通报,2011,42(3):698-703.
    [138]关松荫,沈桂琴,孟昭鹏,等.我国主要土壤剖面酶活性状况[J].土壤学报,1984,21(4):368-381.
    [139]岳中辉,张兴义,隋跃宇,等.黑土酶活性的剖面分布及其对养分的评价[J].水土保持学报,2011,25(4):154-159.
    [140]关松荫,孟昭鸥,沈桂琴,等.黑土层酶活性与碳氮磷的关系[J].土壤通报, 1985,16(2):82-84.
    [141]邱凤琼,周礼恺,陈恩凤,等.东北黑土有机质和酶活性与土壤肥力的关系[J].土壤学1981,18(3):244-253.
    [142]魏孝荣,邵明安.黄土高原沟壑区小流域不同地形下土壤性质分布特征[J].自然资源学报,2007,22(6):946-953.
    [143]董莉丽,郑粉莉.黄土丘陵区不同土地利用类型下土壤酶活性和养分特征[J].生态环境,2008,17(5):2050-2058.
    [144]张雪梅,吕光辉,杨晓东等.农田耕种对土壤酶活性及土壤理化性质的影响[J].干旱区资源与环境,2011,25(11):177-182.
    [145]李秀玲,吕光辉,何雪芬.连作年限对土壤理化性质及酶活性的影响[J].干旱区资源与环境,2012,26(9):93-97.
    [146]李凤霞,王学琴,郭永忠等.银川平原不同类型盐渍化土壤酶活性及其与土壤养分间相关分析研究[J].干旱区资源与环境,2012,26(7):121-126.
    [147]王树起,韩晓增,乔云发,等.长期施肥对东北黑土酶活性的影响[J].应用生态报,2008,19(3):551-556.
    [148]周礼恺.土壤酶活性的总体在评价土壤肥力水平中的作用[J].土壤学报,1983,20(4):413-417.
    [149]邱莉萍,刘军,王益权,等.土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报,2004,10(3):277-280.
    [150]邱丽萍,张兴昌.子午岭不同土地利用方式对土壤性质的影响[J].自然资源学报,2006,21(6):965-972.
    [151]丁菡,胡海波,王人潮.半干旱区土壤酶活性与其理化及微生物的关系[J].南京林业大学学报(自然科学版),2007,31(2):13-18.
    [152]王光华,金剑,韩晓增,等.不同土地管理方式对黑土土壤微生物量碳和酶活性的影响[J].应用生态学报,2007,18(6):1275-1280.
    [153]Lundquist E J, Jackson LK, Scow KM, etal. Changes in microbial biomass and community composition, and soil carbon and nitrogen pools after incorporation of rye into three California agriculture soils [J]. Soil Bio.l Biochem.1999,31: 221-236.
    [154]黄昌勇.土壤学[M].北京:中国农业出版社,2003:192-198.
    [155]张海燕,肖延华,张旭东,等.土壤微生物量作为土壤肥力指标的探讨[J].土壤通报,2006,37(3):422-425.
    [156]陈奇伯,齐实,孙立达,等.黄土丘陵区坡耕地土壤退化研究[J].水土保持通 报,2004,24(1):12-15.
    [157]Schuman G E, Burell R E, Piest R F et al. Nitrogen losses in surface runoff from agricultural water sheds on Missouri Valley loess [J].J. Environ. Qual.,1973,2: 299-302.
    [158]方华军,杨学明,张晓平,等.坡耕地黑土有机碳空间异质性及其格局[J].水土保持通报,2005,25(3):20-24.
    [159]Anderson D W, Jong E D, Verity G E, et al. The effects of cultivation on the organic matter of soils of the Canadian prairies [J]. Trans ⅩⅢ Cong Int Soc Soil Sci (Hamburg),1986,7:1344-1345.
    [160]辛刚,严丽,等.不同开垦年限黑土有机质变化的研究[J].土壤通报,2002,33(5):332-335.
    [161]汪景宽,王铁宇,张旭东,等.黑土土壤质量演变初探Ⅰ-不同开垦年限黑土主要质量指标演变规律[J].沈阳农业大学学报,2002,33(1):43-47.
    [162]Dick W. A. Influence of long term tillage and crop rotation combination on soil enzyme activities [J].Soil soc Am J.,1984,48:569-574.
    [163]Zantua M I, Dumenil L C, Bremner J M. Relationships between soil urease activity and other soil properties [J]. Soil Sci Soc. Am J.,1977,41(2):350-352.
    [164]王鑫,刘建新,张希彪,等.黄土高原半干旱地区土地利用变化对土壤养分、酶活性的影响研究[J].水土保持通报.2007,27(6):50-55.
    [165]张锋,郑粉莉,安韶山.近100年植被破坏加速侵蚀下土壤养分和酶活性动态变化研究[J].植物营养与肥料学报,2008,14(4):666-672.
    [166]张锋,郑粉莉,安韶山,等.子午岭地区林地破坏加速侵蚀对土壤养分流失和微生物的影响研究[J].植物营养与肥料学报,2006,12(6):826-833.
    [167]侯伟,张树文,李晓燕,等.黑土区耕地地力综合评价研究[J].农业系统科学与综合研究,2005,21(1):43-46.
    [168]马强,宇万太,赵少华,等.黑土农田土壤肥力质量综合评价[J].应用生态学报,2004,15(10):1916-1920.
    [169]许明祥.黄土丘陵区生态恢复过程中土壤质量演变及调控[D].陕西杨陵,中科院水保所博士论文,2003.
    [170]卢纹岱主编.SPSS for Windows统计分析[M].北京:电子工业出版社,2000.
    [171]John J B, Thomas B M, Douglas, L. K, et al. Identification of regional soil quality factors and indicators:Ⅰ. Central and southern high plains. SSSA[J].64: 2115-2124(2000).
    [172]John J B, Thomas B M, Douglas L K, et al. Identification of regional soil quality factors and indicators:Ⅱ. Northern Mississippi Loess Hills and Palo use Prairie. Soil Sci. Soc. Am.[J].64:2125-2135(2000).
    [173]李桂林,陈杰,孙志英,檀满枝.基于土壤特征和土地利用变化的土壤质量评价最小数据集确定[J].生态学报,2007,27(7):2715-2724.
    [174]郑立臣,宇万太,马强,王永宝.农田土壤肥力综合评价研究进展[J].生态学杂志,2004,23(5):156-161.
    [175]Kowaljow E, Mazzarino MJ.2007. Soil restoration in semiarid Patagonia: chemical and biological response to different compost quality [J]. Soil Biology & Biochemistry,39:1580-1588.
    [176]Zagal E, Munoz C, Quiroz M, et al.2009. Sensitivity of early indicators for evaluating quality changes in soil organic matter [J]. Geoderma.
    [177]郭旭东,傅伯杰,陈利顶,等.低山丘陵区土地利用方式对土壤质量的影响—以河北省遵化市为例[J].地理学报,2001,56(4):447-455.
    [178]陈鹏.基于3S的吉林省黑土退化监测与评价[D].吉林长春,东北师范大学硕士论文,2008.
    [179]赵军,刘焕军,隋跃宇,等.农田黑土有机质和速效氮磷不同尺度空间异质性分析[J].水土保持学报,2006,20(1):41-44.
    [180]张兴义,隋跃宇,于莉.薄层农田黑土速效氮磷钾含量的空间异质性[J].水土保持学报,2004,18(4):85-88.
    [181]Lal R. Soil erosion impact on agronomic productivity and environment quality. Crit Rev Plant Sci,1998,17(4):319-464.
    [182]Biggelaar C D, Lal R, Wiebe K, et al. The global impact of soil erosion on productivity:1 absolute and relative erosion-induced yield losses. Adv Agron, 2003,81:1-48.
    [183]梁爱珍,张晓平,杨学明,等.东北黑土有机碳的分布及其损失量研究[J].土壤通报,2008,39(3):533-538.
    [184]梁爱珍,张晓平,申艳,等.东北黑土水稳性团聚体及其结合碳分布特征[J].应用生态学报,2008,19(5):1052-1057.
    [185]李发鹏,李景玉,徐宗学.东北黑土区土壤退化及水土流失研究现状[J].水土保持研究,2006,]3(3):50-54.
    [186]陈奇伯,王克勤,齐实,等.不同生态脆弱区土壤侵蚀对土地生产力影响对比研究[J].水土保持通报,2005,25(3):29-32.
    [187]贾锐鱼,赵晓光,杜翠萍.黄土高原南部水土流失降低土壤生产力的评价[J].西北林学院学报,2004,19(3):77-81.
    [188]战秀梅,韩晓日,杨劲峰,等.沈阳市玉米主产区土壤有机质和有效磷含量及其与玉米产量水平之间的关系[J].中国土壤与肥料,2007,(3):29-31.
    [189]张兴义,王其存,隋跃宇,等.黑土坡耕地土壤湿度时空演变及其与大豆产量空间相关性分析[J].土壤,2006,38(4):410-415.
    [190]王鸿斌,赵兰坡,王淑华,等.吉林省超高产玉米田土壤理化环境特征的研究[J].玉米科学,2008,16(4):152-157.
    [191]李军,孙宏德,尚惠贤,等.黑土酶的活性与施肥和产量相关性分析[J].土壤通报,1986,17(6):280-282.
    [192]Shaffer M J,Schumacher T E, Ego C L. Simulating the effects of erosion on corn productivity [J]. Soil Science Society of American Journal,1995,59(3):672-679.
    [193]Den Biggelaar C, Lal R, Wiebe K, et al. Impact of soil erosion on crop yields in north America[J]. Advances in Agronomy,2001,72,1-52.
    [194]Marquesda Silva J R, Silva L L. Evaluation of the relationship between maize yield spatial and temporal variability and different topographic attributes [J].Biosystems engineering,2008,101 (2):183-190.
    [195]La Rosa D, Moreno J A, Mayol F, et al. Assessment of soil erosion vulnerability in western Europe and potential impact on crop productivity due to loss of soil depth using the impel ERO model[J]. Agriculture, Ecosystems and Environment, 2000,81 (3):179-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700